初三理科实验班提前招生考试试卷(数学部分)

合集下载

中学初三理科实验班提前招生考试试卷习题数学部分.doc

中学初三理科实验班提前招生考试试卷习题数学部分.doc

初三理科实验班提前招生考试试卷(数学部分)一、选择题(每小题4,共 24 分)1、用去分母方法解分式方程 2 x m 1 x 1,产生增根,则 m 的值为()x 1 x2 x xA 、 --1 或— 2B 、 --1 或 2 C、 1 或 2 D 、 1 或— 22、关于 x 的方程x2 2(1 k ) x k 2 0 有实数根α、β,则α+β的取值范围为()A 、α +β≤ 1 B、α +β≥ 11 1C、α +β≥ D 、α +β≤2 23、已知 PT 切⊙ O 于 T ,PB 为经过圆心的割线交⊙O 于点 A ,( PB>PA ),若 PT=4,PA=2 ,则 cos∠ BPT= ()4 1 3 2A 、B 、C、D、5 2 4 34、矩形 ABCD 中, AB=3 ,AD=4 ,P 为 AD 上的动点, PE⊥ AC 垂足为 E,PF⊥ BD 垂足为F,则 PE+PF 的值为()12B、 2 5 13A 、C、D、5 2 5 5、如图 P 为 x 轴正半轴上一动点,过P 作 x 轴的垂线 PQ 交双曲线1于点 Q,连接 OQ ,yx当 P 沿 x 轴正方向运动时,Rt△ QOP 的面积()A 、逐渐增大B、逐渐减小C、保持不变D、无法确定6、如图小圆圈表示网络的结点,结点之间的连线表示它们有网线相连,连线标明的数字表示该段网线单位时间内通过的最大信息量,现从结点 A 向结点B 传递信息,信息可以分开沿不同的线路同时传第 5 题图35递,则单位时间内传递的最大信息量为()A 、 26B、 24 C、 20 D 、19 A4667 612128 B第 6 题图二、填空题(每小题 4 分,共 36 分)、若、、c 满足等式 a 2c 2 2 4b 3c 41a 4b 1 0 ,则2b3 4=7 a b 2 a c8、若a b 2 3 , b c 2 3 ,则代数式 a 2 b 2 c 2ab bc ac 的值为4 3 x9、方程x的解为x x10、若点 M (1--x , 1--y )在第二象限,那么点N( 1— x? y—1)关于原点对称点 P 在第象限。

