《三角形的外角》教案
三角形的外角教案

三角形的外角一、教学目标 (一)知识技能:1、了解并掌握三角形外角的概念;2、探索并了解三角形的一个外角等于它不相邻的两个内角的和;3、学会运用简单的说理来计算三角形相关角的度数。
(二)能力目标:通过对三角形角度数的计算,培养学生的推理计算能力。
(三)情感目标:培养学生的逻辑思维能力。
二、教学重点三角形内角和定理的推论:三角形的一个外角等于它不相邻的两个内角的和。
三、教学难点三角形相关角的推理计算。
四、教学过程(一) 创设情境,引入课题想一想 同学们,前面我们学了三角形的内角和是180度,你们知不知道国旗上的五角星的五个角的和是多少度呢?(二)出示学习目标1、了解并掌握三角形外角的概念;2、探索并了解三角形的一个外角等于它不相邻的两个内角的和;3、学会运用简单的说理来计算三角形相关角的度数。
(三)出示自学指导为了使同学们顺利地达到本节课的学习目标,请大家认真看自学指导。
自学指导:1、同学们看书p14内容,了解三角形外角的概念;E2、看书p15“思考”,学会证明三角形内角和定理的推论:“三角形的外角等于与它不相邻的两个内角的和”;3、看书p15例4,学会运用说理来计算三角形相关角的度数,注意例题解题格式。
7分钟后,看谁能正确地做出与例题类似的习题。
(四)学生自学,教师巡视1、学生看书、思考,教师巡视,督促每个学生都认真紧张地自学。
2、检测自学效果:(1)试一试画△ABC ,并画作出它的所有外角.观察△ABC的外角共有几个?(2)计算课本p15练习学生检测:让两位学生上堂板演,其他学生在练习本上做。
教师下去巡视,收集学生出现的问题,进行第二次备课。
(五)更正,讨论,归纳1、自由更正请大家认真看两位同学的板演内容是否正确,找一找有没有错误,比谁能找出错误并更正。
2、讨论、归纳评:检测题3、已知:五角星如图所示.求:∠A+∠B+∠C+∠D+∠E的度数.分析:设法利用外角把这五个角“凑”到一个三角形中,运用三角形内角和定理来求解. AE小结:三角形内角和定理的推论:推论: 三角形的一个外角等于和它不相邻的两个内角的和. 几何语言:△ABC 中: 推论: ∠2=∠A+∠B.(六)当堂训练: 一判断题:1、三角形的外角和是指三角形所有外角的和。
三角形的外角教案

三角形的外角教案一、教学目标1. 理解三角形的外角的概念;2. 掌握计算三角形的外角的方法;3. 掌握应用三角形的外角求解相关问题。
二、教学准备1. 教学用具:黑板、白板、彩色粉笔/马克笔;2. 教学材料:练习题、教学课件。
三、教学过程第一步:导入教师引导学生回顾三角形的定义和基本性质,特别是角的概念和相关性质。
第二步:概念讲解1. 引导学生思考:在三角形中,什么是外角?2. 通过教学课件展示三角形的外角定义:在三角形的一个顶点上,以这个顶点为起点,分别作两条边的延长线,所成的角称为该三角形的外角。
3. 引导学生观察并发现三角形外角与内角的关系:一个三角形的一个外角等于其他两个内角的和。
第三步:计算方法1. 教师给出几个例题,引导学生计算三角形的外角。
例题1:已知三角形ABC,∠A = 55°,∠B = 80°,求∠C的大小。
解答:由三角形内角和为180°可得∠C = 180° - ∠A - ∠B = 45°。
例题2:已知三角形DEF,EF延长线上的一点G使得∠FDE = 120°,∠EDG = 30°,求∠EDF的度数。
解答:由三角形内角和为180°可得∠EDF = ∠FDE + ∠EDG = 120° + 30° = 150°。
第四步:应用实例1. 教师给出一些实际问题,引导学生应用三角形的外角解决问题。
实例1:某座建筑物的顶部观测站与地面的直线距离为500米,观测站的两个观测点A和B与地面的直线距离分别为300米和400米,测得∠A和∠B分别为60°和45°,请计算观测站的高度。
