几种简单形状_匀质刚体的转动惯量

合集下载

实验3刚体转动惯量的测定综述

实验3刚体转动惯量的测定综述

实验三刚体转动惯量的测定转动惯量是物体转动惯性的量度。

物体对某轴的转动惯量的大小,除了与物体的质量有关外,还与转轴的位置和质量的分布有关。

正确测量物体的转动惯量,在工程技术中有着十分重要的意义。

如正确测定炮弹的转动惯量,对炮弹命中率有着不可忽视的作用。

机械装置中飞轮的转动惯量大小,直接对机械的工作有较大影响。

有规则物体的转动惯量可以通过计算求得,但对几何形状复杂的刚体,计算则相当复杂,而用实验方法测定,就简便得多,三线扭摆就是通过扭转运动测量刚体转动惯量的常用装置之一。

实验目的1、理解并掌握根据转动定律测转动惯量的方法;2、学习用三线摆法测定物体的转动惯量。

3、测定二个质量相同而质量分布不同的物体的转动惯量,进行比较。

4、验证转动惯量的平行轴定理。

实验仪器介绍本实验采用新型转动惯量测定仪测定转动惯量。

该仪器采用激光光电传感器与计数计时仪相结合,测定悬盘的扭转摆动周期。

通过实验使学生掌握物体转动惯量的物理概念及实验测量方法,了解物体转动惯量与哪些因素有关。

本实验仪的计数计时仪具有记忆功能,从悬盘扭转摆动开始直到设定的次数为止,均可查阅相应次数所用的时间,特别适合实验者深入研究和分析悬盘振动中等周期振动及周期变化情况。

仪器直观性强,测量准确度高。

本仪器是传统实验采用现代化技术的典型实例,不仅保留了经典实验的内容和技能,又增加了现代测量技术和方法,可以激发学生学习兴趣,提高教学效果。

图1 新型转动惯量实验装置新型转动惯量测定仪平台、米尺、游标卡尺、计数计时仪、水平仪,样品为圆盘、圆环及圆柱体3种。

上海复旦天欣科教仪器有限公司图1 新型转动惯量测定仪结构图1.启动盘锁紧螺母2.摆线调节锁紧螺栓3.摆线调节旋钮4.启动盘5.摆线(其中一根线挡光计时)6.悬盘7.光电接收器8.接收器支架9. 悬臂 10. 悬臂锁紧螺栓11. 支杆 12. 半导体激光器 13.调节脚14. 导轨 15. 连接线 16. 计数计时仪 17. 小圆柱样品 18. 圆盘样品19. 圆环样品20.挡光标记实验原理三线摆是将一个匀质圆盘,以等长的三条细线对称地悬挂在一个水平的小圆盘下面构成的。

刚体的转动惯量

刚体的转动惯量
L I 常量
平动动能 1 m 2
2
力的功 A
F dr
ab
动能定理
A
1 2
m 2
1 2
m02
转动动能 1 I 2
2
力矩的功 A
Md
0
动能定理
A
1 2
I 2
1 2
I02
刚体动力学规律旳应用举例
例1:如图,质量m,长为L旳匀质细杆,可绕水 平旳光滑轴在竖直平面内转动,转轴O在杆旳A端。 若使杆于水平位置从静止开始向下摆动,求杆摆 到铅直位置时旳角速度。
一、刚体旳运动
不论在多大外界作用下,物体旳形状和大小均 不发生变化,这么旳物体称为刚体。
各质点间旳相对位置永不发生变化旳质点系。
1、平动 刚体在运动中,其上任意两点旳连线一直保持平行。
A
A
B
A
B
B 平动中刚体上旳各点都有相同旳轨迹、位移、 速度及加速度。用质心运动讨论。
2、定轴转动 刚体上各点均绕同一固定直线旋转旳运动,
M d(I)
dt
措施四:应用机械能守恒定律(见下一种例题 )
例2:质量m,长为L旳均匀细棒,可绕过其一端旳水平
轴O转动。现将棒拉到水平位置(OA’)放手,棒下
摆到铅直位置(OA)时,与水平面A处旳质量为M旳
物块作完全弹性碰撞,物体在水平面上向右滑行了一
段距离s后停止。设物体与水平面间旳摩擦系数到处
r2dm
转动定律 M I
动量 m,冲量
t Fdt
动量定理
F
t0 dP
dt
角动量 L I,冲量矩
t
Mdt
t0
角动量定理 M dL dt
五、质点与刚体力学规律对照表(续)