理科实验班初三数学试卷

理科实验班初三数学试卷

一、选择题(每题5分,共50分)1. 已知二次函数y=ax^2+bx+c的图像开口向上,且顶点坐标为(1,2),则a的取值范围是()。

A. a > 0B. a < 0C. a = 0D. 无法确定2. 在等边三角形ABC中,角A的度数是()。

A. 30°B. 45°C. 60°D. 90°3. 若等比数列{an}的首项为2,公比为3,则第10项an的值为()。

A. 2^10B. 3^10C. 6^10D. 9^104. 在直角坐标系中,点P(2,3)关于直线y=x的对称点Q的坐标是()。

A.(3,2)B.(2,3)C.(-3,-2)D.(-2,-3)5. 下列函数中,在其定义域内单调递减的是()。

A. y = x^2B. y = 2x + 1C. y = -3x^2 + 2x - 1D. y = log2(x + 1)6. 已知等差数列{an}的首项为3,公差为2,则第10项an与第5项a5的差是()。

A. 7B. 8C. 9D. 107. 在△ABC中,∠A、∠B、∠C的对边分别为a、b、c,且a=5,b=7,c=8,则△ABC的面积是()。

A. 15B. 20C. 25D. 308. 已知圆的方程为x^2 + y^2 - 4x - 6y + 9 = 0,则该圆的半径是()。

A. 1B. 2C. 3D. 49. 下列方程中,无解的是()。

A. x + 2 = 0B. x^2 - 4 = 0C. x^2 + 2x + 1 = 0D. x^2 + 3x + 2 = 010. 在平面直角坐标系中,点A(2,3)到直线y = 2x - 1的距离是()。

A. 1B. 2C. 3D. 4二、填空题(每题5分,共50分)11. 若等差数列{an}的首项为a1,公差为d,则第n项an=__________。

12. 已知一次函数y = kx + b的图像过点(1,3),则k+b=__________。

普通高中理科实验班招生考试数学卷

普通高中理科实验班招生考试数学卷

普通高中理科实验班招生考试数学卷数 学 试 题(满分150分,答题时间120分)一、选择题(本题共5小题,每小题10分,满分50.每小 题均给出了代号为A 、B 、C 、D 的四个结论,其中只有一 个是正确的,请将正确答案的代号填在题后的括号内)1.若mx 11-=是方程022=+-m mx 的根,则m x -的值为 ………【 】 A .0 B .1 C .-1 D .22.内角的度数为整数的正n 边形的个数是 ………………………………【 】 A .24 B .22 C .20 D .183.某商场五一期间举行优惠销售活动,采取“满一百元送二十元,并且连环赠送”的 酬宾方式,即顾客每消费满100元(100元可以是现金,也可以是购物券,或二者 合计)就送20元购物券,满200元就送40元购物券,依次类推,现有一位顾客第 一次就用了16000元购物,并用所得购物券继续购物,那么他购回的商品大约相当 于它们原价的 ………………………………………………………………【 】 A .90% B .85% C .80% D .75%4.设x 为正整数,若1+x 是完全平方数,则它前面的一个完全平方数是 【 】 A .x B .12+-x x C .112++-x x D .212++-xx 5.横坐标、纵坐标都是整数的点叫做整点,函数1236-+=x x y 的图象上整点的个数 是 ……………………………………………………………………………【 】A .3个B .4个C .6个D .8个二、填空题(本题共5小题,每小题8分,共40分)6.计算:1+2-3+4+5-6+7+8-9+…+97+98-99+100= .7.已知实数x 满足012)(4)(222=----x x x x ,则代数式12+-x x 的值为.8.若方程组⎩⎨⎧+=--=+433235k y x k y x 的解为⎩⎨⎧==,,b y a x 且||k <3,则b a -的取值范围是.9.已知函数22)2(2a x a x y +++=的图象与x 轴有两个交点,且都在x 轴的负半轴上,则a 的取值范围是 .10.如图,等腰梯形ABCD 中,AB ∥DC ,∠A =60°,AD =DC =10,点E ,F 分别在AD ,BC 上,且AE =4,BF =x ,设四边形DEFC 的面积为y ,则y 关于x 的函数关系式是 (不必写自变量的取值范围).三、(本题共4小题,满分60分)11.(本题满分15分)我们知道相交的两直线的交点个数是1,记两平行直线的交点个数是0;这样平面内的D CBAFE三条平行线它们的交点个数就是0,经过同一点的三直线它们的交点个数就是1;依次类推……(1)请你画图说明同一平面内的五条直线最多有几个交点?(2)平面内的五条直线可以有4个交点吗?如果有,请你画出符合条件的所有图形;如果没有,请说明理由.(3)在平面内画出10条直线,使交点数恰好是31.12.