实例2:某直角三角形的一条直角边上的一点P,以P为顶点引两条射线与另外两条边相交,已知其中一个外角为30°,另一个外角为45°,求角P的度数。
第五步:拓展延伸1. 引导学生思考并举例阐述三角形外角的性质:a) 三角形的外角大于内角;b) 一个三角形的三个外角的度数和为360°。
三角形的外角说课稿(甄选3篇)

三角形的外角说课稿(甄选3篇)(经典版)编制人:__________________审核人:__________________审批人:__________________编制单位:__________________编制时间:____年____月____日序言下载提示:该文档是本店铺精心编制而成的,希望大家下载后,能够帮助大家解决实际问题。
文档下载后可定制修改,请根据实际需要进行调整和使用,谢谢!并且,本店铺为大家提供各种类型的经典范文,如计划总结、合同协议、管理制度、演讲致辞、心得体会、条据书信、好词好句、教学资料、作文大全、其他范文等等,想了解不同范文格式和写法,敬请关注!Download tips: This document is carefully compiled by this editor. I hope that after you download it, it can help you solve practical problems. The document can be customized and modified after downloading, please adjust and use it according to actual needs, thank you!Moreover, our store provides various types of classic sample essays for everyone, such as plan summaries, contract agreements, management systems, speeches, insights, evidence letters, good words and sentences, teaching materials, complete essays, and other sample essays. If you want to learn about different sample formats and writing methods, please pay attention!三角形的外角说课稿(甄选3篇)三角形的外角说课稿(1)《三角形的外角和》公开课说课稿一、说教材本节课的内容是新课程七年级数学教材第八章多边形第二节三角形的第三课时——三角形的外角和。
三角形的外角教案

三角形的外角教案一、教学目标1、知识与技能目标理解三角形外角的概念。
掌握三角形外角的性质,并能运用其解决相关问题。
2、过程与方法目标通过观察、操作、推理等活动,培养学生的观察能力、动手能力和逻辑推理能力。
经历探索三角形外角性质的过程,体会从特殊到一般的数学思想方法。
3、情感态度与价值观目标让学生在自主探究和合作交流中,感受数学活动的乐趣,增强学习数学的信心。
培养学生严谨的治学态度和勇于探索的精神。
二、教学重难点1、教学重点三角形外角的概念。
三角形外角的性质及其应用。
2、教学难点三角形外角性质的证明和应用。
三、教学方法讲授法、探究法、练习法相结合。
四、教学过程1、导入新课复习三角形内角和定理:三角形的内角和为 180°。
提出问题:在三角形中,除了内角,还有没有其他的角呢?从而引出三角形外角的概念。
