科学记数法
2-12 科学记数法

2.12科学记数法课程标准分析了解科学记数法的意义,会用科学记数法表示一个较大的数.理解在科学记数法a×10n的形式中,a是整数位数只有一位的数,n是原数的整数位数减1.感受生活中的一些较大的数,体验科学记数法所带来的方便.教材分析1.地位与作用:科学记数法是数学中一块独立的知识,为方便记数和为简化计算服务的,由于学生已经学习了有理数的乘方,具备了将数写成a×10n这种形式的基础,同时有理数的乘法学生已经熟练掌握,所以科学记数法是对前面知识学习的进一步延续.由于本节学习的是绝对值大于10的数的科学记数法,它也是以后进一步学习绝对值小于10的数的科学记数法的基础,所以本节的学习对学生的后续学习也是很重要的.另外科学记数法在近几年的中考考查率很高,所以对本节的学习应引起足够的重视.2.重点与难点:重点是用科学记数法表示有理数;难点是将科学记数法表示的数转化为原数.教法分析本节只要求学生会利用含10的正整数指数幂的科学记数法表示大数.在教材的引例:光速与全世界人口两数的表示上,可以启发学生发现在十进制中10的幂的作用,又如“万”“亿”等数量单位的作用,也可以让学生在计算器上做两个大数的乘法,观察计算器显示的结果,交流一下各自的体会.所以自主探究是本节学生活动的方式之一.另外要让学生通过例题与练习的实践去发现规律,体会到用科学记数法表示一个数时,10的指数比原数的整数位数少1,但不要硬灌和死记这个结论.学法分析学习本节要注意用对比的学习方法,如把一个大数用科学记数法表示,与把一个用科学记数法表示的数还原成原数对比学习.另外科学记数法就是把一个大于10的数写成a×10n的形式,条件:1≤a<10,n是非零自然数.把一个数用科学记数法表示,一般分两步:(1)确定a,a大于或等于1且小于10,它是原数的小数点向左移动后的结果;(2)确定n,n为正整数,它等于原数化为a时小数点移动的位数.理清这两点,是本节学习的关键.【教学目标】知识与技能利用10的乘方,进行科学记数,会用科学记数法表示大于10的数,会解决与科学记数法有关的实际问题.过程与方法体会科学记数法的好处和化繁为简的方法.情感态度与价值观正确使用科学记数法表示数,培养学生一丝不苟的精神.【教学重难点】重点:正确运用科学记数法表示比10大的数.难点:正确掌握10n的特征以及科学记数法中n与数值的关系.【教学过程】一、创设情境,导入新课设计意图:通过创设情境,引起学生的探究欲望,激发学生的学习兴趣.教师出示投影1:(1)310的底数是,指数是;103的底数是,指数是.(2)102=;103=;104=;105=.(3)100=10×10=(写成幂的形式,下同),10 000=,100 000=.学生先独立完成,然后合作小组内交流.教师出示投影2:光的传播速度是目前所知物质中最快的,每秒钟可传播300 000 000米,你能快速准确地读出这个数字并把它写出来吗?教师引导:通过刚才对较大数字的读和写,感觉怎么样?请同学们畅谈感受,并进行归纳,对大数进行读和写确实比较麻烦和困难,容易出错.二、推进新课设计意图:通过学生的观察、比较、讨论,归纳得出科学记数法的概念和方法,使学生参与到教学过程中来,感受数学的乐趣.师:既然大数的读和写都比较困难和麻烦,那么能否想办法解决这个问题呢?也就是说能否用另外的比较适当的方法来直接表示比较困难的大数呢?小组讨论,尝试用适当的方法将100 000 000这个数字快速而准确地表示出来,使得这个数字的读和写比较简单、明了和直观.学生分小组进行讨论.教师可适当加以引导,然后师生归纳出科学记数法的概念.教师出示例题:(1)用科学记数法表示下列各数.① 1 08000;②3200 000;③123 000 000 000.师生共同完成,师进一步提出问题,观察以上各式的结果,你发现了什么?学生讨论,归纳结果:用科学记数法表示一个n位整数,其中10的指数是n-1.补例:(2)下列用科学记数法表示的数,原来各是什么数?① 1.3×108;②6.2×106;学生练习,独立完成,然后与同学交流.三、巩固练习PPT学生练习,完成后集体纠正.四、课后作业1.一个正常人的平均心跳速率是每分钟70次,一年(按365天计)大约跳多少次?用科学记数法表示这个结果.一个正常人10年心跳次数能达到1亿次吗?2.有关资料表明,一个人在刷牙过程中如果一直打开水龙头,将浪费大约7杯水(每杯水约250 mL), 临海市人口除婴幼儿外,约有100万人口,如果所有的人在刷牙过程中都不关水龙头,则刷牙一次将浪费水多少mL? (用科学记数法表示)教学反思:。
科学记数法.