(本题满分15分)甲、乙两个粮库原来各存有整袋的粮食,如果从甲库调90袋到乙库,则乙库存粮是甲库的2倍;如果从乙库调若干袋到甲库,则甲库存粮是乙库的6倍.问甲库原来最少存粮多少袋?13.(本题满分15分)⊙O 1与⊙O 2相交于点A 、B ,动点P 在⊙O 2上,且在⊙O 1外,直线PA 、PB 分别 交⊙O 1于点C 、D .问:⊙O 1的弦CD 的长是否随点P 的运动而发生变化?如果发生 变化,请你确定CD 最长或最短时点P 的位置;如果不发生变化,请给出你的证明.CB A··PDO O 2114.(本题满分15分)如图,函数221+-=x y 的图象交y轴于M ,交x 轴于N ,点P 是直线MN 上任意一 点,PQ⊥x 轴,Q 是垂足,设点Q 的坐标为(t ,0),△POQ 的面积为S (当点P 与M 、N 重合时,其面积记为0).(1)试求S 与t 之间的函数关系式;(2)在如图所示的直角坐标系内画出这个函数的图象,并利用图象求使得S =a (a >0)的点P 的个数.普通高中理科实验班招生考试 数学试题参考答案及评分标准 一、选择题(每小题10分,共50分)1.C 2.B 3.C 4.D 5.B 二、填空题(每小题8分,共40分)6.1684 7.7 8.-1<b a -<5 9.a >-1且a ≠010.35534+-=x y三、解答题(每小题15分,共60分)11.(本题满分15分)解 (1)如图1,最多有10个交点; ……………………(4分)图1 图2(2)可以有4个交点,有3种不同的情形,如图2. ……(10分)⌒ ⌒ (3)如图3所示. …………………(15分)图312.(本题满分15分)解:设甲库原来存粮a 袋,乙库原来存粮b 袋,依题意可得 90)90(2+=-b a . (1)再设乙库调c 袋到甲库,则甲库存粮是乙库的6倍,即)(6c b c a -=+. (2) ………………(5分) 由(1)式得2702-=a b . (3) 将(3)代入(2),并整理得1620711=-c a . ………………(10分)由于7)1(42327162011++-=-=a a a c . 又a 、c 是正整数,从而有7162011-a ≥1,即a ≥148;并且7整除)1(4+a ,又因为4与7互质,所以7整除1+a . 经检验,可知a 的最小值为152.答:甲库原来最少存粮153袋. …………………(15分) 13.当点P 运动时,CD 的长保持不变. …………………(4分)证法一:A 、B 是⊙O 1与⊙O 2的交点,弦AB 与点P 的位置无关.……(6分) 连结AD ,∠ADP 在⊙O 1中所对的弦为AB ,所以∠ADP 为定值. ……………(10分) ∠P 在⊙O 2中所对的弦为AB ,所以∠P 为定值. ……………(12分) 因为∠CAD =∠ADP +∠P , 所以∠CAD 为定值.在⊙O 1中∠CAD 所对弦是CD ,∴CD 的长与点P 的位置无关.………(15分) 证法二:在⊙O 2上任取一点Q ,使点Q 在⊙O 1外,设直线QA 、QB 分别交⊙O 1 于C '、D ',连结C 'D '.∵ ∠1=∠3,∠2=∠3,∠1=∠2,∴ ∠3=∠4. …………………(10分)∴ CC '=DD ' ∴C 'mD '=CmD∴ CD =CD . …………………(15分)14.(本题满分15分)解法1(1)① 当t <0时,OQ =t -,PQ =221+-t . ∴ S =t t t t -=+--⋅241)221)((21; ② 当0<t <4时,OQ =t ,PQ =221+-t .∴ S =t t t t +-=+-⋅241)221(21;③ 当t >4时,OQ =t ,PQ =221)221(-=+--t t .∴ S =t t t t -=-⋅241)221(21.④ 当t =0或4时,S =0.于是,⎪⎪⎩⎪⎪⎨⎧≤≤+-><-=)40(41)40(,4122t t t k t t t S 或 …………………………………………6分(2)⎪⎪⎩⎪⎪⎨⎧≤≤+--=+-><--=-=)40(1)2(4141)40(,1)2(41412222t t t t k t t t t S 或下图中的实线部分就是所画的函数图象. ……………………………………12分CBA··PDO O 21′′C D Q1234maS =观察图象可知:当0<a <1时,符合条件的点P 有四个; 当a =1时,符合条件的点P 有三个;当a >1时,符合条件的点P 只有两个. ………………………………………15分 解法2:(1)∵ OQ =||t ,PQ =|221||221|-=+-t t , ∴ S =|4|41|221|||212t t t t -=-⋅. ……………………………………4分 (2)⎪⎪⎩⎪⎪⎨⎧≤≤+-><-=-=)40(41)40(,41|4|41222t t t k t t t t x S 或 ………………………6分以下同解法1.。

