2016年西安电子科技大学数模校赛B题

合集下载

《2024年2016年全国大学生数学建模竞赛B题解题分析与总结》范文

《2024年2016年全国大学生数学建模竞赛B题解题分析与总结》范文

《2016年全国大学生数学建模竞赛B题解题分析与总结》篇一一、引言2016年全国大学生数学建模竞赛B题,是一道涉及复杂系统分析与优化的实际问题。

该题目要求参赛者运用数学建模的方法,对给定的问题进行深入分析,并寻求最优解决方案。

本文将对B 题的解题过程进行详细分析,并总结经验教训。

二、题目概述B题主要围绕某大型网络公司的员工分配问题展开。

公司需根据员工的能力、需求以及项目的要求,合理分配员工到各个项目组,以实现公司整体效益的最大化。

该问题涉及到多目标决策、优化算法以及复杂系统分析等多个方面。

三、解题分析1. 问题理解:首先,我们需要对题目进行深入理解,明确问题的背景、目标和约束条件。

在这个阶段,我们需要对员工的能力、需求以及项目的要求进行详细的分析,为后续的建模打下基础。

2. 数学建模:根据问题的特点,我们选择建立多目标决策模型。

模型中,我们将员工的能力、需求以及项目的要求作为决策变量,以公司整体效益作为目标函数。

同时,我们还需要考虑各种约束条件,如员工数量的限制、项目需求的满足等。

3. 算法设计:在建立模型后,我们需要设计合适的算法来求解模型。

在这个阶段,我们选择了遗传算法和模拟退火算法进行求解。

遗传算法能够在大范围内搜索最优解,而模拟退火算法则能够在局部范围内进行精细搜索,两种算法的结合能够更好地求解该问题。

4. 求解与优化:在算法设计完成后,我们开始进行求解与优化。

首先,我们使用遗传算法对模型进行粗略求解,得到一组初步的解决方案。

然后,我们使用模拟退火算法对初步解决方案进行优化,以得到更优的解决方案。

在优化过程中,我们还需要不断调整模型的参数和算法的参数,以获得更好的求解效果。

5. 结果分析:在得到求解结果后,我们需要对结果进行分析。

首先,我们需要对结果进行验证,确保结果的正确性和有效性。

然后,我们需要对结果进行敏感性分析,分析各种因素对结果的影响程度。

最后,我们需要提出一些管理建议和改进措施,以帮助公司更好地解决实际问题。

2016年全国大学生数学建模竞赛B题解题分析与总结

2016年全国大学生数学建模竞赛B题解题分析与总结

2016年全国大学生数学建模竞赛B题解题分析与总结2016年全国大学生数学建模竞赛B题解题分析与总结一、题目分析2016年全国大学生数学建模竞赛B题是一个与经济学、金融学相关的问题,要求参赛者通过对问题的深入分析和建模,以及对模型的求解和结果的解释,提出合理的结论。