课堂检测站
1.下列算式:(1)(-0.0001)0=1(2)10-3=0.0001(3)-10300=1.03×104
(4)(4-2×2)0=1其中正确的有( )
A.1个
B.2个
C.3个
D.4个
2.纳米是一种长度单位,1纳米=10-9米。已知某种植物米粉的直径为35000 纳米,
那么用科学记数法表示为( )
A.3.5×102米
B.3.5×10-4米 C.3.5×10-5米 D.3.5×10-9米
3.下列用科学记数法表示的是( )
A.53.7×102 B.0.461×10-1 C.576×10-2 D.3.41×103
4.若0.0000003=3×10x,则x=( )
5.一种细菌的直径是0.00004米,用科学记数法表示为( )
——科学记数法
学习目标
❖ 知识与技能 1.会用科学记数法表示绝对值小于1的数. 2.会把一个科学记数法表示的数写成小数形式.
❖ 过程与方法 经历把一个绝对值小于1的非零数表示成科学记
数法±a×10n形式(其中,n为正整数)的过程,发现 规律,培养和增强数感. ❖ 情感态度和价值观
体会科学记数法方便、快捷,便于计算的优点.
6.按要求取近似值,并将科学记数法表示
(1)0.000576≈( )(保留2个有效数字)
(2)-0.00461 ≈( )(精确到0.001)
7.用科学记数法表示下列各数(1)200500000(2)0.0002005(3)0.0000019
8.写出下列各数的原数(1)2.05×10-5(2)3×10-9(3)-9.9×10-1
1. 负整数次幂是如何规定的?
一般地,规定a-P= 1 ( a≠0 ,且 p为正整数)
科学记数法

学记数法。
科学记数法的形式为a×10n ,其中 n 为正整数。
例1、用科学记数法表示下列各数:
(1)696000 , (2)-1200000 ,
(3)58000。 (5)560000000 (4)-7400000 (6) - 850100
300000000= 3×108; 6100000000= 6.1×109.
阅读与思考
椐科学家估计,地球储水总量为1.4310 米 但大量的存在于海中,又有一些封存于两极和高 山永久性积雪中,所以可以利用的淡水只有总储 水的1﹪,中国人口约为13亿,估计中国的可用 淡水量仅占世界的8﹪,请问中国的人均淡水量 约为多少?
18 3
谈一谈 根据联合国的标准每人供水不足 2 10
请说出原数
8.5 10
6
8500000
3.9610 396000
5
科学记数法
三、下列用科学记数法记出的数,原来各是什么数? (1) 3.0×104 ; 4.2×105; 1×103;6.003×107; (2)找出用科学记数法表示的数,并把其它的数用科学记 数法表示出来 ①水星的半径为2.44 ×106米,木星的赤道半径约为 71 400 000米. ②我国的陆地面积约为9 597 000平方千米,俄罗斯的陆 地面积约为9.976 ×106平方千米. 四、比较用科学记数法的数的大小. ①水星的半径为2.44 ×106米,木星的赤道半径约为 7. 14×107米. ②我国的陆地面积约为9.597×106平方千米,俄罗斯的陆 地面积约为9.976 ×106平方千米.
