地下水动力学地下水流基本微分方程及定解条件(1)
地下水动力学概念总结

地下水动力学:研究地下水岩石空隙中运动规律的科--(它是模拟地下水流基本状态和地下水中溶质运移过程,对地下水从数量上和质量进行定量评价和合理开发利用,以及兴利除害的理论基础。
主要研究重力水的运动规律)渗透:重力地下水在岩石空隙中的运动渗流:整个含水层全部被地下水占据,不考虑骨架。
考虑地下水的整体运动方向,不必研究个别孔隙之间的运动途径。
满足渗流的条件:1)假想水流的性质与真实水流相同;2)、假想水流运动时所受阻力与真实水流相同;3)通过任一断面的流量和任一点的压力或水头和实际水流相同。
渗流量:流量,单位时间内通过过水断面(包括含水层空隙和骨架所占面积)的水体积,同Q表示,单位m3/d。
渗流速度:又称渗透速度、比流量,是渗流在过水断面(包括含水层空隙和骨架所占面积)上的平均流速。
它不代表任何真实水流的速度,只是一种假想速度。
记为v,单位m/d。
贮水系数:称释水系数或储水系数,指面积为一个单位、厚度为含水层全厚度M的含水层柱体中,当水头改变一个单位时弹性释放或贮存的水量。
μ* = μs M。
既适用于承压含水层,也适用于潜水含水层。
贮水率:指当水头下降(或上升)一个单位时,由于含水层内骨架的压缩(或膨胀)和水的膨胀(或压缩)而从单位体积含水层柱体中弹性释放(或贮存)的水量,量纲1/L。
μs = ρg (α+nβ)。
导水系数:是描述含水层出水能力的参数;水力坡度等于1时,通过整个含水层厚度上的单宽流量;亦即含水层的渗透系数与含水层厚度之积,T=KM。
它是定义在一维或二维流中的水文地质参数。
单位:m2/d。
非均质介质:如果在渗流场中,所有点不都具有相同的渗透系数,则称该岩层是非均质的。
各向异性介质:渗流场中某一点的渗透系数取决于方向,渗透系数随渗流方向不同而不同。
达西定律:是描述(条件:以粘滞力为主、雷诺数Re< 1~10的层流状态下的地下水渗流)基本定律,指出渗流速度V与水力梯度J成线性关系,V=KJ,或Q=KAJ,为水力梯度等于1时的渗流速度。
《地下水动力学》复习要点

内容主要有:(1)渗流理论基础;(2)地下水向河渠的稳定运动;(3)地下水向完整井的稳定运动;(4)地下水向完整井的非稳定运动;(5)地下水向边界附近井的稳定和非稳定运动。
重点考核地下水运动的基本概念、基本原理和方法。
题目类型有名词解释、判断题、作图题和计算题等,其中计算题占试题总分数的65%。
《地下水动力学》复习要点第一章 渗流理论基础一、基本内容1、基本概念:多孔介质、贮水率、贮水系数(弹性给水度)、渗流、渗流速度及与实际速度关系、水头(位置水头、测压管水头)、水力坡度、渗透系数、渗透率、导水系数、各向异性介质、各向同性介质、均质与非均质、水流折射原理、流网、dupuit 假设、第一类边界条件、第二类边界条件等2、基本定律:达西定律及适用范围3、描述地下水运动的方程:渗流连续性方程、承压水运动的基本微分方程、潜水运动的基本微分方程、越流含水层地下水非稳定流运动方程4、定解条件(初始条件、边界条件),数值方法基本思想二、要求1、理解并掌握上述概念和理论2、用达西定律分析水头线的变化或根据流网分析水文地质条件变化;3、给定水文地质条件,能正确画出反映地下水运动特点的流网图;4、给定水文地质模型和水文地质条件,写出反映地下水运动的基本方程(给定假设条件,建立数学模型,包括初始条件、边界条件)第二章 河间地块地下水的稳定运动一、基本内容有入渗时河间地块潜水的稳定运动问题(水文地质模型、假设条件、数学模型、流网、任意过水断面流量、分水岭移动规律、水头线)、无入渗时潜水的稳定运动、承压水的稳定运动,水在承压—无压含水层中的运动,非均质含水层中水的运动问题。