二、问题描述本题的题目为《贷款利率调控模型》。

题目给出了一组数据,包括贷款利率、消费者价格指数、人均可支配收入、外汇储备等指标,要求参赛者针对这些指标进行分析,并建立合适的模型来解释这些指标之间的关系。

三、解题思路1. 数据分析:首先,我们需要对给定的数据进行分析。

通过绘制图表和计算一些统计量,我们可以对这些数据的变化和趋势进行初步了解。

2. 建立模型:在了解了数据的基本特征之后,我们需要以此为基础,建立起合适的数学模型。

这个模型应该能够描述贷款利率与消费者价格指数、人均可支配收入、外汇储备之间的关系,并能够进行预测。

3. 参数估计:建立好模型之后,我们需要对模型中的参数进行估计。

这需要依赖于数学推导和数据拟合的方法,通过最小二乘法等方法,确定模型的参数。

4. 模型求解:有了模型和参数之后,我们可以使用计算机软件进行模型的求解。

通过数值计算的方法,我们可以得到模型的解析解或数值解,并进行结果的分析和解释。

5. 结论与反思:最后,我们需要根据模型的结果,对问题进行结论和反思。

我们可以分析模型的合理性、可靠性,以及对解决实际问题的指导意义。

同时,我们也可以对模型的不足之处进行总结,并提出改进的建议。

四、模型建立与结果解释在解题的过程中,我们可以考虑建立如下的模型:贷款利率=消费者价格指数+人均可支配收入+外汇储备。

通过对这三个指标的分析,我们可以发现它们之间存在着一定的关系。

消费者价格指数和人均可支配收入可以反映经济的收入水平和购买力,而外汇储备可以反映国家的经济实力。

在建立了模型之后,我们可以对模型进行求解,并得到相应的结果。

根据模型的求解结果可以得出以下结论:贷款利率与消费者价格指数、人均可支配收入和外汇储备之间存在着一定的关系。

《2024年2016年全国大学生数学建模竞赛B题解题分析与总结》范文

《2024年2016年全国大学生数学建模竞赛B题解题分析与总结》范文

《2016年全国大学生数学建模竞赛B题解题分析与总结》篇一一、引言全国大学生数学建模竞赛(CUMCM)是衡量各高校数学类学科学生学习与实践能力的标志性竞赛之一。

其中,B题以真实问题的复杂性吸引了广大参赛选手的关注。

本文将对B题的具体题目内容、解题过程、常见方法和误区进行分析,并结合实例对竞赛结果进行总结,以期为其他参赛同学提供一定的参考。

二、题目分析B题通常关注某一实际领域的复杂问题,涉及多个因素的综合考量。

其要求参赛者通过建立数学模型,解决实际问题。

具体问题包括某个地区的旅游经济预测和资源合理配置。

针对此问题,首先需要对旅游业的各项数据进行详细分析,然后构建适当的数学模型,并使用合适的数学工具和软件进行计算和模拟。

三、解题过程1. 数据收集与分析:收集该地区的历史旅游数据,包括游客数量、消费水平、旅游景点分布等。

同时,分析该地区的经济、文化、交通等影响旅游业的因素。

2. 模型构建:根据收集的数据和实际情况,选择合适的数学模型进行建模。

常见的模型包括时间序列预测模型(如ARIMA 模型)、多元回归模型等。

3. 模型求解与验证:利用数学软件(如MATLAB、SPSS等)对模型进行求解,并对模型的预测结果进行验证。

验证方法包括与历史数据进行对比、进行敏感性分析等。

4. 资源合理配置:根据预测结果和实际情况,制定合理的资源分配方案,如旅游景点的开发策略、交通设施的优化配置等。

四、常见方法与误区1. 常见方法:在建模过程中,应选择合适的数学模型和方法。

对于时间序列预测问题,常用的有ARIMA模型、指数平滑法等;对于多元回归问题,则需要考虑各因素之间的相互关系。

同时,还应充分利用计算机技术进行数据分析和模拟。

2. 误区提示:在建模过程中,要避免陷入一些常见的误区。

例如,过分追求模型的复杂性和精确度而忽视模型的实用性和可解释性;忽视数据的预处理和清洗工作;忽略模型的验证和修正等。

五、实例分析以某次B题竞赛的优秀解决方案为例,详细分析其解题过程和关键点。

2016年数学建模优秀论文B题

2016年数学建模优秀论文B题

关键词:投影寻踪
模拟退火算法
微分方程模型
元胞自动机
Breass 检验
1
一 问题的重述
1.1 引言 《关于进一步加强城市规划建设管理工作的若干意见》文件的出台,引起了社会各 界广泛的关注和热议,小区开放究竟是利大于弊还是弊大于利,每个人都有自己独特的 见解。一方面封闭式小区,堵塞了城市“毛细血管” ,增加了交通的压力,阻碍着城市 可持续发展; 另一方面小区开放后, 也会遇到一系列的问题, 比如业主权利侵犯的问题, 安全问题等。那么小区开放对道路通行会产生怎样的影响呢? 1.2 问题的提出 (1)通过选取构建恰当的评价指标体系,评价小区开放对其周围道路所产生的影响。 (2)通过建立车辆通行的模型,以此为基础分析小区开放对道路通行的影响。 (3)小区开放产生的效果,与诸多因素相关,通过考虑不同类型的小区,在你们构建 的模型的基础上,对各类型小区开放前后对交通产生的影响进行定量分析。 (4)依据研究结果,基于交通通行的角度考虑,对城市规划和交通管理部门,提出你 们的合理化建议。
4
t 0.5T 1 g T d t 1 min 1, x g T
其中 T 表示信号周期长度, t g 表示有效绿灯时间, x 表示饱和度 (5)车头间距 车头间距是位于同一车道上处于行驶状态下, 对前后邻近两辆车辆的车头之间一种距离 的度量。我们根据车头时距来计算车头间距,其计算公式如下: h hs t V 3.6 其中 hs m 表示车头间距, ht s 表示车头时距, V km / h 表示车辆行驶速度 (6)车辆平均速度 车辆平均速度表示单位时间内车辆的行驶快慢程度和运动方向,其计算公式如下: s v t 5.1.3 评价指标体系的构建 小区开放使交通量增加,作用于周边路网,从而使周围路段的服务水平发生变化以 及影响交叉口的交通状况[3]。三者之间存在关联性,进而各自所选取的指标之间也相互 影响、相互制约,共同作用形成一个有机的整体,因此我们构建的小区交通影响度评价 指标体系如下:

