测量刚体的转动惯量实验报告
刚体转动惯量的测量实验报告

刚体转动惯量的测量实验报告引言刚体转动惯量是描述刚体绕轴旋转时惯性特性的物理量,它对于研究物体的转动运动非常重要。
本实验旨在通过测量不同刚体的转动惯量,探究刚体转动惯量与几何形状和质量分布之间的关系,以及理论计算公式与实际测量之间的差异。
实验设备和材料1.转动惯量测量仪器:包括支架、转轴、弹簧、刻度盘等。
2.不同刚体样品:本实验使用了长方体、圆盘和圆环三种常见刚体样品。
3.实验辅助工具:包括卷尺、电子天平等。
实验步骤步骤一:准备工作1.搭建转动惯量测量仪器:将支架搭建好,并通过转轴和弹簧将测量仪器固定在支架上。
2.校准刻度盘:确保刻度盘的零点对齐并能够准确度量转动角度。
步骤二:测量不同刚体的转动惯量1.测量长方体的转动惯量:–将长方体放置在转轴上,并调整初始角度。
–施加一定的力矩,使长方体绕轴做匀速转动。
–通过刻度盘测量长方体转动的角度和力矩的大小。
–重复上述步骤,记录多组数据,以增加测量精度。
2.测量圆盘的转动惯量:–将圆盘放置在转轴上,并调整初始角度。
–施加一定的力矩,使圆盘绕轴做匀速转动。
–通过刻度盘测量圆盘转动的角度和力矩的大小。
–重复上述步骤,记录多组数据,以增加测量精度。
3.测量圆环的转动惯量:–将圆环放置在转轴上,并调整初始角度。
–施加一定的力矩,使圆环绕轴做匀速转动。
–通过刻度盘测量圆环转动的角度和力矩的大小。
–重复上述步骤,记录多组数据,以增加测量精度。
步骤三:数据处理与分析1.根据测量的角度和力矩数据,利用公式计算刚体的转动惯量。
2.利用不同质量分布和几何形状的刚体的转动惯量数据,探究其之间的关系。
3.对比理论计算公式与实际测量结果之间的差异,并对可能存在的误差进行分析和讨论。
结果与讨论不同刚体的转动惯量测量结果•长方体:–测量数据1:转动惯量= 0.25 kg·m^2–测量数据2:转动惯量= 0.26 kg·m^2•圆盘:–测量数据1:转动惯量= 0.15 kg·m^2–测量数据2:转动惯量= 0.17 kg·m^2•圆环:–测量数据1:转动惯量= 0.20 kg·m^2–测量数据2:转动惯量= 0.19 kg·m^2转动惯量与几何形状和质量分布的关系从测量数据可以看出,长方体的转动惯量较大,圆盘次之,圆环最小。
刚体转动惯量的测定实验报告

刚体转动惯量的测定实验报告一、实验目的1、学习用三线摆法测定刚体的转动惯量。
2、加深对转动惯量概念的理解。
3、掌握用游标卡尺和秒表等仪器的使用方法。
二、实验原理三线摆是由三根等长的悬线将一水平圆盘悬挂在一个固定的支架上构成的。
当圆盘绕中心轴 OO' 作扭转摆动时,圆盘的运动可以看作是圆盘绕通过其重心且垂直于盘面的轴线的转动和平动的合成。
设圆盘的质量为 m,半径为 R,对于通过其重心且垂直于盘面的轴线的转动惯量为Ic。
当圆盘扭转一个小角度θ 时,圆盘的势能变化为:ΔEp = mgh其中,h 为圆盘重心上升的高度。
由于θ 很小,所以可以近似认为:h ≈ Rθ²根据能量守恒定律,圆盘的势能变化等于其动能的变化,即:ΔEp =1/2 Iω²其中,ω 为圆盘的角速度。
又因为圆盘的摆动周期为 T,所以ω =2π/T。
联立上述式子可得:Ic =(mgR²T²) /(4π²h)实验中通过测量圆盘的质量 m、半径 R、摆动周期 T 以及圆盘扭转角度θ 对应的重心上升高度 h,即可计算出圆盘对于通过其重心且垂直于盘面的轴线的转动惯量 Ic。
三、实验仪器三线摆、游标卡尺、米尺、秒表、待测刚体(圆环、圆柱等)、托盘天平。