2、讲授新课三角形外角的概念结合图形,讲解三角形外角的定义:三角形的一边与另一边的延长线组成的角,叫做三角形的外角。
让学生指出三角形的外角,并强调外角的特征。
三角形外角的性质提出猜想:三角形的一个外角等于与它不相邻的两个内角的和。
引导学生通过测量、剪拼等方法进行验证。
证明猜想:利用三角形内角和定理进行推理证明。
得出结论:三角形的一个外角等于与它不相邻的两个内角的和;三角形的一个外角大于任何一个与它不相邻的内角。
3、例题讲解出示例题,如:在△ABC 中,∠A = 80°,∠B = 60°,求∠ACD 的度数。
引导学生分析题目,运用三角形外角的性质进行求解。
规范解题步骤,强调解题思路。
4、课堂练习布置一些基础练习题,让学生巩固三角形外角的概念和性质。
巡视学生的练习情况,及时给予指导和纠正。
5、课堂小结回顾三角形外角的概念和性质。
强调三角形外角性质在解题中的应用。
6、布置作业布置书面作业,如课后练习题。
让学生思考:三角形外角和是多少度?五、教学反思在教学过程中,要注重引导学生自主探究和合作交流,让学生在实践中理解和掌握三角形外角的概念和性质。
11.2.2:三角形的外角(教案)

(三)实践活动(用时10分钟)
1.分组讨论:学生们将分成若干小组,每组讨论一个与三角形外角相关的实际问题。
2.实验操作:为了加深理解,我们将进行一个简单的实验操作。这个操作将演示三角形外角随内角变化的原理。
3.成果展示:每个小组将向全班展示他们的讨论成果和实验操作的结果。
(四)学生小组讨论(用时10分钟)
1.讨论主题:学生将围绕“三角形外角在实际生活中的应用”这一主题展开讨论。他们将被鼓励提出自己的观点和想法,并与其他小组成员进行交流。
2.引导与启发:在讨论过程中,我将作为一个引导者,帮助学生发现问题、分析问题并解决问题。我会提出一些开放性的问题来启发他们的思考。
五、教学反思
在今天的教学中,我发现学生们对三角形外角的概念和性质的理解程度参差不齐。在导入新课的时候,通过日常生活中的例子来引发学生的兴趣,这个方法似乎效果不错,大家都很积极地参与到课堂讨论中来。但在讲授理论知识时,我注意到有些学生对外角的定义和性质还是感到有些困惑。
在讲解重点难点时,我尽量通过图示和演示比单纯的语言解释更能帮助学生理解。在实践活动中,分组讨论和实验操作让学生们有了亲身体验,这种互动式学习让学生们更加投入,也更容易理解和记住知识点。
11.2.2:三角形的外角(教案)
一、教学内容
11.2.2:三角形的外角
1.三角形外角的定义及其性质;
2.三角形外角与相邻内角的关系;
3.利用三角形外角性质解决问题;
4.三角形外角的应用案例分析。
二、核心素养目标
1.培养学生空间观念和几何直观能力,通过观察和操作,理解三角形外角的概念及其与内角的关系;
三角形的外角教案

三角形的外角教案一、教学内容:1.了解三角形的外角概念;2.理解三角形外角与内角的关系;3.掌握计算三角形外角的方法;4.运用三角形外角性质解决问题。
二、教学目标:1.知识与技能:透过实际操作和问题解决,让学生了解和掌握三角形外角的概念、性质以及计算方法。
2.过程与方法:采取启发和讨论的方式,引导学生主动探索外角的性质。
3.情感态度与价值观:培养学生热爱数学、勤于思考、乐于合作的态度。
三、教学步骤:步骤一:引入问题1.引导学生回顾和复习三角形内角的概念和计算方法。
2.设计一个问题:已知三角形中两个角的度数分别为60°和80°,请问第三个角的度数是多少?请同学们尝试解决这个问题。
3.让学生围绕这个问题讨论,然后展示解决的方法。
4.引出新的问题:如果我们知道一个三角形的一个内角的度数,那么另外两个内角的度数分别是多少?请大家尝试解决这个问题。
5.让学生思考并交流解决方法,引导出结论:三角形的三个内角的度数之和为180°。