常见刚体的转动惯量

常见刚体的转动惯量
174
习题答案
第一章
F (h − 3r ), M y = 3 F (r + h ), M z = − Fr . 1-3 4 4 2 2 bc ab ca a ab M ξ = −513.36 N ⋅ m . 1-4 M x = M − F ,My = M + F ,Mz = M, k1 k1 k1 2k 2 2k 2 abc 2 2 2 2 2 2 F. 其中: k1 = (ab ) + (bc ) + (ca ) , k2 = a + b / 4 + c . 1-5 M τ = rAB b 2 + c 2
ρz =
3 r 10 3 (4r 2 + l 2 ) 80
ρx = ρy
=
圆环
3 J z = m( R 2 + r 2 ) 4
ρ z = R2 + r2
3 4
Jz =
椭圆形 薄 板
m 2 (a + b2 ) 4 m J y = a2 4 m J y = b2 4
1 2 a + b2 2 a ρx = 2 b ρy = 2
附录常见几种均质物体的转动惯量和回转半径物体的转动惯量简图回转半径形状m为物体的质量m2ljlzzcc1223细直杆m2ljzlz33薄壁2jmrr圆筒zz12rjmrzz22jj圆柱xyxym221223rl3rl1212空心m22122jzrrzrr圆柱22薄壁222jzmrzr空心球33222实心球jzmrzr55171323jzmrzr1010jj圆锥体xyxy322322m4rl4rl8080232232圆环jzmrrzrr44m22122jzabzab42椭圆形m2ajyax薄板42m2bjyby42m22122jzabzab1212m22122长方体jyacxac1212m22122jy12bcy12bcm22jz12ab122zab矩形m212ja薄板y120289axm20289bjbyy12172参考书目1朱照宣周起钊殷金生编

转动惯量公式表

转动惯量公式表

常见几何体]转动惯量公式表对于细杆当回转轴过杆得中点并垂直于杆时;J=m(L^2)/12 其中m就是杆得质量,L就是杆得长度。

当回转轴过杆得端点并垂直于杆时:J=m(L^2)/3 其中m就是杆得质量,L就是杆得长度。

对于圆柱体当回转轴就是圆柱体轴线时;J=m(r^2)/2其中m就是圆柱体得质量,r就是圆柱体得半径。

对于细圆环当回转轴通过中心与环面垂直时,J=mR^2;当回转轴通过边缘与环面垂直时,J=2mR^2;R为其半径对于薄圆盘当回转轴通过中心与盘面垂直时,J=﹙1/2﹚mR^2;当回转轴通过边缘与盘面垂直时,J=﹙3/2﹚mR^2;R为其半径对于空心圆柱当回转轴为对称轴时,J=﹙1/2﹚m[(R1)^2+(R2)^2];R1与R2分别为其内外半径。

对于球壳当回转轴为中心轴时,J=﹙2/3﹚mR^2;当回转轴为球壳得切线时,J=﹙5/3﹚mR^2;R为球壳半径。

对于实心球体当回转轴为球体得中心轴时,J=﹙2/5﹚mR^2;当回转轴为球体得切线时,J=﹙7/5﹚mR^2;R为球体半径对于立方体当回转轴为其中心轴时,J=﹙1/6﹚mL^2;当回转轴为其棱边时,J=﹙2/3﹚mL^2;当回转轴为其体对角线时,J=(3/16)mL^2;L为立方体边长。