四、实验步骤1、用托盘天平测量圆盘和待测刚体的质量。
2、用游标卡尺测量圆盘和待测刚体的直径,分别测量多次,取平均值。
3、调整三线摆的悬线长度,使上下圆盘之间的距离约为 50cm 左右。
4、轻轻转动上圆盘,使圆盘作小角度的扭转摆动,用秒表测量圆盘摆动 50 个周期的时间,重复测量多次,取平均值,计算出摆动周期T。
5、将待测刚体放在圆盘上,使两者的中心轴线重合,按照上述方法测量系统(圆盘和待测刚体)的摆动周期 T'。
五、实验数据记录与处理1、圆盘质量 m =______ g,直径 D =______ cm,半径 R =D/2 =______ cm。
刚体转动惯量的测定实验报告

刚体转动惯量的测定实验报告实验目的:1.了解刚体转动惯量的概念和定义;2.学习利用旋转法测量刚体转动惯量;3.掌握利用平衡法测量刚体转动惯量的方法。
实验仪器:1.旋转法实验装置:圆盘、转轴、杠杆、螺旋测微器、质量砝码等;2.平衡法实验装置:平衡木、质量砝码、支撑点等。
实验原理:1.旋转法实验原理:设刚体的转动惯量为I,当刚体在转轴上匀加速转动时,在力矩M作用下,刚体产生角加速度α。
根据牛顿第二运动定律和角动量定理可得到:M=Iα(1)在角加速度恒定的情况下,转动惯量I与力矩M成正比。
2.平衡法实验原理:刚体转动惯量测量的基本原理是利用转轴位置的移动来改变刚体的转动惯量,使得转动惯量I和重力力矩Mg达到平衡,即:Mg=Iα(2)在刚体转动平衡的状态下,转动惯量I与重力力矩Mg成正比。
实验步骤:1.旋转法实验步骤:(1)将圆盘固定在转轴上,并将转轴竖直插入转台中央的孔中。
(2)将杠杆固定在圆盘上,使得杠杆能够自由转动。
(3)在杠杆上加上一定的质量砝码,使得圆盘开始匀加速转动。
(4)测量转轴上的螺旋测微器的读数,记录下圆盘旋转一定角度时的螺旋测微器的读数。
(5)记录下圆盘质量与加速度的数值,计算出实验测得的转动惯量。
2.平衡法实验步骤:(1)将平衡木放置在支撑点上,使得平衡木可以自由转动。
(2)在平衡木上加上一定的质量砝码,使得平衡木保持平衡。
(3)移动转轴的位置,直到平衡木重新平衡。
(4)记录下转轴位置与加在平衡木上的质量的数值,计算出实验测得的转动惯量。
实验数据处理:1.旋转法实验数据处理:(1)根据螺旋测微器的读数,计算出圆盘旋转的角度。
(2)根据实验测得的圆盘质量和加速度的数值,计算出实验测得的转动惯量。
2.平衡法实验数据处理:(1)根据转轴位置的变化,计算出实验测得的转动惯量。
实验结果分析:根据实验测得的数据,通过旋转法和平衡法两种方法测得的刚体转动惯量进行比较和分析。
分析实验数据的偏差和不确定度,讨论实验结果的可靠性。
刚体转动惯量的测定实验报告

拓展应用领域
将刚体转动惯量的测定方法应用于工程领域,如机 械设计、航空航天等领域,为实际问题的解决提供 理论支持。
发展新的测量技术
随着科技的不断发展,可以探索更为精确、 高效的刚体转动惯量测量新技术,提高实验 测量的准确性和效率。
提供实验依据
本实验为刚体转动惯量的研究提供了可靠的实验数据和依据。
验证理论模型
通过实验验证理论模型的正确性,为刚体转动惯量的理论 研究提供有力支持。
推动相关领域发展
刚体转动惯量的研究在力学、物理学、工程学等多个领域 具有广泛应用,本实验的研究方法和结论有助于推动相关 领域的发展。
THANKS FOR WATCHING
得出结论
根据实验数据和误差分析结果,得出不同形 状刚体转动惯量的测量值和实验结论。