步骤二:引入外角的概念1.继续围绕三角形讨论问题,引导学生进一步思考:如果我们知道一个三角形的两个内角的度数,那么第三个角的度数是多少?2.让学生站起来,并围成一个三角形,让其中的一个学生作为角负责人,把三个角度数加起来看看是多少。
3.让学生们共同讨论交流,引导出结论:一个三角形的三个内角的度数之和为180°,所以第三个角的度数应该是180°减去已知两个内角的度数之和。
4.引导学生进一步思考:我们之前讨论的都是三角形的内角,那么一个三角形还有其他的角吗?步骤三:外角的性质1.通过对三角形的观察和讨论,引导学生发现三角形还有一些角没有被我们讨论到,即三个顶点外面的角。
2.让学生进行观察和总结,引导学生发现并理解:一个三角形的每个内角的补角是一个外角。
3.通过引导学生举例说明,让学生进一步理解“内角补角等于外角”的性质。
步骤四:计算外角的方法1.引导学生发现外角和内角之间的关系后,介绍计算外角的方法:一个三角形的每个外角等于其内角对应的两个外角之和。
三角形的外角_教案 初中八年级上册数学教案教学设计课后反思 人教版

教材、基础训练、校内作业本
教学设计
1.手动操作、练习; 2.讨论、分析。
教学内容
本课重点解决问题(至少一课时重点解决一个问题): 三角形的一个外角等于与它不相邻的两个内角的和; 三角形的一个外角大于与它不相邻的任何一个内角。 本课学生所得(至少一课时有一得): 三角形的一个外角等于与它不相邻的两个内角的和。
三角形的外角
教学目标
1.知识与能力目标: 使学生在操作活动中,探索并了解三角形的外角的两条性质。 2.过程与方法目标: 利用学过的定理论证这些性质。 3.情感态度与价值观目标(含德育目标): 能利用三角形的外角性质解决实际问题。
教学重点
1.三角形的外角的性质; 2.三角形外角和定理。
教学难点
三角形外角的定义及定理的论证过程。
教学准备
1.学生的学习准备:
1/3
作图工具:铅笔、直尺…… 2.教师的教学准备: 作图工具:直尺……
教学过程
一、想一想。 1.三角形的内角和定理是什么?
二、做一做。 把△ABC 的一边 AB 延长到 D,得∠ACD,它不是三角形的内角,
那它是三角形的什么角?
它是三角形的外角。 定义:三角形一边与另一边的延长线组成的角,叫做三角形的 外角。 想一想:三角形的外角有几个? 每个顶点处有两个外角,但这两个是对顶角。 三、议一议。 ∠ACD 与△ABC 的内角有什么关系? 再画三角形 ABC 的外角试一试,还会得到这个性质吗? 同学用几何语言叙述这个性质: 三角形的一个外角等于与它不相邻的两个内角的和; 三角形的一个外角大于与它不相邻的任何一个内角。 你能用学过的定理说明这些定理的成立吗? 已知:∠ACD 是△ABC 的外角 说明: (1)∠ACD=∠A+∠B (2)∠ACD>∠A, ∠ACD>∠B 结合下面图形给予说明
2022人教版数学《三角形的外角》配套教案(精选)

三角形的外角【知识与技能】1.掌握三角形的外角的定义.2.掌握三角形的外角的三个重要定理.【过程与方法】先通过画图学习三角形外角的定义,再用上一节学过的证明技术证明“三角形的一个外角等于与它不相邻的两个内角的和”,再由上面的结论直接推出:三角形的一个外角大于与它不相邻的任何一个内角.通过对教材例2的学习,引导学生得出一个重要定理:三角形外角的和等于360°.【情感态度】经历由已知定理推出新定理的过程使学生了解“推陈出新”的辩证唯物主义世界观.【教学重点】三角形的外角定义及性质.【教学难点】利用三角形的外角性质解决有关问题.一、情境导入,初步认识问题1 画一个三角形,延长三角形的一边,就得到三角形的一个外角,请根据图形探究三角形的外角的定义.问题 2 任意一个三角形的一个外角与它不相邻的两个内角有怎样的关系?你能发现并证明吗?