只知道转动惯量得计算方式而不能使用就是没有意义得。

下面给出一些(绕定轴转动时)得刚体动力学公式。

角加速度与合外力矩得关系:角加速度与合外力矩式中M为合外力矩,β为角加速度。

可以瞧出这个式子与牛顿第二定律就是对应得。

角动量:角动量刚体得定轴转动动能:转动动能注意这只就是刚体绕定轴得转动动能,其总动能应该再加上质心动能。

只用E=(1/2)mv^2不好分析转动刚体得问题,就是因为其中不包含刚体得任何转动信息,里面得速度v只代表刚体得质心运动情况。

由这一公式,可以从能量得角度分析刚体动力学得问题。

转动惯量(Moment of Inertia)就是刚体绕轴转动时惯性(回转物体保持其匀速圆周运动或静止得特性)得量度,用字母I或J表示。

转动惯量的计算

转动惯量的计算

说明:本文《转动惯量的计算》特地收集贡献出来供各位工程技术人员在参阅本人劣作《风机动平衡调试方法》时参考。

深圳华晶玻璃瓶有限公司工程部(动力车间)李宜斌编辑2010-10-21转动惯量的计算转动惯量应用于刚体各种运动的动力学计算中。

单个质点的转动惯量:I = m× r2.质点系的转动惯量:I = Σ m i×r i2.质量连续分布的刚体的转动惯量:I = ∫m r2dm。

以上各式中的r理解为质点到转轴的距离。

刚体绕轴转动惯性的度量。

其数值为J=∑ mi*ri^2,式中mi表示刚体的某个质点的质量,ri表示该质点到转轴的垂直距离。

求和号(或积分号)遍及整个刚体。

转动惯量只决定于刚体的形状、质量分布和转轴的位置,而同刚体绕轴的转动状态(如角速度的大小)无关。

规则形状的均质刚体,其转动惯量可直接计得。

不规则刚体或非均质刚体的转动惯量,一般用实验法测定。

描述刚体绕互相平行诸转轴的转动惯量之间的关系,有如下的平行轴定理:刚体对一轴的转动惯量,等于该刚体对同此轴平行并通过质心之轴的转动惯量加上该刚体的质量同两轴间距离平方的乘积。

由于和式的第二项恒大于零,因此刚体绕过质量中心之轴的转动惯量是绕该束平行轴诸转动惯量中的最小者。

垂直轴定理:一个平面刚体薄板对于垂直它的平面轴的转动惯量,等于绕平面内与垂直轴相交的任意两正交轴的转动惯量之和。

表达式:Iz=Ix+Iy刚体对一轴的转动惯量,可折算成质量等于刚体质量的单个质点对该轴所形成的转动惯量。

由此折算所得的质点到转轴的距离,称为刚体绕该轴的回转半径κ,转动惯量的量纲为L^2M,在SI单位制中,它的单位是kg·m^2。

刚体绕某一点转动的惯性由更普遍的惯量张量描述。

惯量张量是二阶对称张量,它完整地刻画出刚体绕通过该点任一轴的转动惯量的大小。

补充对转动惯量的详细解释及其物理意义:先说转动惯量的由来,先从动能说起大家都知道动能E=(1/2)mv^2,而且动能的实际物理意义是:物体相对某个系统(选定一个参考系)运动的实际能量,(P势能实际意义则是物体相对某个系统运动的可能转化为运动的实际能量的大小)。

转动惯量公式表

转动惯量公式表

常见几何体]转动惯量公式表关于细杆当回转轴过杆的中点并垂直于杆时;J=m(L^2)/12 其中m是杆的质量,L是杆的长度。

当回转轴过杆的端点并垂直于杆时:J=m(L^2)/3 其中m是杆的质量,L是杆的长度。

关于圆柱体当回转轴是圆柱体轴线时;J=m(r^2)/2其中m是圆柱体的质量,r是圆柱体的半径。

关于细圆环当回转轴通过中心与环面垂直时,J=mR^2;当回转轴通过边缘与环面垂直时,J=2mR^2;R为其半径关于薄圆盘当回转轴通过中心与盘面垂直时,J=﹙1/2﹚mR^2;当回转轴通过边缘与盘面垂直时,J=﹙3/2﹚mR^2;R为其半径关于空心圆柱当回转轴为对称轴时,J=﹙1/2﹚m[(R1)^2+(R2)^2];R1和R2别离为其内外半径。

关于球壳当回转轴为中心轴时,J=﹙2/3﹚mR^2;当回转轴为球壳的切线时,J=﹙5/3﹚mR^2;R为球壳半径。

关于实心球体当回转轴为球体的中心轴时,J=﹙2/5﹚mR^2;当回转轴为球体的切线时,J=﹙7/5﹚mR^2;R为球体半径关于立方体当回为其中心轴时,J=﹙1/6﹚mL^2;当回转轴为其棱边时,J=﹙2/3﹚mL^2;当回转轴为其体对角线时,J=(3/16)mL^2;L为立方体边长。