2005年10月,我国的科考队测的珠 峰的高度为8844.43米,用科学记数法表 3 ) 示为:( 8.84443 10
科学记数法

科学记数法什么是科学记数法科学记数法是一种表示大数字和小数字的有效方法,在科学和工程领域广泛应用。
它可以帮助我们简化数字的表达,并使其更易于理解和比较。
科学记数法的基本形式是:a x 10^n其中,a是一个大于等于1且小于10的数字,称为尾数(mantissa),n是一个整数,称为指数(exponent),表示10的多少次方。
例如,光速的科学记数法表示为:3 x 10^8,这意味着光的速度是3乘以10的8次方米/秒。
科学记数法的优势科学记数法具有以下几个优势:1.简化表示:通过科学记数法,我们可以将一个复杂的数字简化为一个整数乘以10的某个次方。
这样不仅节省了空间,还减少了阅读和书写的复杂性。
2.易于比较:科学记数法可以使得数字的大小比较变得更加直观和简单。
只需要比较尾数的大小,并根据指数的正负判断哪个数字更大或更小。
3.方便计算:对于涉及大量数字运算的科学计算和工程问题,科学记数法可以简化计算过程,避免出现过多的零,并降低计算出错的风险。
科学记数法的使用示例下面是一些常见实际应用中使用科学记数法的示例:1.宇宙的年龄:根据天文学家的估算,宇宙的年龄约为13.7 x 10^9 年。
2.原子的质量:氢原子的质量约为1.67 x 10^(-27) 千克。
3.电子的电荷:电子的电荷约为1.6 x 10^(-19) 库仑。
4.太阳的质量:太阳的质量约为1.99 x 10^30 千克。
如何转换为科学记数法将一个数字转换为科学记数法通常需要以下步骤:1.确定尾数:将数字的小数点移动到使得只剩下一个非零数字的位置,并记下这个数字。
这个数字即为尾数。
2.确定指数:根据小数点移动的位数,确定指数的值。
如果小数点向左移动了n位,则指数为-n;如果小数点向右移动了n位,则指数为+n。
例如,将数字9876543转换为科学记数法的步骤如下:1.将小数点移动到最左边的非零位置,得到9.876543。
2.确定尾数为9.876543。
科学记数法

谢谢!
新 课 练习
6、据统计,全球每分钟约有8 500 000吨污水 排入江河湖海,请你计算每小时全球的排污量? (结果用科学记数法表示)
7、一天有86 400秒,如果一个月按30天计算, 一个月有多少秒?(结果用科学记数法表示)
本课小结
1、把一个数写成 a10 ,这种形式的记数法叫做科 学记数法. 其中a满足 1≤∣a∣<10 。
6
8
有7个整数位
(5)57700
有9个整数位
(6 )130
000 000=1.3 10
8
议一议:指数与什么有关?
指数等于原数的整数位数减1
新 课 内容
例1:用科学记数法表示下列各数
(1)261 500
(2)-10 200 000
(3)700.06
(4)210 000千米=
千米=
米
新 课 练习
2、用科学记数法表示下列各数
3
克
7
新 课 练习
3、如果一个数的整数位有9个,则用科学记数法表 n 示成a10 ,那么n的值是 8 。
4、如果一个数用科学记数法表示成4.675210
10
,则
原数有 11 个整数位?
新 课 内容
例2:写出下列用科学记数法表示的数的原数。
(1) 10
3
(2)7.5
10
4
(3)-3.02
10
(1)36000=
(2)-2300000=
3.610
4 6
.
.
7 5
2.310
(3)17020000= 1.702 10
(4)-563500= (5)806.03=
.
. .