CHAPTER 04
实验结果分析与讨论
数据整理与图表展示
数据整理
详细记录了实验过程中各测量点 的数据,包括转动角度、时间、 扭矩等,并对数据进行了初步处 理,如计算平均值、标准差等。
图表展示
根据整理后的数据,绘制了相应 的图表,如转动角度-时间曲线、 扭矩-时间曲线等,以便更直观地 展示实验结果。
设备操作注意事项
实验前应检查实验台是否 水平、稳固,确保实验过 程中刚体不会晃动或倾斜。
调整光电传感器时应确保 其与刚体转动平面垂直,
且光线能够准确照射到刚 体表面。
ABCD
安装刚体及附件时应确保 连接牢固、稳定,避免实 验过程中发生脱落或移位。
实验过程中应保持环境安 静、避免干扰,确保数据 采集的准确性和可靠性。
掌握数据处理方法
测刚体转动实验报告

一、实验目的1. 理解并掌握根据转动定律测转动惯量的方法;2. 熟悉电子毫秒计的使用;3. 通过实验验证转动惯量的基本概念和规律。
二、实验原理转动惯量是物体转动惯性的量度,表示物体绕某轴转动时,其质量分布对转动的影响程度。
转动惯量越大,物体转动越困难。
转动惯量的大小与物体的质量、质量分布和转轴的位置有关。
根据转动定律,刚体绕固定轴转动时,所受合外力矩等于刚体的转动惯量与角加速度的乘积。
即:M = Iα其中,M为外力矩,I为转动惯量,α为角加速度。
本实验采用恒力矩法测量刚体的转动惯量。
恒力矩法是通过测量刚体绕固定轴转动时的角加速度,然后根据转动定律计算转动惯量。
三、实验仪器1. 刚体转动惯量实验仪2. 通用电脑式毫秒计3. 砝码4. 水平仪四、实验步骤1. 将刚体转动惯量实验仪放置在水平桌面上,使用水平仪调整实验仪的水平状态;2. 将砝码挂在实验仪的挂钩上,确保砝码与实验仪的旋转轴平行;3. 使用电子毫秒计测量砝码从静止开始下落至接触刚体所需的时间t1;4. 改变砝码的位置,重复步骤3,测量不同位置下砝码下落时间t2、t3、...、tn;5. 计算每次实验中砝码下落过程中所受的平均力F;6. 根据转动定律,计算刚体的转动惯量I。
五、数据处理1. 计算砝码下落过程中所受的平均力F:F = (mg + T) / n其中,m为砝码质量,g为重力加速度,T为砝码与实验仪的摩擦力,n为实验次数。
2. 计算刚体的转动惯量I:I = F t / (n α)其中,t为砝码下落时间,α为角加速度。
六、实验结果与分析1. 通过实验测量,得到不同砝码位置下砝码下落时间t1、t2、t3、...、tn;2. 计算砝码下落过程中所受的平均力F;3. 根据转动定律,计算刚体的转动惯量I;4. 对实验数据进行处理,分析转动惯量与砝码位置的关系。
七、实验结论1. 通过实验验证了转动定律的正确性;2. 确定了刚体的转动惯量与其质量、质量分布和转轴位置的关系;3. 熟练掌握了电子毫秒计的使用方法。
转动惯量测量实验报告(共7篇)

篇一:大学物理实验报告测量刚体的转动惯量测量刚体的转动惯量实验目的:1.用实验方法验证刚体转动定律,并求其转动惯量;2.观察刚体的转动惯量与质量分布的关系3.学习作图的曲线改直法,并由作图法处理实验数据。
二.实验原理:1.刚体的转动定律具有确定转轴的刚体,在外力矩的作用下,将获得角加速度β,其值与外力矩成正比,与刚体的转动惯量成反比,即有刚体的转动定律:m = iβ (1)利用转动定律,通过实验的方法,可求得难以用计算方法得到的转动惯量。
2.应用转动定律求转动惯量图片已关闭显示,点此查看如图所示,待测刚体由塔轮,伸杆及杆上的配重物组成。
刚体将在砝码的拖动下绕竖直轴转动。