初中数学提前招生考试卷

初中数学提前招生考试卷

一、选择题(每题3分,共30分)1. 下列各组数中,成等差数列的是()A. 1,3,5,7,9B. 2,4,6,8,10C. 1,2,4,8,16D. 3,6,9,12,152. 下列各组数中,成等比数列的是()A. 2,4,8,16,32B. 3,6,9,12,15C. 1,2,3,4,5D. 2,4,6,8,103. 若一个等差数列的前三项分别是3,7,11,则该数列的公差是()A. 2B. 3C. 4D. 54. 若一个等比数列的前三项分别是2,6,18,则该数列的公比是()A. 2B. 3C. 4D. 65. 下列函数中,在定义域内单调递增的是()A. y = x^2B. y = 2xC. y = x^3D. y = -x6. 已知函数f(x) = 2x - 3,若x > 0,则f(x)的值域为()A. (-∞,+∞)B. (0,+∞)C. (-∞,0)D. (0,+∞)7. 已知函数f(x) = x^2 + 2x + 1,则f(-1)的值为()A. 0B. 1C. 2D. 38. 若方程x^2 - 2x + 1 = 0的两个根为a和b,则a + b的值为()A. 1B. 2C. 3D. 49. 若三角形ABC的边长分别为3,4,5,则三角形ABC是()A. 直角三角形B. 等腰三角形C. 等边三角形D. 不等边三角形10. 若等腰三角形ABC的底边BC = 4,腰AB = AC = 5,则三角形ABC的面积是()A. 6B. 8C. 10D. 12二、填空题(每题3分,共30分)1. 若等差数列的首项为2,公差为3,则第10项的值为______。

2. 若等比数列的首项为3,公比为2,则第5项的值为______。

3. 已知函数f(x) = 3x - 2,若f(x) > 0,则x的取值范围是______。

4. 若函数g(x) = x^2 + 2x + 1,则g(-1)的值为______。

初三数学提前招生试卷

初三数学提前招生试卷

一、选择题(每题5分,共20分)1. 若实数a,b满足a + b = 2,则a² + b²的值为:A. 2B. 4C. 6D. 82. 下列函数中,在其定义域内是增函数的是:A. y = -x²B. y = x³C. y = 2xD. y = -3x + 23. 在等腰三角形ABC中,若底边BC的长度为8,腰AB的长度为10,则底角B的度数为:A. 30°B. 45°C. 60°D. 90°4. 若x² - 4x + 3 = 0,则x² + 4x + 3的值为:A. 0B. 1C. 2D. 35. 在直角坐标系中,点A(-2,3),B(4,-1),C(2,5)构成三角形ABC,则三角形ABC的面积是:A. 9B. 12C. 15D. 18二、填空题(每题5分,共20分)6. 若sin α = 1/2,则cos α的值为______。