二、学习要求根据给定问题的水文地质条件,用相关公式计算过水断面流量或水位。
三、常用公式 1、承压含水层(达西定律) l H H m m kq 21212++= x lH H H H 211--= 2、无入渗潜水含水层(达西定律)l h h h h k q 21212-+= x lh h h h 2122212-+= 3、有入渗时潜水 wx wl l h h k q +--=2122221 )(22122212x lx kw x l h h h h -+-+= 4、分水岭位置 l h h w k l a 222221--= 5、其它流动问题(水平层状含水层、非均质含水层、承压—无压含水层、厚度或水流厚度沿流向变化等)第三章 地下水向完整井的稳定运动一、 基本概念:完整井、不完整井、水井及周围水位(水头)、稳定井流条件(定水头边界、越流、入渗补给)、井损与水跃、影响半径与引用影响半径、叠加原理、均匀流及平面或剖面流网二、学习要求1、掌握地下水向承压水井和潜水井运动问题的假设条件、数学模型、平面或剖面流网特征2、利用有关公式计算抽水量、降深或利用抽水试验资料(已知降深或水位),求含水层参数(导水系数或渗透系数)3、应用叠加原理地下水向完整井群的稳定运动问题。
《地下水动力学》课程总结

求水文地质参数
K、T、μ、μ*、B…
计算运动要素
Q、q、H、s、t….
模型识别
判断水文地质条件 如边界性质
1、介质(为描述介质特性提出的一些概念)
连续介质模型-典型单元体 渗透性:
渗透系数(K)、等效渗透系数 均质、非均质 各向同性、各向异性
2、渗流场
渗流特征 运动要素:实际流速、渗透流速、质点流速、单个孔隙
5、水文地质参数及获取方法
渗透系数K 入渗强度W 导水系数T=KM 弹性释水系数μ* 给水度μ 阻越流系数B 压力传导系数a =T/ μ*
配线法 直线图解法 水位恢复资料法
1、达西定律
dH Q = -KA
ds
dH v = -K
ds
适用条件:1<Re<10的层流
2、 Dupuit假定,Dupuit微分方程
Kz
∂ ∂z
s(r, H 0 ,t )
=
-μ
∂ ∂t
s(r, H 0 ,t )
方程解析解
s(r, z, t) Q
4 T
1
0
4
yJ 0
(
y
2
)[ 0
(
y)
n ( y)]dy
n 1
• 纽曼解的特点
5、地下水向不完整井的运动
• 不完整井流特点(三点)
• 地下水向不完整井的稳定运动
井底进水的承压水不完整井(空间汇点法)
井壁进水的承压水不完整井(空间汇线法)
∫ Q
s = 4πK(z2 - z1)
[z2
1
+
z1 (z - η)2 +r 2
1
]dη
(z + η)2 +r 2
第二章 地下水运动的基本微分方程及求解条件

第二章地下水运动的基本微分方程及求解条件一、填空题1. 渗流连续方程是质量守恒定律在地下水运动中的具体表现。
2. 地下水运动基本微分方程实际上是地下水水量均衡方程,方程的左端表示单位时间内从水平方向和垂直方向进入单元含水层内的净水量,右端表示单元含水层在单位时间内质量变化量。
3. 越流因素B越大,则说明弱透水层的厚度越大,其渗透系数越小,越流量就越小。
4. 单位面积(或单位柱体)含水层是指底面积为一个单位,高等于含水层厚度柱体含水层。
5. 在渗流场中边界类型主要分为水头边界、流量边界以及混合边界。