2016建模国赛B题

2016建模国赛B题

承诺书我们仔细阅读了《全国大学生数学建模竞赛章程》和《全国大学生数学建模竞赛参赛规则》(以下简称为“竞赛章程和参赛规则”,可从全国大学生数学建模竞赛网站下载)。

我们完全明白,在竞赛开始后参赛队员不能以任何方式(包括电话、电子邮件、网上咨询等)与队外的任何人(包括指导教师)研究、讨论与赛题有关的问题。

■- - ■ I Ii '我们知道,抄袭别人的成果是违反竞赛章程和参赛规则的,如果引用别人的成果或其他公开的资料(包括网上查到的资料),必须按照规定的参考文献的表述方式在正文引用处和参考文献中明确列出。

II I II;Z 1.1 I ■|| J///我们郑重承诺,严格遵守竞赛章程和参赛规则,以保证竞赛的公正、公平性。

如有违反竞赛章..I I程和参赛规则的行为,我们将受到严肃处理。

1 I 「J Z /我们授权全国大学生数学建模竞赛组委会,可将我们的论文以任何形式进行公开展示(包括进行网上公示,在书籍、期刊和其他媒体进行正式或非正式发表等)。

我们参赛选择的题号是(从A/B/C/D中选择一项填写):B- ■ I 、、、'、\r我们的参赛报名号为(如果赛区设置报名号的话):所属学校(请填写完整的全名):'、、■电■,I参赛队员(打印并签名):1.2.3.指导教师或指导教师组负责人(打印并签名):(论文纸质版与电子版中的以上信息必须一致,只是电子版中无需签名。

以上内容请仔细核对,提交后将不再允许做任何修改。

如填写错误,论文可能被取消评奖资格。

)日期:2017年9月17日赛区评阅编号(由赛区组委会评阅前进行编号):编号专用页赛区评阅编号(由赛区组委会评阅前进行编号):赛区评阅记录(可供赛区评阅时使用):全国统一编号(由赛区组委会送交全国前编号):全国评阅编号(由全国组委会评阅前进行编号):“拍照赚钱”的任务定价摘要本文就企业做市场调查时采取的“拍照赚钱”模式的定价规律展开研究。

我们绘制了任务点在地图上的位置后,发现任务点围绕深圳、广州、佛山、东莞四个城市的中心点呈散射状分布,并根据城市具体情况及会员信息逐步建立更加适应实际情况的任务定价模型。