7. 在梯形ABCD中,AD∥BC,若AD = 6cm,BC = 10cm,AB = CD = 8cm,则梯形的高为______cm。

8. 已知等差数列{an}的第一项a1 = 3,公差d = 2,则第10项a10 = ______。

9. 若等比数列{bn}的第一项b1 = 2,公比q = 3,则第4项b4 = ______。

10. 圆的半径为r,则圆的面积公式为______。

三、解答题(共60分)11. (15分)已知函数y = 2x - 3,求函数的图像与x轴、y轴的交点坐标。

12. (15分)在直角三角形ABC中,∠A = 90°,∠B = 30°,斜边AB = 10cm,求三角形ABC的面积。

13. (15分)解一元二次方程:x² - 5x + 6 = 0。

14. (15分)已知等差数列{an}的前三项分别为a1 = 2,a2 = 5,a3 = 8,求该数列的公差d。

九年级数学实验班选拔试卷

九年级数学实验班选拔试卷

九年级数学实验班选拔试卷一、选择题(本大题共10小题,每小题4分,满分40分)每小题都给出A,B,C,D四个选项,其中只有一个是符合题目要求的.1.关于抛物线y=-(x+3)2+2,下列说法中错误的是()A.开口向下B.对称轴是直线x=-3C.顶点坐标(-3,2) D.与y轴交点坐标(0,2)2.下列图形中是中心对称图形的是()3.如图,是某几何体的三视图及相关数据,则该几何体的侧面积是()A.10πB.15πC.20πD.30π4.在△ABC中,点D,E分别为边AB,AC的中点,则△ADE与△ABC 的面积之比为()A.12 B.13 C.14 D.165.如图,两根竹竿AB和AD斜靠在墙CE上,量得∠ABC=α,∠ADC=β,则竹竿AB与AD的长度之比为()A.tan αtan βB.sin βsin αC.sin αsin βD.cos βcos α6.已知点A (x 1,3),B (x 2,6)都在反比例函数y =-3x 的图象上,则下列关系式中一定正确的是 ( )A .x 1<x 2<0B .x 1<0<x 2C .x 2<x 1<0D .x 2<0<x 17.在同一平面直角坐标系中,反比例函数y =b x (b ≠0)与二次函数y =ax 2+bx (a ≠0)的图象大致是 ( )A B C D8.如图,小明随意向水平放置的大正方形内部区域抛一个小球,则小球停在小正方形内部(阴影)区域的概率为( )A.34B.13C.12D.149.如图,扇形OAB 中,∠AOB =100°,OA =12,点C 是OB 的中点,CD⊥OB 交AB ︵于点D ,以OC 为半径的CE ︵交OA 于点E ,则图中阴影部分的面积是 ( )A .12π+183B .12π+363C .6π+183D.6π+36310.如图,抛物线y=(x-1)2-4与x轴交于A,B两点(点A在点B的左侧),与y轴交于点C,经过点C作x轴的平行线,与抛物线的另一个交点为点D,M为抛物线的顶点,P(m,n)是抛物线上点A,C之间的一点(不与点A,C重合),有结论:①OC=4;②点D的坐标为(2,-3);③n +3>0;④存在点P,使PM⊥DM.其中正确的是() A.①③B.②③C.②④D.①④二、填空题(本大题共4小题,每小题5分,满分20分)11.若100个产品中有98个正品,2个次品,从中随机抽取一个,抽到次品的概率是____.12.如图是抛物线型拱桥,当拱顶离水面2 m时,水面宽4 m,水面下降2 m,水面宽度增加____m.13.如图,正比例函数y=kx与反比例函数y=6 x的图象有一个交点A(2,m),AB⊥x轴于点B,平移直线y=kx,使其经过点B,得到直线l,则直线l对应的函数表达式是____.14.如图,小明想用长为12米的栅栏(虚线部分),借助围墙围成一个矩形花园ABCD,则矩形ABCD的最大面积是____平方米.三、(本大题共2小题,每小题8分,满分16分)15.(湖州中考)如图,已知AB 是⊙O 的直径,C ,D 是⊙O 上的点,OC ∥BD ,交AD 于点E ,连接BC.(1)求证:AE =ED ;(2)若AB =10,∠CBD =36°,求AC ︵的长.16.如图,方格纸中的每个小方格都是边长为1个单位的正方形,在建立平面直角坐标系后,△ABC 的顶点均在格点上,点B 的坐标为(1,0).(1)画出△ABC 关于x 轴对称的△A 1B 1C 1;(2)画出将△ABC 绕原点O 按逆时针旋转90°所得的△A 2B 2C 2;(3)△A 1B 1C 1与△A 2B 2C 2成轴对称图形吗?若成轴对称图形,画出所有的对称轴;(4)△A 1B 1C 1与△A 2B 2C 2成中心对称图形吗?若成中心对称图形,写出所有的对称中心的坐标.四、(本大题共2小题,每小题8分,满分16分)17.(黔南州中考)目前“微信”、“支付宝”、“共享单车”和“网购”给我们的生活带来了很多便利,八年级数学小组在校内对“你最认可的四大新生事物”进行调查,随机调查了m 人(每名学生必选一种且只能从这四种中选择一种)并将调查结果绘制成如下不完整的统计图.(1)根据图中信息求出m =______,n =______;(2)请你帮助他们将这两个统计图补全;(3)根据抽样调查的结果,请估算全校2 000名学生中,大约有多少人最认可“微信”这一新生事物?(4)已知A ,B 两位同学都最认可“微信”,C 同学最认可“支付宝”,D 同学最认可“网购”,从这四名同学中抽取两名同学,请你通过树状图或表格,求出这两位同学最认可的新生事物不一样的概率.18.图①是一辆在平地上滑行的滑板车,图②是其示意图.已知车杆AB 长92 cm ,车杆与脚踏板所成的角∠ABC =70°,前后轮子的半径均为6 cm ,求把手A 离地面的高度(结果保留小数点后一位,参考数据:sin 70°≈0.94,cos 70°≈0.34,tan 70°≈2.75).五、(本大题共2小题,每小题10分,满分20分)19.(白银中考)如图,一次函数y =x +4的图象与反比例函数y =k x (k 为常数且k ≠0)的图象交于A (-1,a ),B 两点,与x 轴交于点C .(1)求此反比例函数的表达式;(2)若点P 在x 轴上,且S △ACP =32S △BOC ,求点P 的坐标.20.如图,四边形ABCD 中,AC 平分∠DAB ,∠ADC =∠ACB =90°,E 为AB 的中点.(1)求证:AC 2=AB ·AD ;(2)求证:△AFD ∽△CFE .六、(本题满分12分)21.如图,AB 是⊙O 的弦,点D 为半径OA 的中点,过点D 作CD ⊥OA 交弦AB 于点E ,交⊙O 于点F ,且CE =CB .(1)求证:BC 是⊙O 的切线;(2)连接AF ,BF ,求∠ABF 的度数;(3)如果CD =15,BE =10,sin A =513,求⊙O 的半径.七、(本题满分12分)22.某产品每件成本10元,试销阶段每件产品的销售价x (元)与产品的日销售量y (件)之间的关系如表:x /元… 15 20 25 … y /件 … 25 20 15 …已知y 是x 的一次函数.(1)求日销售量y (件)与每件产品的销售价x (元)之间的函数表达式;(2)当每件产品的销售价定为35元时,此时每日的销售利润是多少元?(3)销售价定为多少时,每日的销售利润最大?最大利润是多少?八、(本题满分14分)23.在平面直角坐标系xOy 中,矩形ABCO 的顶点A ,C 分别在y 轴,x 轴正半轴上,点P 在AB 上,P A =1,AO =2.经过原点的抛物线y =mx 2-x +n 的对称轴是直线x =2.(1)求出该抛物线的表达式;(2)如图甲,将一块两直角边足够长的三角板的直角顶点放在P 点处,两直角边恰好分别经过点O 和C .现在利用图乙进行如下探究:①将三角板从图甲中的位置开始,绕点P 顺时针旋转,两直角边分别交OA ,OC 于点E ,F ,当点E 和点A 重合时停止旋转.请你观察、猜想,在这个过程中,PE PF 的值是否发生变化?若发生变化,说明理由;若不发生变化,求出PE PF 的值;②设(1)中的抛物线与x轴的另一个交点为D,顶点为M,在①的旋转过程中,是否存在点F,使△DMF为等腰三角形?若存在,求出点F的坐标;若不存在,说明理由..。