二、判断题1. 地下水连续方程和基本微分方程实际上都是反映质量守恒定律。
(√)2. 潜水和承压水含水层的平面二维流基本微分方程都是反映单位面积含水层的水量均方程。
(√ )3. 在潜水含水层中当忽略其弹性释放水量时,则所有描述潜水的非稳定流方程都与其稳定流方程相同。
(×)4. 越流因素B和越流系数σ都是描述越流能力的参数。
(√)5. 在实际计算中,如果边界上的流量和水头均已知,则该边界既可作为第一类边界,也可作为第二类边界处理。
(√)6. 凡是边界上存在着河渠或湖泊等地表水体时,都可以将该边界作为第一类边界处理。
(×)7. 同一时刻在潜水井流的观测孔中,测得的平均水位降深值总是大于该处潜水面的降深值。
(√)三、分析建模题1. 一口井位于无限分布的均质、各向同性潜水含水层中,初始时刻潜水水位在水平不透水底板以上高度为H 0(x ,y ),试写出下列两种情况下地下水流向井的非稳定流数学模型(已知水流为二维非稳定流)。
(1)井的抽水量Q w 保持不变;解:数学模型如下t H K K Q y H H y x H H x W ∂∂=-⎥⎦⎤⎢⎣⎡∂∂∂∂+⎥⎦⎤⎢⎣⎡∂∂∂∂μ;(x,y )∈D,t ≥0 ① H (x,y ,0)=H 0(x ,y );(x,y )∈D ,t=0② H (x,y ,t )|Γ1=H 0(x ,y );(x,y )∈Γ1,t>0③ Wr Q n HT W π2-=∂∂Γ;(x,y )∈Γw,t>0(Γw 为井壁) (2)井中水位H w 保持不变。
第二章地下水运动的基本微分方程及定解条件

第二章一、填空题 1.渗流连续方程是 现。
地下水运动的基本微分方程及定解条件在地下水运动中的具体表 。
2.试写出在忽略含水层骨架压缩情况下的地下水连续方程 3.地下水运动基本微分方程实际上是 时间内从 层在单位时间 方向和 。
、方程,方程的左端表示单位方向进入单元含水层的净水量, 右端表示单元含水4.地下水平面二维、三维流基本微分方向的数学意义分别表示渗流区内 的渗流规律, 它们的物理意义分别表示任一 5.裘布依假设的要点是 直的,流线 体含水层。
7.贮水率的物理意义是:当水头 中由于水 是 ,后者是 ,以及介质骨架的 ,二是释放出 水量。
、 以及 。
时,从 ,而释放(贮存)的 含水层 水 不同,前者 以及没有 。
,高等于 柱 的水量均衡方程。
是铅 ,实际上意味着6.单位面积(或单位柱体)含水层是指量。
贮水系数与贮水率比较,主要差别有两点:一是含水层 水量,后者则完全是 二、判断题 1.对含水层来说其压缩性主要表现在空隙和水的压缩上。
( 2.贮水率 μt=ρg (α+nβ)也适用于潜水含水层。
( 3.贮水率只用于三维流微分方程。
( ) )不同,前者有疏干重力水和弹性8.在渗流场中边界类型主要分为)4.贮水系数既适用承压含水层,也适用于潜水含水层。
( ( ) 6.潜水含水层的给水度就是贮水系数。
( ))5.在一定条件下,含水层的给水度可以是时间的函数,也可以是一个常数。
7.在其它条件相同而只是岩性不同的两个潜水含水层中。
在补给期时,给水 度 µ 大,水位上升大,µ 小,水位上升小,在蒸发期时,µ 大,水位下降大,µ 小,水位下降小。
( )8.地下水连续方程和基本微分方向实际上都是反映质量守恒定律。
(9. 地下水三维流基本微分方程 div (K·gradH) = 于潜水。
( ))m s = ¶H / ¶t 既适用于承压水也适用10.潜水和承压水含水层的平面二维流基本微分方向都是反映单位面积含水 层的水量均衡方程。