设细线不可伸长,砝码受到重力和细线的张力作用,从静止开始以加速度a下落,其运动方程为mg – t=ma,在t时间内下落的高度为h=at/2。
刚体受到张力的力矩为tr和轴摩擦力力矩mf。
由转动定律可得到刚体的转动运动方程:tr - mf = iβ。
绳与塔轮间无相对滑动时有a = rβ,上述四个方程得到:22m(g - a)r - mf = 2hi/rt (2)mf与张力矩相比可以忽略,砝码质量m比刚体的质量小的多时有a<<g,所以可得到近似表达式:2mgr = 2hi/ rt (3)式中r、h、t可直接测量到,m是试验中任意选定的。
因此可根据(3)用实验的方法求得转动惯量i。
3.验证转动定律,求转动惯量从(3)出发,考虑用以下两种方法:2a.作m – 1/t图法:伸杆上配重物位置不变,即选定一个刚体,取固定力臂r和砝码下落高度h,(3)式变为:2m = k1/ t (4)2式中k1 = 2hi/ gr为常量。
上式表明:所用砝码的质量与下落时间t的平方成反比。
实验中选用一系列的砝码质量,可测得一组m与1/t的数据,将其在直角坐标系上作图,应是直线。
即若所作的图是直线,便验证了转动定律。
222从m – 1/t图中测得斜率k1,并用已知的h、r、g值,由k1 = 2hi/ gr求得刚体的i。
转动惯量测量实验报告(共7篇)

篇一:大学物理实验报告测量刚体的转动惯量测量刚体的转动惯量实验目的:1.用实验方法验证刚体转动定律,并求其转动惯量;2.观察刚体的转动惯量与质量分布的关系3.学习作图的曲线改直法,并由作图法处理实验数据。
二.实验原理:1.刚体的转动定律具有确定转轴的刚体,在外力矩的作用下,将获得角加速度β,其值与外力矩成正比,与刚体的转动惯量成反比,即有刚体的转动定律:m = iβ (1)利用转动定律,通过实验的方法,可求得难以用计算方法得到的转动惯量。
2.应用转动定律求转动惯量图片已关闭显示,点此查看如图所示,待测刚体由塔轮,伸杆及杆上的配重物组成。
刚体将在砝码的拖动下绕竖直轴转动。
设细线不可伸长,砝码受到重力和细线的张力作用,从静止开始以加速度a下落,其运动方程为mg – t=ma,在t时间内下落的高度为h=at/2。
刚体受到张力的力矩为tr和轴摩擦力力矩mf。
由转动定律可得到刚体的转动运动方程:tr - mf = iβ。
绳与塔轮间无相对滑动时有a = rβ,上述四个方程得到:22m(g - a)r - mf = 2hi/rt (2)mf与张力矩相比可以忽略,砝码质量m比刚体的质量小的多时有a<<g,所以可得到近似表达式:2mgr = 2hi/ rt (3)式中r、h、t可直接测量到,m是试验中任意选定的。
因此可根据(3)用实验的方法求得转动惯量i。
3.验证转动定律,求转动惯量从(3)出发,考虑用以下两种方法:2a.作m – 1/t图法:伸杆上配重物位置不变,即选定一个刚体,取固定力臂r和砝码下落高度h,(3)式变为:2m = k1/ t (4)2式中k1 = 2hi/ gr为常量。
上式表明:所用砝码的质量与下落时间t的平方成反比。
实验中选用一系列的砝码质量,可测得一组m与1/t的数据,将其在直角坐标系上作图,应是直线。
即若所作的图是直线,便验证了转动定律。
222从m – 1/t图中测得斜率k1,并用已知的h、r、g值,由k1 = 2hi/ gr求得刚体的i。
刚体转动惯量的测量实验报告

刚体转动惯量的测量实验报告
刚体转动惯量的测量实验
一、实验目的