初三提前招生数学试卷

初三提前招生数学试卷

一、选择题(每题5分,共50分)1. 下列各数中,有理数是()A. √2B. πC. 0.1010010001...D. 3/42. 若a > 0,b < 0,则下列不等式中正确的是()A. a + b > 0B. a - b > 0C. ab > 0D. a/b < 03. 在直角坐标系中,点A(-2,3)关于原点的对称点是()A.(-2,-3)B.(2,3)C.(2,-3)D.(-2,-3)4. 下列函数中,有最小值的是()A. y = x^2 + 2x + 1B. y = -x^2 + 2xC. y = x^3 - 3x^2 + 3x - 1D. y = 2x + 35. 下列各式中,正确的是()A. (-3)^3 = -27B. (-2)^2 = -4C. (-5)^3 = -125D. (-4)^2 = -166. 已知一元二次方程x^2 - 5x + 6 = 0,则其两个根之和为()A. 5B. -5C. 6D. -67. 若sinθ = 1/2,且θ在第二象限,则cosθ的值为()A. -√3/2B. √3/2C. 1/2D. -1/28. 在△ABC中,若∠A = 60°,∠B = 45°,则∠C的度数为()A. 75°B. 105°C. 120°D. 135°9. 已知函数y = kx + b(k≠0),当x=1时,y=2;当x=2时,y=4,则该函数的图像是()A. 一次函数图像,经过第一、二、三象限B. 一次函数图像,经过第一、二、四象限C. 反比例函数图像,经过第一、三象限D. 反比例函数图像,经过第二、四象限10. 在平面直角坐标系中,点P(-3,2)关于直线y=x的对称点是()A.(-2,-3)B.(2,-3)C.(3,-2)D.(-2,3)二、填空题(每题5分,共25分)11. 若(a+2)^2 = 1,则a的值为______。