第5章地下水运动的基本微分方程及定解条件

潜水面渗流速度为 ,当潜水面坡度很小、渗径∂s由∂x代替时,得到
(5—41)
实质是在潜水含水层渗流中,垂直分量流速vz远远小于水平分量流速vx和vy,而vz可以忽略,即假定等水头面是铅垂面,渗流被视为是水平流。这就是裘布依假定。单位宽度含水层断面上的流量为
(5—42)
该方程称为裘布依方程。
可见由质量守恒建立的渗流连续性方程(地下水运动的连续性方程)更具有普遍意义,它包括了潜水含水层、承压含水层及越流系统中水流运动的守恒原理。连续性方程表示出地下水任意点A到B的连续性。
5.1渗流连续性方程
依据质量守恒定律:在饱水含水层内选定小立方体:△x∙△y∙△z=V0;依据质量守恒定律→单位时间内,流入与流出小立方体的质量变化=单位时间内,小立方体水质量的变化。
注意:(1)水头减小引起的含水层中介质及水的3个变化,和相反过程。它确定了弹性释水、弹性储存的概念,忽略第三种变形。(2)为何弹性储存与重力储存的不同?何为弹性变形、塑性变形?弱透水层中和潜水含水层中有没有弹性储存?
5.2.2含水层水体压缩与膨胀方程
由上述分析,确定多孔介质固体颗粒为不可变形的刚性体,当含水层抽水或放水时所产生的水量,由两部分组成,一是水体积膨胀所释放出的水量;二是固体骨架压密所释放出来的水量。
孔隙含水层,尤其是细粒孔隙含水层,抽水(或放水)含水层水头(或水位)下降时,释放出来的水量与含水层水头(或水位)增大相同值时,含水层中压缩储存的水量是不相等的。所以有弹性储存与重力储存的区别;能够恢复的部分为弹性变形,不能恢复的部分为塑性变形;弱透水层中也有弹性储存;潜水含水层中也存在有弹性储存,只是它与重力储存相比小的多,一般情况下可忽略。
(*)
图5-1多孔介质单元水均衡要素图
第二章地下水运动的基本微分方程及定解条件

第二章一、填空题 1.渗流连续方程是 现。
地下水运动的基本微分方程及定解条件在地下水运动中的具体表 。
2.试写出在忽略含水层骨架压缩情况下的地下水连续方程 3.地下水运动基本微分方程实际上是 时间内从 层在单位时间 方向和 。
、方程,方程的左端表示单位方向进入单元含水层的净水量, 右端表示单元含水4.地下水平面二维、三维流基本微分方向的数学意义分别表示渗流区内 的渗流规律, 它们的物理意义分别表示任一 5.裘布依假设的要点是 直的,流线 体含水层。
7.贮水率的物理意义是:当水头 中由于水 是 ,后者是 ,以及介质骨架的 ,二是释放出 水量。
、 以及 。
时,从 ,而释放(贮存)的 含水层 水 不同,前者 以及没有 。
,高等于 柱 的水量均衡方程。
是铅 ,实际上意味着6.单位面积(或单位柱体)含水层是指量。
贮水系数与贮水率比较,主要差别有两点:一是含水层 水量,后者则完全是 二、判断题 1.对含水层来说其压缩性主要表现在空隙和水的压缩上。
( 2.贮水率 μt=ρg (α+nβ)也适用于潜水含水层。
( 3.贮水率只用于三维流微分方程。
( ) )不同,前者有疏干重力水和弹性8.在渗流场中边界类型主要分为)4.贮水系数既适用承压含水层,也适用于潜水含水层。
( ( ) 6.潜水含水层的给水度就是贮水系数。
( ))5.在一定条件下,含水层的给水度可以是时间的函数,也可以是一个常数。
7.在其它条件相同而只是岩性不同的两个潜水含水层中。
在补给期时,给水 度 µ 大,水位上升大,µ 小,水位上升小,在蒸发期时,µ 大,水位下降大,µ 小,水位下降小。