只明白转动惯量的计算方式而不能利用是没成心义的。

下面给出一些(绕定轴转动时)的刚体动力学公式。

角加速度与合外力矩的关系:角加速度与合外力矩式中M为合外,β为。

能够看出那个式子与牛顿第二定律是对应的。

角动量:角动量刚体的定轴转动动能:转动动能注意这只是刚体绕定轴的转动动能,其总动能应该再加上质心动能。

只用E=(1/2)mv^2不行分析转动刚体的问题,是因为其中不包括刚体的任何转动信息,里面的速度v只代表刚体的质心运动情形。

由这一公式,能够从能量的角度分析刚体动力学的问题。

惯量(Moment of Inertia)是绕轴转动时惯性(回转物体维持其或静止的特性)的,用字母I或J表示。

三种计算圆盘类刚体转动惯量的方法探析-力学论文-物理论文

三种计算圆盘类刚体转动惯量的方法探析-力学论文-物理论文

三种计算圆盘类刚体转动惯量的方法探析-力学论文-物理论文——文章均为WORD文档,下载后可直接编辑使用亦可打印——动力学论文第四篇:三种计算圆盘类刚体转动惯量的方法探析摘要:刚体的转动惯量是大学物理刚体力学中的重点。

研究采用了三种方法计算圆盘形状物体绕中心转动对称轴的转动惯量,即微元定义求解法、量纲分析法和等边n角形极限法。

提出了后面两种巧妙的计算方法,引导学生在解决问题的时候开阔思维,激发其学习的积极性及对科研的探索精神。

关键词:圆盘; 转动惯量; 计算方法;Three methods of calculating the moment of inertia of a diskLAN Shan-quanSchool of Physical Science and Technology,Lingnan Normal UniversityAbstract:The moment of inertia of rigid body is the focus of rigid body mechanics in university physics. In this paper,three methods are used to calculate the moment of inertia of a disk-shaped object about a central rotational axis of symmetry,namely,the method of solving the definition of micro element,the method of dimensional analysis and the method of limit of n-angle with equal sides. The last two ingenious calculation methods are put forward to guide students to broaden their thinking when solving problems,stimulate their enthusiasm for learning and explore the spirit of scientific research.1 引言转动惯量度量是刚体在力矩的作用下改变转动角速度的容易程度。

转动惯量公式表

转动惯量公式表

常见几何体]转动惯量公式表对于细杆当回转轴过杆的中点并垂直于杆时;J=m(L^2)/12 其中m是杆的质量,L是杆的长度。

当回转轴过杆的端点并垂直于杆时:J=m(L^2)/3 其中m是杆的质量,L是杆的长度。

对于圆柱体当回转轴是圆柱体轴线时;J=m(r^2)/2其中m是圆柱体的质量,r是圆柱体的半径。

对于细圆环当回转轴通过中心与环面垂直时,J=mR^2;当回转轴通过边缘与环面垂直时,J=2mR^2;R为其半径对于薄圆盘当回转轴通过中心与盘面垂直时,J=﹙1/2﹚mR^2;当回转轴通过边缘与盘面垂直时,J=﹙3/2﹚mR^2;R为其半径对于空心圆柱当回转轴为对称轴时,J=﹙1/2﹚m[(R1)^2+(R2)^2];R1和R2分别为其内外半径。

对于球壳当回转轴为中心轴时,J=﹙2/3﹚mR^2;当回转轴为球壳的切线时,J=﹙5/3﹚mR^2;R为球壳半径。

对于实心球体当回转轴为球体的中心轴时,J=﹙2/5﹚mR^2;当回转轴为球体的切线时,J=﹙7/5﹚mR^2;R为球体半径对于立方体当回转轴为其中心轴时,J=﹙1/6﹚mL^2;当回转轴为其棱边时,J=﹙2/3﹚mL^2;当回转轴为其体对角线时,J=(3/16)mL^2;L为立方体边长。

只知道转动惯量的计算方式而不能使用是没有意义的。

下面给出一些(绕定轴转动时)的刚体动力学公式。

角加速度与合外力矩的关系:角加速度与合外力矩式中M为合外力矩,β为角加速度。

可以看出这个式子与牛顿第二定律是对应的。

角动量:角动量刚体的定轴转动动能:转动动能注意这只是刚体绕定轴的转动动能,其总动能应该再加上质心动能。

只用E=(1/2)mv^2不好分析转动刚体的问题,是因为其中不包含刚体的任何转动信息,里面的速度v 只代表刚体的质心运动情况。

由这一公式,可以从能量的角度分析刚体动力学的问题。

转动惯量(Moment of Inertia)是刚体绕轴转动时惯性(回转物体保持其匀速圆周运动或静止的特性)的量度,用字母I或J表示。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
相关文档
最新文档