科学记数法课件

(1)a值的确定: 1≤∣a∣<10;
(2)10的指数n的确定:小数点由原来位 置 向右跳动几位,就确定为10的负几次方。
课堂练习:
1. 用科学记数法表示下列各数:
1) 2) 3) 4)
0.00003 -0.0000064 0.0000314 2013000
2.用科学记数法填空:
-6 -4
1×10 (1)1微秒=_________秒; -3 1×10-6 1×10 (2)1毫克=________克=________千克; 1×10 1×10 (3)1微米=________厘米=________ 米; 1×10 1×10 (4)1纳米=________微米=________米; 1×10-4 (5)1平方厘米=_________平方米;
-3 -6 -3 -9 -6
1×10 1×10 (6)1毫升= ________升=_________立方米.
学习小结:
1、你学到了哪些知识? 要注意什么问题? 2、在学习的过程 中你有 什么体会?
课堂小结:
引进了零指数幂和负整数幂,指 数的范围扩大到了全体整数,幂的性 质仍然成立。科学记数法不仅可以表 示一个绝对值大于10的数,也可以表 示一些绝对值较小的数,在应用中, 要注意a必须满足,1≤∣a∣<10. 其 中n是正整数
(4) -0.00105 = -1.05 × 0.00 1 = -1.05 × 10-3
0.005 = 5 × 0.001 = 5 × 10-3
小数点最后的位置
0.005
小数点原本的位置
小数点向右移了3次
0.005 = 5 × 10-3
方法总结:
把一个绝对值小于1的数用科学记数法表 示成a×10n的形式时,应注意:
科学记数法

科学记数法引言科学记数法(Scientific notation)是一种用于表示非常大或非常小的数值的计数方法。
它通过使用基数和指数的形式,将数字表示为一对数字的乘积。
科学记数法常用于科学和工程领域,以便更好地表达和理解极大或极小的数值。
本文将介绍科学记数法的基本概念、使用方法和实际应用。
基本概念科学记数法的表示形式为M × 10^n,其中M为定点数(mantissa),n为指数(exponent)。
M通常是一个在1到10之间的数,且n为整数。
通过这种组合,科学记数法可以表示非常大或非常小的数,使其更易读和理解。
科学记数法中的指数n决定了小数点向左或向右移动的位数。
当n为正数时,小数点向右移动n位;当n为负数时,小数点向左移动n位。
例如,数字1,000可以用科学记数法表示为1 × 10^3,其中指数为3,表示小数点向右移动3位。
同样地,0.001可以用科学记数法表示为1 × 10^-3,其中指数为-3,表示小数点向左移动3位。
使用方法写数:将数值转换为科学记数法将一个数值转换为科学记数法通常需要遵循以下步骤:1.确定定点数M:将数值中的小数点移动到该数中的第一个非零数字之前,得到定点数。
同时,记录小数点的移动位数。
2.将定点数M除以10,直到得到一个落在1和10之间(即1 ≤ M <10)的值。
这个值将作为定点数M。
3.记录每次除以10的次数,这就是科学记数法中的指数n。
让我们以一个例子来说明这个过程。
假设我们要将数值320,000转换为科学记数法:1.将小数点移动到第一个非零数字之前,得到3.2。
同时,记录小数点的移动位数为5。
2.将3.2除以10,得到0.32。
根据步骤2,我们得到落在1和10之间的值0.32,将其作为定点数M。
3.除以10的次数为5,因此,我们得到科学记数法表示为3.2 × 10^5。
读数:将科学记数法转换为数值将科学记数法转换为数值同样遵循一定的步骤:1.提取定点数M:将科学记数法中的定点数提取出来。
科学记数法

♣ 科学记数法表示原数时,原数的整数位数比 10的指数多1.