( )8.地下水连续方程和基本微分方向实际上都是反映质量守恒定律。
(9. 地下水三维流基本微分方程 div (K·gradH) = 于潜水。
( ))m s = ¶H / ¶t 既适用于承压水也适用10.潜水和承压水含水层的平面二维流基本微分方向都是反映单位面积含水 层的水量均衡方程。
2地下水渗流基本方程及数学模型

安徽理工大学 地球与环境学院 水资源与规划系
Ch2 地下水渗流微分方程及数学模型
地下水动力学
安徽理工大学 地球与环境学院 水资源与规划系
Ch2 地下水渗流微分方程及数学模型
*范围值:n×10-3~ n×10-5; 范围值:0.05~ 0.30。实际测出的值往往小于理论值。
上述两参数之间的不同,还在于潜水含水层存在滞后疏干现象。 弹性释水与重力给水: 对于含水层而言,由于受埋藏条件的限制,抽水时,水的给 出存在着不同。 潜水含水层在抽水过程中,大部分水在重力作用下排出,疏干作用于水位变动带(
为反映含水层地下水运动的普遍规律,我们选定在各向异性多孔介 质中建立地下三维不稳定流动连续性方程。
地下水动力学
安徽理工大学 地球与环境学院 水资源与规划系
Ch2 地下水渗流微分方程及数学模型
由于渗流场中各点的渗流速度大小、方向都不同,为了反映液体运动的 质量守恒关系,需要在三维空间中建立微分方程形式表达的连续性方程。
则有:
即:
将
代入整理得:
地下水动力学
安徽理工大学 地球与环境学院 水资源与规划系
Ch2 地下水渗流微分方程及数学模型
所以有
上式为三维流微分方程,也可写成:
物理意义:渗流空间内任一单位体积含水层在单位时间内流入与流出该体 积含水层中的弹性水量的变化量,即单位体积含水层的水量均衡方程。
地下水动力学
安徽理工大学 地球与环境学院 水资源与规划系
= =
由含水层状态方程,
地下水动力学
安徽理工大学 地球与环境学院 水资源与规划系
Ch2 地下水渗流微分方程及数学模型
因为 则可得到: 所以有 ,Z为定值,则
于是连续性方程变为:
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
地下水弹性储存
弹性储存:当地下水水头(水压)降低(或升高)时, 含水层、弱透水层释放(或储存)地下水的性质
物理意义: ➢ 弹性储存与重力储存不同;
给水机制不同
➢ 弹性储存更宜理解为“变形储存”;
➢ 弹性储存这种性质不仅承压含水层具备,层间 弱透水层也有弹性储存
因Vs=constant,故
只在垂直方向上有压缩,
单元体内地下水 质量变化量
m V nxyz
m [( nz) |(x,y,z,tt) (nz) |(x,y,z,t) ]xy
X方向流入流出差
y方向流入流出差
z方向流入流出差 单元体内地下水 质量变化量 地下水连续性方程
( vx ) |(x, y,z,t) ( vx ) |(xx, y,z,t) xyzt
H x
)]
由于在一般情况下,水的密度变化很小,可视近似不变,故
x
K xx
H x
x
K
xx
H x
(vx
x
)
x
(K xx
H x
)
渗流连续性 方程化简
(
v
x
x
)
( v y
y
)
( v z
z
) xyz
(nz)
t
xy
(二)化简方程左端项
(nz) z ( n ) H
t
t
vx
K xx
H x
vy
Vb Vs Vv
Vv=nVb;
由于骨架部分体积不变 dVb dVv
Vs=(1-n)Vb
1 dVs 1 dVv 1 n dVs n dVv
Vb d Vb d
Vs d Vv d
Vv=nVb;Vs=(1-n)Vb