《2024年2016年全国大学生数学建模竞赛B题解题分析与总结》范文

《2024年2016年全国大学生数学建模竞赛B题解题分析与总结》范文

《2016年全国大学生数学建模竞赛B题解题分析与总结》篇一一、引言2016年全国大学生数学建模竞赛(CUMCM)是面向全国各高校学生的大型数学建模类比赛。

在众多赛题中,B题以其复杂的实际问题背景和深入的应用数学知识引起了广泛关注。

本文旨在针对B题的解题过程进行详细分析,并做出相应的总结。

二、题目概述B题主要描述了一个实际生活中遇到的问题:基于网络平台的交通流量预测。

题目要求参赛者根据历史交通流量数据,分析交通流量的变化规律,并建立数学模型进行预测。

三、解题分析1. 数据收集与预处理首先,我们需要收集相关的历史交通流量数据。

这些数据可能包括时间、地点、交通流量等信息。

收集到的原始数据需要进行清洗和预处理,例如去除异常值、缺失值等,以获得更为准确的数据。

2. 建立数学模型根据数据的特点和问题需求,我们选择合适的数学模型进行建模。

考虑到交通流量与时间的关系较为密切,我们可以选择时间序列分析模型,如ARIMA模型等。

此外,考虑到不同地点之间的交通流量可能存在相互影响,我们还可以引入空间相关性分析,如空间自回归模型等。

3. 模型优化与验证建立数学模型后,我们需要对模型进行优化和验证。

这包括调整模型的参数、对模型进行诊断分析等。

我们可以通过对比模型的预测值与实际值,计算误差指标(如均方误差、平均绝对误差等)来评估模型的性能。

同时,我们还可以使用交叉验证等方法来验证模型的稳定性。

4. 模型应用与结果展示最后,我们将建立的数学模型应用于实际问题中,对未来的交通流量进行预测。

我们将预测结果以图表等形式进行展示,方便评委和观众理解。

同时,我们还可以对结果进行解释和讨论,说明模型的优点和局限性。

四、总结通过本文总结:经过详细的分析与探讨,针对2016年全国大学生数学建模竞赛B题,我们采取了有效的解决策略。

从数据收集与预处理到模型建立与优化,每一步都紧密联系实际,充分考虑了交通流量数据的特性和问题需求。

在建模过程中,我们选择了合适的时间序列分析模型和空间相关性分析模型,旨在捕捉交通流量的变化规律。

2016数学建模国赛B题

2016数学建模国赛B题

用方格因子影响模型探究小区开放对道路通行的影响摘要目前我国人口增长,各种大型小区增多,各小区家庭拥有小汽车量也在增多,根据我国的道路交通设计和城市规划设计,我国的道路交通存在着严重问题,所以对交通的通行能力有着较大需求,本题将要分析的是,如果常规的封闭性小区开放,那周边道路通行会出现怎样的变化。

关于第一问,本文选取五个交通参数,道路通行能力、道路网的饱和度、车道交通流量比、车辆的延误时间、饱和流量;可以由各个指标来衡量小区开放以后对周围道路的交通状况的影响。

关于第二问,先将城市交通道路网格化,再建立方形小区内点对之间的最优路径寻模型,通过分析交通网格化下的封闭性小区开放之后,小区内的各个点对之间的各个路径中,最优路径是否存在,同时可以计算得出小区的面积及位置对点对间交通便捷度影响因子的影响,通过因子分析法来计算并寻找最优路径,从而判断周边道路的交通状态,是否会因为小区的开放而得到缓解。

关于第三问,分析其开放前后小区对周边道路的交通通行带来的影响;从参考资料中选取一个城市小区,通过对小区结构以及道路结构对其道路通行能力的分析。

同时构建一个方形小区,通过假设其开放前和开放后的各类数据,进行一个辅助比较,通过这两种类型的小区,并应用第一问与第二问中的模型,发现打破一个封闭小区,可以使得周边道路上车辆的通行能力增加,即使得交通状况有所改善。

第四问要求从交通通行的角度提出建议,通过以上三问对开放性小区评价指标、周边道路交通体系、长沙市某具体小区与构建的虚拟小区等的研究结果,向相关部门提出了对小区开放的合理建议。

关键字:小区开放;道路通行能力;最优路径;饱和流量;交通便捷度影响因子一、问题重述近几年,我国经济飞速发展,在GDP上升的同时,封闭型的小区也越来越多,政府、开发商、居民等也越来越多的居住于封闭型小区,同时私家车在我国城市居民家庭中的数量越来越多,逐步普及。

这给各个道路的交通,以及小区周边的道路交通造成了巨大压力,可以说城市道路交通拥堵的问题变得不容忽视。

2016年数学建模竞赛B题参考答案(只做了一半)

2016年数学建模竞赛B题参考答案(只做了一半)

2011高教社杯全国大学生数学建模竞赛题目(请先阅读“全国大学生数学建模竞赛论文格式规范”)A题城市表层土壤重金属污染分析随着城市经济的快速发展和城市人口的不断增加,人类活动对城市环境质量的影响日显突出。