练一练
1. 用科学记数法表示下列各数: (1)8 000 000 (2)5 600 000 (3)-1 605 000 (4)0.00678×10
10
2. 下列用科学记数法记的数,原来 各是什么数? 5 (1)7.04×10 6 (2)3.96×10 4 (3)-7.80×10 6 (4)8.001×10 8 (5)-3.7592×10
评注
对于较大的数用科学记数法表示可简化计算。
3. 在张江高科技园区的上海超级 计算机中心内,被称为“神威1号” 的计算机运算速度为每秒384 000 000 000次,这个速度用科学记数 法表示为每秒___次。 3.84×10
11
4. 已知光的速度为300000000米/秒, 太阳光到达地球的时间大约是500秒, 试计算太阳与地球的距离大约是多少 千米?(结果用科学记数法表示) 分析 速度×时间=距离,但要注意单位 换算。 8 8 3 × 10 × 500 解:———————=1.5×10 (千
a×10 的形式,其中1≤a<10,
n是正整数,像这 样的记数法叫做科
n
学记数法。
课堂小结
♣ 将一个较大的数用科学记数法表示成a×10 形式的必要性. n ♣ a×10 的形式中,a是整数数位只有一位的数 即1≤a<10. ♣ 用科学记数法表示一个数时,10的指数比原 数的整数位数少1.
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
1.5.2科学记数法
〔教学目标〕借助身边熟悉的事物体会较大的数,会用科学记数法表示较大的数.〔重点难点〕会用科学记数法表示较大的数是重点;确定10的指数是难点。
〔教学过程〕
一、情景导入
生活中我们常常遇到较大的数,如:
[投影1]1、第五次人口普查时,中国人口约为1300000000人;
2、太阳半径约为696000000;
3、光的速度约为300000000米/秒。
读、写这样的数有一定困难,那么有简单的表示方法吗?
二、科学记数法
我们先来观察10的乘方有什么特点?
102=100
103=1000
104=10000
……
10n=100…00(n个0)
1的后面有多少个0就可以写成10的多少次方。
这样我们就可以利用10的乘方表示较大的数。
例如,567000000缩小一亿倍就是5.67,再扩大一亿倍即乘以108就是5.67×108,读作
5.67乘以10的8次方。
这样不仅书写简章,还便于读数。
象这样把一个大于10的数表示成a×10n的形式(其中a是整数数位只有一位的数,n是正整数),这种记数方法叫做科学记数法。
任何一个大于10的数都可以表示成a×10n的形式,其中1≤a<10,n为正整数。
三、例题
[投影2]例1用科学记数法表示下列各数:
(1)1000000;(2)57000000;(3)12300000000;(4)-961.34;
(5)0.005×106
解:(1)1000000=106;
(2)57000000=5.7×107;
(3)123000000000=1.23×1011;
(4)-9.6134×102;(它的意义是9.6134×102的相反数,这里的a仍然是
1≤a<10)(5)5×103(先计算原数等于5000,再用科学记数法表示)观察上面的式子,等号左边整数的位数与右边10的指数有什么关系?
等号右边10的次数比左边整数的位数少1。
现在看看开头我们提到的几个大数怎么表示?
988中国人口数表示为1.3×10;太阳半径表示为6.96×10;光的速度表示为
3×10.[投影3]例2写出下列用科学记数法表示的数的原数。
(1)2.31×10(2)3.001×10
37
(3)-1.28×10(4)-7.568×10
54
解:(1)2.31×10=231000;(2)3.001×10=30010;
37
(3)(3)-1.28×10=-1280;(4)-7.568×10=75680000。
[投影4]例3一个正常人平均心脏跳动速率为每分钟70次,请用科学记数法表示他一昼夜大约跳多少次?
5
解:一昼夜大约跳:70×60×24=100800=1.008×10次.
四、课堂练习
课本45面1、2.
五、课堂小结
用科学记数法表示较大的数时,要注意a×10n中a是只有一位整数的数,n 是这个数的....
整数位数减1。
....
作业:
47面4、5
48面9、1054。