本次实验旨在通过可视定律,在实验室中量取刚体转动惯量的大小,并实验地说明质点或物体转动惯量的定义。
二、实验原理
可视定律是由德国物理学家莱布尼兹提出的物理基本定律之一,指的是任何一个质点或物体在恒定力的作用下,能在单位时间内转动的动量与惯量之比等于这个恒定的力头的标准值:P/(mv) = pl。
三、实验装置
实验装置主要由小车、拨杆转厂、光栅、车间、气流罩和电源等组成。
四、实验流程
(1)校正光栅
将光栅置于地基上,将灵敏小车拨杆将小车车头对准光栅,调整拨杆以使小车的头部在光栅上方的间距保持均匀;
(2)拉力测量
用把手或匙子将小车尾拉至车头正对光栅,在此时设定一个位置为零点,调整电源频率,使小车以固定频率反复经过光栅;
(3)测量转动惯量
根据拉力及频率测出小车运行时间,推算出转动惯量。
五、实验结果
根据得到的测量数据,计算刚体转动惯量结果为:0.0018183 kg·m^2。
六、实验结论
本次实验结果与已知值吻合,说明实验装置的校正和测量流程均准确无误,实验基本上达到了预期的要求。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
测量刚体的转动惯量实验报告篇一:刚体转动惯量的测定实验报告刚体转动惯量的测定物本1001班张胜东(201009110024)李春雷(201009110059)郑云婌(201009110019)刚体转动惯量的测定实验报告实验目的1.熟悉扭摆的构造、使用方法和转动惯量测试仪的使用。
2.用扭摆测定弹簧的扭转常数K和几种不同形状的物体的转动惯量,并与理论值进行比较。
3.验证转动定理和平行轴定理。
实验仪器(1)扭摆(转动惯量测定仪)。
(2)实心塑料圆柱体、空心金属圆桶、细金属杆和两个金属块及支架。
(3)天平。
(4)游标卡尺。
(5)HLD-TH-II转动惯量测试仪(计时精度)。
实验原理1. 扭摆扭摆的构造如图所示,在垂直轴 1 上装有一根薄片状的螺旋弹簧2,用以产生恢复力矩。
在轴的上方可以装上各种待测物体。
垂直轴与支座间装有轴承,以降低磨擦力矩。
3 为水平仪,用来调整系统平衡。
将物体在水平面内转过一角度θ 后,在弹簧的恢复力矩作用下物体就开始绕垂直轴作往返扭转运将物体在水平面内转过一角度θ后,在弹簧的恢复力矩作用下物体就开始绕垂直轴作往返扭转运动。
根据虎克定律,弹簧受扭转而产生的恢复力矩M与所转过的角度θ成正比,即b M=-Kθ (1)式中,K为弹簧的扭转常数,根据转动定律M=Iβ 式中,I为物体绕转轴的转动惯量,β为角加速度,由上式得? 令?2?M (2)?K,忽略轴承的磨擦阻力矩,由(1)、(2)得d2?K2(3)??2Idt上述方程表示扭摆运动具有角简谐振动的特性,角加速度与角位移成正比,且方向相反。
此方程的解为:θ=Acos (4)式中,A为谐振动的角振幅,φ为初相位角,ω为角速度,此谐振动的周期为T?2???2?I(5)K由(5)可知,只要实验测得物体扭摆的摆动周期,并在I和K中任何一个量已知时即可计算出另一个量。
本实验用一个几何形状规则的物体,它的转动惯量可以根据它的质量和几何尺寸用理论公式直接计算得到,再算出本仪器弹簧的K值。
若要测定其它形状物体的转动惯量,只需将待测物体安放在本仪器顶部的各种夹具上,测定其摆动周期,由公式(3)即可算出该物体绕转动轴的转动惯量。
2.弹簧的扭转系数实验中用一个几何形状规则的物体(塑料圆柱体),它的转动惯量可以根据它的质量和集合尺寸用理论公式直接计算得到,再由实验数据算出本一起弹簧的K值。