式中
——多孔介质固体颗粒压缩系数,表示多
孔介质中固体颗粒本身的压缩性的指标,s<<p;
➢ 必须区分两者之间的不同,潜水含水层还存在滞后疏干现象。
承压含水层抽水时,水的释放是由于压力减少造成的,这 一过程是瞬时完成的。只要水头下降不低到隔水顶板以下,水 头降低只引起含水层的弹性释水,可用贮水系数*表示这种释 水的能力。
导压系数
描述含水层水头变化的传导速度的参数,其数值等于含水层 的导水系数与贮水系数之比或渗透系数与贮水率之比。
由于
Vm
V p
V0
V p
V
d(m)
dV V
m
d( 1 ) d
水的压缩方程
dp 1 d
d
dp
(1 5)
多孔介质的压缩方程
假定多孔介质近似地符合弹性变形,依虎克定律,有
1 dVb d Vb
α为岩土的体积弹性压缩系数。
如果上部荷载不变,则 d dp
dp 1 dVb
Vb
的参数,在地下水动力学计算中具有重要的意义。
➢ 贮水率
表示含水层水头变化一个单
位时,从单位体积含水层中,因水体积膨胀(压缩)以
及骨架的压缩(或伸长)而释放(或储存)的弹性水量。
单位1/L。
➢ 贮水系数又称释水系数或储水系数,为含水层水头变化 一个单位时,从底面积为一个单位,高度等于含水层厚 度的柱体中所释放(或贮存)的水量;指面积为一个单 位、厚度为含水层全厚度M的含水层柱体中,当水头改 变一个单位时弹性释放或贮存的水量,无量纲。既适用 于承压含水层,也适用于潜水含水层。
量纲为L2T-1。
2.2 渗流连续性方程
连续性方程就是质量守恒方程,也称为水均衡方程 水均衡的基本思想:
对某一研究对象,流入- 流出=V 研究对象可以是大区域的,也可以是微分单元体
大区域的水均衡计算经常用于区域的水资源评价 本课程基于微分单元体做水均衡,推导渗流连续性方程。
为反映含水层地下水运动的普遍规律,我们选定在各向 异性多孔介质中建立地下三维不稳定流动连续性方程。
第二章 地下水流基本微分方程及定解条件
基本理论:连续性假设+达西定律+水均衡原理
➢ 对各种水流问题建立基本微分方程及数学模型: ●按空间维数:一维、二维(平面二维、剖面二维)、三维 ● 按含水层类型:承压水流、潜水流、多层(越流联系)等
➢ 求解数学模型(利用解析法),得到一些典型解析解: ●裘布依稳定井流模型 ●无越流承压含水层中的完整井流(泰斯模型) ●无越流潜水含水层中的完整井流(博尔顿模型-考虑滞后给水、 纽曼模型-考虑流速垂直分量和弹性储量) ●越流系统中的承压完整井流模型
➢ 应用: ●预测抽水条件下的水头变化; ●利用抽水试验资料求含水层参数。
第二章 地下水流基本微分方程及定解条件
教学目标:
➢ 准确理解渗流连续性概念 ➢ 掌握达西定律和质量守恒原理的应用 ➢ 掌握建立地下水基本微分方程的思想方法 ➢ 几种典型的地下水流方程的推导
●潜水剖面二维流、平面二维流 ●承压水二维流 ● 三维流 ➢ 边界条件概化,初始条件确定方法与原则 ➢ 能够用数学模型描述实际问题
➢ 与水体积膨胀所释放出的水量(dV)之和
上述二者之和所释放出的水量为
或
(1-14)
式中 s ——贮水率[释水率](specific storativity),量纲
[L-1],为弹性释水[贮水] ; 式中 M——含水层厚度(m);
*——贮水系数(storativity)。
*=sM ➢ 贮水系数*和贮水率s都是表示含水层弹性释水能力
即:1-65式变为:
渗流连续性方 程化简
(v
x
x
)
(vy )
y
( v z
z
)
xyz
(nz)
t
xy
