钻柱力学计算
石油工程钻井钻柱力学-第二章 钻柱设计与负荷计算1节-遇阻卡受力与卡点深度计算

L 1 s
(3)、由静水压力作用引起的伸长良 L2 :
L1
L2
0
2 2 L L g 101 dx 积分后得:L2 0.981 L 1 Es Ap Es
5
2 2 2 0.981 W s L1 0.981 Ws L1 L 0.981 2 L L1 L 2E s 2E s s 2E s
7
钻杆在井壁上的投影宽度w和钻柱发生卡钻的压差Ph(已 知上提拉力时),由于:
Sin = w/dp; Sin = w/Dhm; F T = F H = A p P h; Ap = Lp w—————————(2-15)
所以: Cos
2 ( Dh 2 ) 2 d p (D d p ) 2
(2)、砸用Q = 10 - 20 (吨)的拉力上提,记下标记 2、3、。。。; F2 F3 (3)、由两次测量拉力差可确定 1 F1 上提力 F 。
T
2)、卡点深度计算方法
(1)、由虎克定律
FT Lp L Ap Es
1
1 2 L
2
3
L1
L
或 Lp
5
Lp
A p E s L FT
2( D d p ) d p
(2-16c)
2 ( D h 2 ) 2 d p ( Dh d p ) 2 (2-16d) 或 ArcCos 2( D h d p ) d p
8
1
FT
b D
Lh
Lm
Rhm
o
a
FH
Ph Lj
石油工程钻井钻柱力学-第四章 第3节-钻柱螺旋弯曲基本概念

o
3)、qn——由 钻组在泥浆 中的重量 q 产生的分布载 荷(沿半径指向外);
NPT
4)、ƒn——法向反力(方 向沿半径指向中心)。
5)、此外,还受弯曲、扭 矩剪切、轴向拉、压力; 振动等。NPT—中和点; 当坐标原点选在中和点街 面上,Z轴平行于井眼轴线 (方向向下为正)时,取 出的距离原点 Z 的单元体 所对应的 角可认为其上 的螺旋角等于常数。 12
a L L Lab b x F
t
KL
t
Pa
图 2
T
图6 13
弯曲井段钻柱受力计算举例
如果已知狗腿严重度 = 5°/ 100 Ft,井段长度 L = 100Ft, 钻柱所受轴向拉力 T =105 Lbf。
试问:拉力 T 使钻柱对井壁产生的侧向压力 F = ?
[ Lbf、KN、t(吨)]—1Lbf = 4.448(N)。 如图(6)所示。 解: 1、由几何关系知道: x
— —(3); 2 2 2 p 4 r 2 S
9
4)、再由曲率定义;得螺旋弯曲钻柱任意点处的曲率 计算公式:k p dx dy dz (4) ——— ds ds ds
2 2 2
5)、若将(3)式的二阶导数代入(4)式,并经过简化,可得至于螺距 (P)和圆柱半径(r)有关的曲率公式: k 4 2 r p 4 r
解:由题意:kb = 5/304.8m、 L = 1219.2/2 = 609.6cm、
6
Ap =74.79cm2、 Wp = 1112.06kN、 Wp =44.48kN。 I = /64(Dp4 - Di4) = 5086.74cm4、Dp = 24.447cm k = (64.5158 Wp / EI)0.5 = 8.25 10-3 kL = 8.25 609.6 10-3 = 5.0292 Tanh(0.3937kL)=Tanh(0.39375.0292)=0.96259 所以得答案:Qw = 1113.60kN
石油工程钻井钻柱力学-第五章钻柱一般设计方法与螺弯受力精品PPT课件

式中: PCIN——井深为 DW1处套管的内压力 ,MPa; D D0——上覆岩层压
力剃度,MPa/m; DW-——井深,m; DW1——-计算点井深处的压力
剃度, MPa/m ;GDg——天然气的压力剃度, MPa/m ;
7
二、钻柱设计的一般试验内容(条件)
1、 额定极限试验——如图 1A、B所示。
17