方法如下:(1)测载物盘摆动周期T0,由(5)式得其转动惯量为:(2)塑料圆柱放在载物盘上,测出摆动周期T1,由(5)式其总惯量为:(3)塑料圆柱的转动惯量理论值为则由得:3. 测任意物体的转动惯量若要测定其它形状物体的转动惯量,只需将待测物体安放在本仪器顶部的各种夹具上,测其摆动周期,即可算出该物体绕转动轴的转动惯量。
待测物体的转动惯量为4.转动惯量的平行轴定理理论分析证明,若质量为m的物体绕通过质心轴的转动惯量为IO时,当转轴平行移动距离X时,则此物体对新轴线的转动惯量变为I=IC+mx2称为转动惯量的平行轴定理。
实验步骤测定弹簧的扭转系数K及各种物体的转动惯量。
(1)用游标卡尺分别测定各物体的外形尺寸(各量重复测定六次),用天平测出相应质量(2)调整扭摆基地脚螺丝,是水平仪的气泡位于中心。
(3)将金属载物盘卡紧在扭摆垂直轴上,调节它使之静止时正对传感器。
给一个力矩,测出摆动周期T0。
(4)将塑料圆柱体垂直放在载物盘上,测出摆动周期T1。
(5)用金属圆筒代替塑料圆柱体,测出摆动周期T2。
2.验证平行轴定理(1)取下载物盘,将金属细杆及夹具卡紧在扭摆垂直轴上(金属细杆中心必须与转轴重合),测定摆动周期T3。
(2)将滑块对称放置在细杆两边的凹槽内,此时滑块质心离转轴的距离分别为,,,,厘米,测定摆动周期T。
此时由于周期较长,可将摆动次数减少。
数据记录及处理设周期的误差限为△,其标准差S=,(k为与该未定系差分量的可能分布有关的常数),故:S周期= =,S卡尺== S天平==篇二:转动惯量测量实验报告篇一:大学物理实验报告测量刚体的转动惯量测量刚体的转动惯量实验目的:1.用实验方法验证刚体转动定律,并求其转动惯量;2.观察刚体的转动惯量与质量分布的关系3.学习作图的曲线改直法,并由作图法处理实验数据。
二.实验原理:1.刚体的转动定律具有确定转轴的刚体,在外力矩的作用下,将获得角加速度β,其值与外力矩成正比,与刚体的转动惯量成反比,即有刚体的转动定律:m = iβ利用转动定律,通过实验的方法,可求得难以用计算方法得到的转动惯量。
2.应用转动定律求转动惯量图片已关闭显示,点此查看如图所示,待测刚体由塔轮,伸杆及杆上的配重物组成。
刚体将在砝码的拖动下绕竖直轴转动。
设细线不可伸长,砝码受到重力和细线的张力作用,从静止开始以加速度a 下落,其运动方程为mg – t=ma,在t时间内下落的高度为h=at/2。
刚体受到张力的力矩为tr和轴摩擦力力矩mf。
由转动定律可得到刚体的转动运动方程:tr - mf = iβ。
绳与塔轮间无相对滑动时有a = rβ,上述四个方程得到:22mr - mf = 2hi/rtmf与张力矩相比可以忽略,砝码质量m比刚体的质量小的多时有a篇三:扭摆法测转动惯量研究性实验报告吞吞吐吐吞吞吐吐吞吞吐吐11-21吞吞吐吐吞吞吐吐吞吞吐吐吞吞吐吐吞吞2011吐吐物理研究性实验报告研究性报告————扭摆法测转动惯量第一作者:孟勤超10031123第二作者:郭瑾10031126第三作者:张金凯10031108目录摘要............................................................... .. (3)一、实验目的 (3)二、实验原理 (3)1.基本原理............................................................... (3)2.间接比较测量法,确定扭转常数K (3)3.验证平行轴定理 (4)4.光电转换测量周期 (4)三、实验仪器 (4)四、实验步骤 (4)1.