初中提前招生数学试卷

初中提前招生数学试卷

一、选择题(每题5分,共25分)1. 下列各数中,不是有理数的是()A. 2/3B. -5C. √4D. π2. 若a、b是方程2x+3=7的两根,则a+b的值是()A. 2B. 3C. 4D. 53. 已知一元二次方程x^2-5x+6=0的两根为x1和x2,则x1+x2的值为()A. 5B. -5C. 6D. -64. 在直角坐标系中,点A(2,3)关于x轴的对称点是()A. (2,-3)B. (-2,3)C. (-2,-3)D. (2,-3)5. 若m、n是方程x^2-4x+4=0的两根,则m+n的值是()A. 4B. 0C. -4D. 2二、填空题(每题5分,共25分)6. 若a=2,则a^2+3a+1的值为______。

7. 下列式子中,同类项是______。

8. 若x^2-4x+4=0,则x的值为______。

9. 在直角坐标系中,点B(-3,2)关于原点的对称点是______。

10. 若a、b是方程2x^2-5x+2=0的两根,则ab的值为______。

三、解答题(每题15分,共45分)11. (15分)解一元一次方程:5x-3=2x+8。

12. (15分)已知a、b是方程x^2-6x+9=0的两根,求a+b和ab的值。

13. (15分)在直角坐标系中,点C(-1,4)关于y轴的对称点是D,求点D的坐标。

四、应用题(15分)14. (15分)某商店举行促销活动,购物满100元即可享受9折优惠。

小华购买了价值200元的商品,请问她可以节省多少钱?答案:一、选择题1. D2. D3. A4. A5. B二、填空题6. 107. 2a^28. 39. (1,-4)10. 1三、解答题11. x=312. a+b=6,ab=913. D(1,4)四、应用题14. 小华节省的钱为:200×(1-0.9)=20元。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

初三理科实验班提前招生考试试卷(数学部分)
一、选择题(每小题4,共24分) 1、用去分母方法解分式方程
x
x x x m x x 1
1122+=
++-+,产生增根,则m 的值为( ) A 、--1或—2 B 、--1或2 C 、1或2 D 、1或—2
2、关于x 的方程0)1(22
2
=+--k x k x 有实数根α、β,则α+β的取值范围为( ) A 、α+β≤1 B 、α+β≥1 C 、α+β≥
21 D 、α+β≤2
1
3、已知PT 切⊙O 于T ,PB 为经过圆心的割线交⊙O 于点A ,(PB>PA ),若PT=4,PA=2,
则cos ∠BPT=( ) A 、
54 B 、21 C 、43 D 、3
2 4、矩形ABCD 中,AB=3,AD=4,P 为AD 上的动点,PE ⊥AC 垂足为E ,PF ⊥BD 垂足为F ,则PE+PF 的值为( ) A 、
512 B 、2 C 、25 D 、5
13 5、如图P 为x 轴正半轴上一动点,过P 作x 轴的垂线PQ 交双曲线x
y 1
=
于点Q ,连接OQ ,当P 沿x 轴正方向运动时,Rt △QOP 的面积( ) A 、逐渐增大 B 、逐渐减小 C 、保持不变 D 、无法确定
6、如图小圆圈表示网络的结点,结点之间的连线表示它们有网线相连,连线标明的数字表示该
段网线单位时间内通过的最大信息量,现从结点A 向结点B 传递信息,信息可以分开沿不同的线路同时传递,则单位时间内传递的最大信息量为( ) A 、26 B 、24 C 、20 D 、19
二、填空题(每小题4分,共36分)
7、若a 、b 、c 满足等式()0142
1
434222
=--+
--+-+b a c b c a ,则432c b a -=
8、若32+=-b a ,32-=-c b ,则代数式ac bc ab c b a ---++2
22的值为
9、方程x
x x x 34=-
的解为 第5题图
12
7
6
6412
5
3
8
6
B
第6题图
10、若点M (1--x ,1--y )在第二象限,那么点N (1—x¸ y —1)关于原点对称点P 在第 象限。