(二)化简方程左端项
当渗流满足达西定律,且取坐标与各向异性主轴方向一致,有
vx
K xx
H x
vy
K yy
H y
vz
K zz
H z
(vx )xFra bibliotekx(K xx
H x
)
[
x
K xx
H x
x
(K xx
第二章 地下水流基本微分方程及定解条件
主要内容:
➢ 建立连续性方程 ➢ 分析含水层与岩石、流体压缩性关系 ➢ 建立不同含水层地下水流微分方程 ➢ 讨论边界条件及初始条件 ➢ 用数学模型描述实际问题
2.1 水和多孔介质的压缩性
水的压缩方程(地下水的状态方程)
假定水近似地符合弹性变形,依虎克定律,有
➢ 贮水率是描述地下水三维非稳定流或剖面二维流中的 水文地质参数,既适用于承压水也适用于潜水。对于平 面二维非稳定流地下水运动,当研究整个含水层厚度上 的释水情况时,用贮水系数来体现。
上述两参数之间的不同,还在于潜水含水层存在滞后疏干现 象。
➢ 弹性释水与重力给水: 对于含水层而言,由于受埋藏条件的 限制,抽水时,水的给出存在着不同。
...
由于很小,且p变化不大,故
e ( p0 p) 1 ( p0 p)
V V0
1 ( p0
p)
V V0[1 ( p0 p)]
V0 V0 ( p0 p)
V V0 V0 ( p0 p)
V V0 V0
( p0
p)
V V0
( p0
p)
水的压缩方程
dp 1 dV
V
由于V~V0变化不大,故
——多孔介质中孔隙压缩系数 (Compressibility of the pores of a porous medium),表 示多孔介质中孔隙的压缩性的指标。n——多孔介质的孔隙度。
1-8
因
,故
。
1-9
水的压缩方程 多孔介质的压缩方程
dp 1 dV
V V p
V
1 dVb d Vb
嫁到多孔介质固体骨架上,增大有效应力,压缩多孔介质,结果使含 水层介质厚度变薄和空隙率n变小,同时从孔隙中释放地下水; ➢ p减少多孔介质固体颗粒也会膨胀,而有效应力增大又会影响固体颗 粒的变形。综合起来,这种现象比较复杂。考虑到固体颗粒的压缩性 比多孔介质要小得多,因此通常忽略多孔介质固体颗粒的压缩性。
渗流连续性方程推导
X方向流入流出差
(vx ) |(x,y,z,t) yzt (vx ) |(xx,y,z,t) yzt
y方向流入流出差
(v y ) |(x,y,z,t) xzt ( v y ) |(x,yy,z,t) xzt
z方向流入流出差 ( v z ) |( x, y,z,t) xyt ( v z ) |( x, y,zz,t) xyt
e ( p0 p) V V0
水的压缩方程
按Taylor级数展开
f (x) f (x) f (0) x f (0) x2 f (n) (0) xn
1!
2!
n!
ex 1 x x2 x3 ... 2! 3!
e ( p0 p)
1
( p0
p)
2
2!
(
p0
p)2
3
3!
( p0
p)3
渗流连续性方程推导
图2-1-1多孔介质单元水均衡要素图
X方向流入 X方向流出
假设:水是可压缩的,多孔介质骨 架在垂直方向可压缩,但在水平方 向不可变形。
均衡的含义:在t时段内从x,y,z三 个方向共6个单元界面上流入流出 水的净总质量等于单元体内储存量 的变化。
V Qt vt
m V vt
X方向流入流出差 (vx ) |( x, y,z,t) yzt ( vx ) |( xx, y,z,t) yzt
(v
x
x
)
(vy )
y
(vz
z
)
xyz
(nz)
t
xy
渗流连续性方程化简