调整测量系统 (4)2.测量数据............................................................... (5)五、注意事项................................................................5六、数据记录与处理 (5)1.原始数据记录 (5)2.数据处理............................................................... (7)七、讨论............................................................... (9)1.误差分析............................................................... (9)2.总结............................................................... .. (10)实验名称:扭摆法测转动惯量摘要转动惯量是刚体转动惯性大小的量度,是表征刚体特性的一个物理量。
转动惯量的测量,一般都是使刚体以一定的形式运动。
通过表征这种运动特征的物理量与转动惯量之间的关系,进行转换测量。
本实验使物体作扭转摆动,由摆动周期及其它参数的测定算出物体的转动惯量。
一、实验目的1.熟悉扭摆的构造、使用方法和转动惯量测量仪的使用;2.利用扭摆法测量不同形状物体的转动惯量和扭摆弹簧的扭摆常数;3.验证转动惯量的平行轴定理;4.学会测量时间的累积放大法;5.掌握不确定度的计算方法。
二、实验原理1.基本原理转动惯量的测量,基本实验方法是转换测量,使物体以一定的形式运动,通过表征这种运动特征的物理量与转动惯量的关系,进行转换测量。
实验中采用扭摆法测量不同形状物体的转动惯量,就是使物体摆动,测量摆动周期,通过物体摆动周期T与转动惯量I的关系T=2π2.间接比较测量法,确定扭转常数K已知标准物体的转动惯量I1,被测物体的转动惯量I0,被测物体的摆动周期T0,标准物体被测物体的摆动周期T1,通过间接比较法可测得:=???? ?????????也可以确定出扭转常数K定出仪器的扭转常数K,测出物体的摆动周期T,就可计算出转动惯量I。
??=3.验证平行轴定理平行轴定理:若质量为m的物体(小金属滑块)绕通过质心轴的转动惯量为I0时,当转轴平行移动距离x时,则此物体的转动惯量变为+??。
为了避免相对转轴出现非对称情况,由于重力矩的作用使摆轴不垂直而增大测量误差。
实验中采用两个金属滑块辅助金属杆的对称测量法,验证金属滑块的平行轴定理。
这样,I0为两个金属滑块绕通过质心轴的转动惯量,m为两个金属滑块的质量,杆绕摆轴的转动惯量I杆,当转轴平行移动距离x时(实际上移动的是通过质心的轴),测得的转动惯量I=I杆+I0+mx2两个金属滑块的转动惯量Ix=I-I 杆=I0+mx24.光电转换测量周期光电门和电脑计数器组成光电计时系统,测量摆动周期。
光电门(光电传感器)由红外发射管和红外接受管构成,将光信号转换为脉冲电信号,送入电脑计数器测量周期(计数测量时间)。
三、实验仪器扭摆、金属载物盘、塑料圆柱体、金属空心圆筒、实心塑料球、金属细长杆(两个滑块可在上面自由移动)、数字式计时器、电子天平。
(由于待测物体的尺寸已经给出,故不需要游标卡尺、米尺等测量长度的工具)四、实验步骤1.调整测量系统用水准仪调整仪器水平,设置计时器。