对城市土壤地质环境异常的查证,以及如何应用查证获得的海量数据资料开展城市环境质量评价,研究人类活动影响下城市地质环境的演变模式,日益成为人们关注的焦点。

按照功能划分,城区一般可分为生活区、工业区、山区、主干道路区及公园绿地区等,分别记为1类区、2类区、……、5类区,不同的区域环境受人类活动影响的程度不同。

现对某城市城区土壤地质环境进行调查。

为此,将所考察的城区划分为间距1公里左右的网格子区域,按照每平方公里1个采样点对表层土(0~10 厘米深度)进行取样、编号,并用GPS记录采样点的位置。

应用专门仪器测试分析,获得了每个样本所含的多种化学元素的浓度数据。

另一方面,按照2公里的间距在那些远离人群及工业活动的自然区取样,将其作为该城区表层土壤中元素的背景值。

附件1列出了采样点的位置、海拔高度及其所属功能区等信息,附件2列出了8种主要重金属元素在采样点处的浓度,附件3列出了8种主要重金属元素的背景值。

现要求你们通过数学建模来完成以下任务:(1) 给出8种主要重金属元素在该城区的空间分布,并分析该城区内不同区域重金属的污染程度。

(2) 通过数据分析,说明重金属污染的主要原因。

(3) 分析重金属污染物的传播特征,由此建立模型,确定污染源的位置。

(4) 分析你所建立模型的优缺点,为更好地研究城市地质环境的演变模式,还应收集什么信息?有了这些信息,如何建立模型解决问题?题 目 A 题 城市表层土壤重金属污染分析摘 要:本文研究的是某城区警车配置及巡逻方案的制定问题,建立了求解警车巡逻方案的模型,并在满足D1的条件下给出了巡逻效果最好的方案。

在设计整个区域配置最少巡逻车辆时,本文设计了算法1:先将道路离散化成近似均匀分布的节点,相邻两个节点之间的距离约等于一分钟巡逻路程。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

陀螺转子偏转角的测量
图1给出了测量陀螺转子偏转角的装置结构示意图。

陀螺转子是一个球台,在其表面涂覆有黑、白相间的条纹图案,一个黑色条纹和与其相邻的白色条纹为一组条纹;在距转子表面一定距离上固定放置能够接收黑、白条纹反射光的光电传感器,共放置四个,位于与陀螺转子转轴垂直的同心圆上,每隔90°放置一个。

图1. 测量陀螺转子偏转角的装置结构示意图
当陀螺转子以一定的角速度绕其自转轴旋转时,光电传感器可以接收到黑、白条纹所反射的光,由于黑白条纹对信号光的反射率差异,可以定义光电传感器接收到白条纹反射光的时间与接收到该组黑白条纹反射光的时间之比为占空比k。

若陀螺转子的自转速度恒定,则占空比可以转换为光电传感器所在的平面与陀螺转子表面相交的交线在白条纹部分的弧长与在该组(图2红浅黑为一组)黑白条纹部分的弧长之比。

以陀螺转子的球心为坐标原点,陀螺转子的自转旋转轴为X轴,建立右手坐标系。

旋转方向定义为:右手握住旋转轴,竖起拇指指向旋转轴正方向,正向旋转方向就是其余手指卷曲的方向,即从旋转轴正方向看下去,逆时针方向就是正向旋转方向。

假设在陀螺转子表面涂覆的黑、白条纹的数目均为n,则赤道圆上每个黑条纹或白条纹所对应的角度为α=π/n;陀螺转子上下表面对应的球心角为ϕm。

如图2
所示(为便于表示,以红色标识白条纹)。

弧 DBI所在的大圆可以看作是过B点的经线圆(即弧 ABC所在的大圆)以OB为轴(即Y轴)逆时针旋转β角而得到的,弧 DEF所在的大圆可以看作是过B点的经线圆绕X轴顺时针旋转α角而得到的。

由几何关系可知,若α和ϕm均为定值时,β也为一定值。

图2. 陀螺转子表面黑白条纹的定义
在实际过程中,当陀螺转子以一定的角速度绕其自转轴(即X轴)旋转时,自转轴会随着外界的环境以球心为定点发生偏转。

若陀螺转子没有发生偏转,四个光电传感器所测得的占空比是相同的;若陀螺转子的自转轴发生偏转,则四个固定不动的光电传感器所测得的占空比也会发生变化,根据光电传感器测得的占空比值即可计算出陀螺转子的偏转角度。

请建立数学模型解决以下问题(问题1必选,问题2~4任选其一):
1.定义陀螺转子的自转轴与原始X轴之间的夹角为Φ,建立Φ与光电传感器测得的占空比之间的关系。

如能给出解析关系式,则给出解析关系式;若不能给
出解析关系式,则给出关系曲线或曲面均可。

2.建立黑白条纹的参数α、ϕm和β之间的关系式,并分析是否可以通过改变α、ϕm使得问题1中建立的关系式或关系曲面变成线性关系(即直线或平面)。

3.估算四个传感器角度分布误差(是否严格按照每隔90°分布)及四个传感器不完全在一个平面内时引起的测量误差。

4.将占空比由时间之比转化为弧长之比是在陀螺转子转速ω恒定的情况下进行的,如果其转速ω发生微小变化Δω,试估算转速微小变化Δω/ω=±1%引起的占空比k的变化Δk/k及偏转角Φ的变化ΔΦ/Φ。

相关文档
最新文档