第三步:如果不满足公式(1-7)的任何一项试验要求,初 选壁厚是不使用的。需要用下列步骤进行计算。 (1)、如果所选择的tm是制造厂家壁厚列表中最后的,当 前设计就是失败的。 (2)、如果所哦选择tm不是制造厂家壁厚列表中最后的, 然后,从制造厂家壁厚列表中选择下一个壁厚tm+1。采用第 1-5 步重新进行设计。
2、大位移井钻柱设计方法步骤
设计过程需从井眼底部(端面)向上到井口逐渐(即从底 端的第“Ei”各单元)开始,按上述内容)逐一进行计算,
15
未设计好钻柱单元
节点(I+1)
tm E(I)设计单元
已设计好单元
0.000 1000 TVD 2000 英 3000 尺 4000 5000
井眼轨迹(二维剖面)
14
三、 钻柱的一般设计方法步骤
1、大位移井钻柱设计所需剖面(如图 3)
1)、井身剖面——认为井身剖面是由钻柱是由许多不连续 的节点组成的。
2)、钻柱剖面——是和井身剖面一样的网络形式。即节点 数相同、节点之间有相同的长度。
3)、设计任务——用制造厂家的钻柱管材壁厚表,确定钻 柱剖面上每个单元的近似壁厚。
当增大压缩比。对于高压缩比情况,想通过增大压缩比(13 )来增加延伸长度(L)是无效的。由(9)式可以说明:
把最大压缩比用于钻柱设计上,将会减小钻柱的延伸长度。 2、压缩比()大表示钻柱所受载荷大,相当于强度变差 或薄弱),从作业安全性来件,钻柱的(max)也要受限 制。主要原因在于:严重的螺旋弯曲是容易使钻柱产生其它 形式的破坏(如螺旋麻花状破坏)。因此在进行钻井作业时 ,要求保持低的压缩比。 3、式(9)中的最大压缩比(max)通常需要借助两个系 数加以确定。钻柱的下井深度(H)和作业的安全系数。在 实际应用,max一般限定到 10。
钻柱受力分析及强度校核

1
钻柱的工作状态
一、起下钻
整个钻柱被悬挂起来,在自重力的作 用下,处于拉伸的直线稳定状态
二、正常钻进
在部分自重压力、公转离心力和旋转 扭矩等因素的作用下,钻柱处于弯曲状态。
2
钻柱的受力分析
钻柱承受的基本载荷主要有以下几种:
(1)轴向力和压力: 钻柱在垂直井眼中处于悬挂状态,由于其自身的重量 ,钻柱受到拉伸,最下端的拉力最小(等于 0),最上端 的拉力最大。当井眼内充满钻井液时,钻柱还受到钻井液 对其产生的浮力,而作用在钻柱内外表面的侧向静液压力 ,虽然合力为零,但对钻柱管体形成侧向挤压作用,两种 力综合作用相当于使钻柱的线重减轻。 正常钻进时,部分钻柱的重力加到钻头上作为钻压。 钻压使钻柱的轴向拉力都减小一个相应数值,且下部钻柱 受压缩应力的作用。鲁宾斯基在此提出了中性点的概念
y d p Ks d p Ks 1 t 2 LS 2 LS
2
1 2
12
钻柱的强度校核
三是拉力余量法。考虑钻柱被卡时的上提解卡力,以钻柱 的最大允许静拉力小于最大安全拉伸力的一个合适余量来确保 钻柱不被拉断。
Fa FP MOP
4
钻柱的受力分析
1、钻柱的轴向应力计算 (1) 钻柱在空气中悬空时(图a) 分析:受重力、拉力 任一截面的拉力: ……………………(1) 式中: Fo——空气中任一截面上的拉力,kN; qp、qc——分别为钻杆、钻铤单位长度的重力,kN; Lc、——钻铤长度,m; Lp——截面以下钻杆长度,m;
5
9
钻柱的受力分析
6、纵向振动 n 在中性点处会产生交变的轴向应力; n 当纵向振动的周期和钻柱本身固有的振动周期相同(或成整 数倍时),就会产生共振,称之为“跳钻”。后果是严重的。 7、扭转振动
钻具的受力分析

五、水平井钻具的受力分析水平井钻具的受力分析是一个比较复杂的力学问题,在水平井摩阻与扭矩分析和计算的基础上,我们可以定性的分析在一定井眼条件和一定钻井参数情况下,不同钻具组合对井眼轨迹控制的能力。