11、若m 、n 是关于x 的方程01)2(2
=+-+x p x 的两个实数
根,则代数式2)1)(1(22
-++++pn n pm m 的值为 12、已知方程0)30(112=++-k x x 的两根都比5大,则实数
k 的范围是 13、xx 年世界女排锦标赛上,中国女排以11战全胜获得冠军,在这次锦标赛上共有12支球队,采用单循环制(即每两个球
队打一场),则主办单位共安排了 场比赛。

14、如图:⊙O 内切于边长为2的等边△ABC ,分别以A 、B 、
C 为圆心,1为半径画弧,则图中阴影部分面积为 15、如图△ABC 中,E 、F 为BC 的三等份点,M 为AC 的中点,BM 与AE 、AF 分别交于G 、H ,则BG :GH :HM=
三、计算题(本大题40分) 16、(本题12分)某广告公司设计一幅周长为12米的矩形广告牌,广告设计费为每平方米1000元,设矩形的一边长为x 米,面积为S 平方米。

(1)求S 与x 之间的函数关系式,并确定自变量x 的取值范围;(2)请你设计一个方案,使获得的设计费最多,并求出这个费用;(3)为使广告牌美观、大方,要求做成黄金矩形,请你按要求设计,并计算出可获得的设计费是多少?(精确到元)(参考资料:①当矩形的长是宽与(长+宽)的比例中项时,这样的矩形叫做黄金矩形;②236.25≈)
17、(本题12分)已知如图⊙D 交y 轴于AB ,交x 轴于点C ,过点C 的直线:822--=x y 与y 轴交P ;(1)证明:PC 是⊙D 的切线;(2)判断在直线PC 上是否存在点E ,使得CDO EOP S S ∆∆=4,若存在求出点E 的坐标,若不存在,请说明理由;
(3)当直线PC 绕点P 转动时,与劣弧⋂
AC 交于点F (不与A 、C 重合),连结OF ,设PF=m ,OF=n ,求m 、n 之间满足的函数关系式,并写出自变量n 的取值范围。

第14题图 G
H M A
C F E B 第15题图 y O(0,1)
B
A
P
C
五、阅读、理解、应用 18、(本题16分)
︒0~36︒0间的角的三角函数
在初中,我们学习过锐角的正弦、余弦、正切和余切四种三角函数,即在图1所示的直角三角形ABC ,∠A 是锐角,那么 sinA=
斜边的对边A ∠,cosA=斜边的邻边A ∠,tanA=的邻边的对边A A ∠∠,cotA=的对边
的邻边
A A ∠∠
B
C
A
为了研究需要,我们再从另一个角度来规定一个角的三角函数的意义:
设有一个角α,我们以它的顶点作为原点,以它的始边作为x 轴的正半轴ox ,建立直角坐标系(图2),在角α的终边上任取一点P ,它的横坐标是x ,纵坐标是y ,点P 和原点(0,0)的距离为22y x r +=(r 总是正的)
,然后把角α的三角函数规定为: sin α=
r y ,cos α=r x ,tan α=x
y
,cot α=y x
我们知道,图1的四个比值的大小与角A 的大小有关,而与直角三角形的大小无关,
同样图2中四个比值的大小也仅与角α的大小有关,而与点P 在角α的终边位置无关.
比较图1与图2,可以看出一个角的三角函数的意义的两种规定实际上是一样的,根据第二种定义回答下列问题,每题4分,共16分
1.若27︒0<α<36︒0,则角α的三角函数值sin α、cos α、tan α、cot α,其中取正值的是 2.若角α的终边与直线y=2x 重合,则sin α+ cos α= 3.若角α是钝角,其终边上一点P (x ,5),且cos α=
x 4
2
,则tan α 4.若 ︒0≤α≤9︒0 ,则 sin α+cos α 的取值范围是

1 x。

相关文档
最新文档