钻柱与井壁产生的摩阻和扭矩, 用滑动摩擦理论计算如下:F =μ×NTr =μ×N×R式中:F 一 摩擦力μ 一 摩擦系数N 一 钻柱和井壁间的正压力R 一 钻柱的半径Tr 一 摩擦扭矩从上式可以看出,μ 和 N 是未知数,通过大量现场数据的回归计算求出:μ=0.21(钻柱与套管)μ=0.28~0.3(钻柱与裸眼)同时我们对正压力也进行了分析和计算。
1、 正压力大小的计算(1) 弯曲井眼内钻具重量和井眼曲率引起的正压力N1现有的摩阻和扭矩计算模式是根据"软绳"假设建立起来的,即钻具的刚度相对于井眼曲率可忽略不计.设一弯曲井眼上钻柱单位长度的重量为W,两端的平均井斜角为I,两端的平均方位角为 A 。
如果假定Y轴在垂直平面内,•X轴在侧向平面内,把N1沿X和Y轴分解,则: N1y=T×sin I + W×sin IN1x=T×sin A×sin I(2) 钻柱弯曲产生的弯曲正压力N2钻柱通过弯曲井段时,由于钻柱的刚性和钻柱的弯曲,便产生了一种附加的正压力N2。
如图所示:R = 18000/K/pi (m)L = R×2×ΦΦ = 2×L/RL1 = 2×R×sin Φ (m)根据力学原理:M = E×Im ×K/18000*piM = N2×(L1/2)-T×L1×sin Φ则有:N2 = 2×T×sin Φ +2×E×Im ×K/1719×L1这里:K - 井眼曲率 (°/100米)L - 井段长度 (米)L1 - L的直线长度 (米)IA T SINi w I T N sin sin )sin (1⨯⨯+⨯+⨯=N2 -附加正压力 (KN)E-弹性模量 (KN/m)Im -截面惯性矩 (m^4)2、摩擦系数的确定在设计一口水平井时,我们可以利用邻井摩擦系数来预算摩阻和扭矩。
第5章钻柱

第五章 钻柱第一节 钻柱的工作状态及受力分析一、工作状态起下钻时:钻柱处于悬持状态--受拉伸(自重),直线稳定状态正常钻进:P<P1 直线稳定P1≤P<P2 一次弯曲P2≤P<P3 二次弯曲钻柱旋转→扭矩离心力→下部弯曲半波缩短上部弯曲半波增长(上部受拉)结论:变节距的空间螺旋弯曲曲线形状钻柱在井内可能有4种旋转形式:(P96)a.自转:b.公转:沿井壁滑动。
c.自转和公转的结合:沿井壁滚动。
d.整个钻柱作无规则的摆动:二、钻柱在井下的受力分析(1) 轴向拉应力与压应力拉应力:由钻柱自重产生,井口最大,起钻和卡钻时产生附加拉力。
压应力:由钻压产生,井底最大。
应力分布(P97,图3-2) 轴向力零点:钻柱上即不受拉也不受压的一点。
中和点:该点以下钻柱在液体中的重量等于钻压。
(2) 剪应力(扭矩):旋转钻柱和钻头所需的力,井口最大。
(3) 弯曲应力:钻柱弯曲并自转时产生交变的拉压应力。
井眼弯曲→钻柱弯曲 132(4) 纵向、横向、扭转振动(5) 其他外力:起下钻动载(惯性),井壁磨擦力,钻柱旋转时因离心力引起的弯曲。
综合以上分析:工况不同,应力作用不同,需根据实际工况确定应力状态。
(1) 钻进时钻柱下部:轴向压力、扭矩、弯曲力矩、交变应力;(2) 钻进和起下钻时井口钻柱:拉力、扭力最大+动载(3) 钻压、地层岩性变化引起中和点位移产生交变载荷。
第二节 钻井过程中各种应力的计算一、轴向应力计算(一)上部拉应力计算1、钻柱在泥浆中空悬浮力:αρ⋅⋅⋅⋅=F L g B mα——考虑钻杆接头和加厚影响的重量修正系数,1.05~1.10 钻柱在空气中的重力:αρ⋅⋅⋅⋅=F L g Q s a井口拉力:B Q Q a -=a f Q K Q ⋅=浮力系数:)1(s m f K ρρ-=ρs --钢的密度,7.85 g/cm 3拉应力:FQ t =σ 注意计算井口以下任一截面上的拉力不能直接用浮力系数法计算。
钻具的受力分析

五、水平井钻具的受力分析水平井钻具的受力分析是一个比较复杂的力学问题,在水平井摩阻与扭矩分析和计算的基础上,我们可以定性的分析在一定井眼条件和一定钻井参数情况下,不同钻具组合对井眼轨迹控制的能力。
钻柱与井壁产生的摩阻和扭矩, 用滑动摩擦理论计算如下:F =μ×NTr =μ×N×R式中:F 一 摩擦力μ 一 摩擦系数N 一 钻柱和井壁间的正压力R 一 钻柱的半径Tr 一 摩擦扭矩从上式可以看出,μ 和 N 是未知数,通过大量现场数据的回归计算求出:μ=0.21(钻柱与套管)μ=0.28~0.3(钻柱与裸眼)同时我们对正压力也进行了分析和计算。
1、 正压力大小的计算(1) 弯曲井眼内钻具重量和井眼曲率引起的正压力N1现有的摩阻和扭矩计算模式是根据"软绳"假设建立起来的,即钻具的刚度相对于井眼曲率可忽略不计.设一弯曲井眼上钻柱单位长度的重量为W,两端的平均井斜角为I,两端的平均方位角为 A 。
如果假定Y轴在垂直平面内,•X轴在侧向平面内,把N1沿X和Y轴分解,则: N1y=T×sin I + W×sin IN1x=T×sin A×sin I(2) 钻柱弯曲产生的弯曲正压力N2钻柱通过弯曲井段时,由于钻柱的刚性和钻柱的弯曲,便产生了一种附加的正压力N2。
如图所示:R = 18000/K/pi (m)L = R×2×ΦΦ = 2×L/RL1 = 2×R×sin Φ (m)根据力学原理:M = E×Im ×K/18000*piM = N2×(L1/2)-T×L1×sin Φ则有:N2 = 2×T×sin Φ +2×E×Im ×K/1719×L1这里:K - 井眼曲率 (°/100米)L - 井段长度 (米)L1 - L的直线长度 (米)IA T SINi w I T N sin sin )sin (1⨯⨯+⨯+⨯=N2 -附加正压力 (KN)E-弹性模量 (KN/m)Im -截面惯性矩 (m^4)2、摩擦系数的确定在设计一口水平井时,我们可以利用邻井摩擦系数来预算摩阻和扭矩。
钻井工程常用计算公式

钻井常用计算公式•、地层压力计算1、静液柱压力(MPa)=P(粘井液密度)*0.00981*H(垂深m)2、压力梯度值(MPa)=p(钻井液密度)*0.009813、单位内容积(r∩3Λn>=7.854*10-5*内径2(Cm)4、单位环空容积(m3∕m)=7.854*10^5*(井径2cm-管柱外径2cm)5、容积(m?)=单位内容积(m3∕m)*长度(m)管柱单位排音量(mVm)=7.854*10^5*(外径2cm内径2cm)6、地层压力(MPa)=钻具静液柱压力+关井立压7、压井钻井液密度(g∕c11p>=(关井立压Mpa/O.00981/11(m))+当前井液P(gcm3)8、初始循环压力=关井立压+底泵速泵压9、终止循环压力=(压力井液p/当前井液p)*低泵速泵压10、溢流长度m;钻井液增量m3/环空单位容积m3∕m11、溢流密度p(g∕cm3)=当前井液P-[(套压MPa-立压Mpa)/(溢流长度m*0.00981)]12、当量循环密度p(g/cm3)-(环空循环压力损失Mpa/O.00981/垂深m)+当前井液P13、当量钻井液P(g4zm3)-总压力Mpa/O.00981/垂深m14、孔隙压力MPa=9.81*Wf(地瓜水平均密度g∕cmυ*H(垂高m)15、上覆岩层压力(Mpa)=(岩石基质重量+流体重量)/面积[9.81*[(卜-。
岩石孔隙度%)*pm岩石基颓密度Hem3+4>*p岩石孔隙中流体密度g/cnP]16、地层破裂压力梯度(Mpa)=Pf(破裂地层压力Mpa)/H(破裂地层垂直深度m>Pf(破裂地层压力Mpa)=Ph(液柱压力Mpa)+P(破裂实验时的立管压力MPa)二、喷射钻井计算公式1、射流喷射速度计算相同直径喷嘴VOU1.2.73*Q(通过喷嘴液体排量1.∕S)∕n(喷嘴个数)*dc>2(喷嘴直径Cm)不相同直径喷喷Vo=12.73*Q(通过喷嘴液体排量1.∕S)/de?(喷嘴当量直径Cm)试中:de喷喷当量直径(cm)计算等喷嘴直径de-(根号n喷嘴个数)*d。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
钻柱力学计算
一、不带工具接头的管材在斜井段临界弯曲力的计算:
式中:F c -临界弯曲力;lb ; E -杨氏模量,30 ⨯1000000 psi(钢材); I -管材的惯性矩, in 4;
W m -管材在钻井液中的重量,lb/in ; R -管材与井眼的径向间隙,in ; θ-井斜角,︒;
二、带工具接头的管材在斜井段临界弯曲力的计算:
式中:F c -临界弯曲力;lb ;
W A -管材在空气中的重量,lb/in ; I -管材的惯性矩, in 4;
A S -管材的横截面积,in 2;
M W -钻井液密度,lb/gal ;
D H -井眼直径,in ;
D TJ -工具接头外径,in ;
θ-井斜角,︒;
2
/1sin 2⎥⎦
⎤⎢⎣⎡∙∙∙⨯=R W I E F m c θ()2
/1sin 5.65550⎥⎦⎤⎢⎣⎡-∙-∙⨯=TJ H W A c D D M W I F θ()2216
ID OD A I S +=
三、摩擦扭矩的估算:
钻具在斜直井段的摩擦扭矩:
钻具在水平段的摩擦扭矩:
钻具在90︒的弯曲井段中,如果钻压<0.33W M R 则:
如果钻压>0.33W M R 则:
式中:T -斜井段中的摩擦扭矩,ft-lb; T H -在水平井段中未接触井底旋转时的摩擦扭矩, ft-lb; T O -在90︒弯曲造斜井段造斜时的摩擦扭矩,ft-lb; OD -旋转钻具的接头外径或钻铤外径,in; L -钻具长度,ft;
F -摩擦系数,在估算公式中取0.33; θ-井斜角,︒;
W m -管材在钻井液中的重量,lb/in ; R -总的造斜曲率半径,ft;
WOB -钻压,lb 。
24
sin θ
∙∙∙∙=F L W OD T M 72L
W OD T M H ∙∙=
72R
W OD T M o ∙∙=
()R W WOB OD R W OD T M M D 33.04672-+∙∙=
四、钻具阻力计算:
a. 钻具下入时的阻力估算:
钻具在稳斜段中:
钻具在水平段中:
钻具在90︒弯曲造斜段:
式中:D -斜井段中的摩擦阻力,lb; D H -在水平井段中的摩擦阻力,lb; D B -在90︒弯曲造斜井段的摩擦阻力,lb; W m -钻具在钻井液中的重量,lb/in ; L -钻具长度,ft;
F -摩擦系数,在估算公式中取0.33; θ-井斜角,︒;
R -造斜曲率半径,ft;
WOB -钻压,lb 。
θ
sin ∙∙∙=F L W D M 3
/L W D M H ∙=[]WOB R W e WOB R W D M F M B +∙⨯=⎥⎦
⎤⎢⎣⎡-∙⎥⎦⎤⎢⎣⎡+∙=2/69.0122π
b. 钻具上提时的阻力估算:
钻具在稳斜段中:
钻具在水平段中:
钻具在90︒弯曲造斜段:当F A <2.6 W m RF 或<0.88W m R 时:
当F A >0.88W m R 时:
式中:D -上提阻力,lb;
D H -在水平井段中的上提阻力,lb; D B -在90︒弯曲造斜井段的上提阻力,lb; W m -钻具在钻井液中的重量,lb/in ; L -钻具长度,ft;
F -摩擦系数,
θ-井斜角,︒;
F A -在曲率终点的轴向张力负荷,lb; OD -管材外径,in;
ID -管材内径,in.
θ
sin ∙∙∙=F L W D M 3
/L W D M H ∙=3
/R W D M B ∙=()
R W F R W D M A M B 88.069.03/-+=
五、弯曲钻具的曲率:
或:
式中:B BUL -弯曲管子的曲率,︒/100 ft; F -轴向负荷,lb;
D H -井眼直径,in ;
D TJ -工具接头外径,in ;
R -径向间隙值,
E -杨氏模量,30 ⨯1000000 psi(钢材); I -管材的惯性矩, in 4;
EI
R F B BUL 2100
123.57⨯⨯⨯∙=()
I E D D F B TJ H BUL ∙-∙⨯=
17190;
2/)(TJ H D D R -=。