问题3 如图,∠BAE,∠CBF,∠ACD是△ABC的三个外角,它们的和是多少?【教学说明】学生分组讨论,然后交流成果,对问题2要求学生写出已知、求证,再写出证明过程.这里要重点指导,必要时板书示范.教师讲课前,先让学生完成“自主预习”.二、思考探究,获取新知思考 1.一个三角形有几个外角?2.三角形的外角有哪些性质.【归纳结论】1.定义:三角形的外角:三角形的一边与另一边的延长线组成的角叫做三角形的外角.2.一个三角形的每一个顶点处有两个外角,它们是对顶角.为了方便,在每一个顶点处只取一个外角,所以一个三角形共有三个外角.(1)三角形的一个外角等于与它不相邻的两个内角的和;(2)三角形的一个外角大于与它不相邻的任何一个内角;(注意:这里的不相邻三个字特别重要,不可缺少).(3)三角形的外角和等于360°.三、运用新知,深化理解1.下列四个图形中,能判断∠1>∠2的是()2.如图,∠AOB的两边OA,OB均为平面反光镜,∠AOB=35°,在OB上有一点E,从E点射出一束光线经OA上的点D反射后,反射光线DC恰好与OB平行,则∠DEB的度数是()A.35°B.70°C.110°D.120°3.如图,∠1,∠2,∠3是△ABC的三个外角,∠1∶∠2∶∠3=2∶3∶4,求∠1,∠2,∠3的度数.4.五角星ABCDE中,∠A+∠B+∠C+∠D+∠E等于多少度.5.如图,证明∠1>∠A.6.如图,直线AC∥BD,连接AB,直线AC,BD及线段AB把平面分成①、②、③、④四个部分,规定:线上各点不属于任何部分,当动点P落在某个部分时,连接PA,PB,构成∠PAC,∠APB,∠PBD三个角.(提示:有公共端点的两条重合的射线所组成的角是0°角)(1)当动点P落在第①部分时,求证:∠APB=∠PAC+∠PBD.(2)当动点P落在第②部分时,∠APB=∠PAC+PBD是否成立?(直接回答成立或不成立)(3)当动点P在第③部分时,全面探究∠PAC,∠APB,∠PBD之间的关系,并写出动点P的具体位置和相应的结论.选择其中一种结论加以证明.【教学说明】教师根据实际情况选取讲解.【答案】1~5略.6.解:(1)解法一:如图(甲),延长BP交直线AC于点E.∵AC∥BD,∴∠PEA=∠PBD,∵∠APB=∠PAE+∠PEA,∴∠APB=∠PAC+∠PBD.解法二:如图(乙),过点P作FP∥AC,∴∠PAC=∠APF.∵AC∥BD,∴FP∥BD.∴∠FPB=∠PBD.∴∠APB=∠APF+∠FPB=∠PAC+∠PBD.解法三:如图(丙),∵AC∥BD,∴∠CAB+∠ABD=180°.即∠PAC+∠PAB+∠PBA+∠PBD=180°.又∠APB+∠PBA+∠PAB=180°,∴∠APB=∠PAC+∠PBD.(2)不成立.(3)(a)当动点P在射线BA的右侧时,结论是∠PBD=∠PAC+∠APB.(b)当动点P在射线BA上时,结论是∠PBD=∠PAC+∠APB.或∠PAC=∠PBD+∠APB或∠APB=0°,∠PAC=∠PBD(任写一个即可).(c)当动点P在射线BA的左侧时,结论是∠PAC=∠APB+∠PBD.选择(a)证明:如图(丁),连接PA,连接PB交于AC于M.∵AC∥BD,∴∠PMC=∠PBD.又∵∠PMC=∠PAM+∠APM,∴∠PBD=∠PAC+∠APB.选择(b)证明:如图(戊),∵点P在射线BA上,∴∠APB=0°.∵AC∥BD,∴∠PBD=∠PAC.∴∠PBD=∠PAC+∠APB或∠PAC=∠PBD+∠APB或∠APB=0°,∠PAC=∠PBD.选择(c)证明:如图(巳),连接PA,连接PB交AC于F∵AC∥BD,∴∠PFA=∠PBD.∵∠PAC=∠APF+∠PFA,∴∠PAC=∠APB+∠PBD.四、师生互动,课堂小结1.三角形的外角等于和它不相邻两内角的和.2.三角形的外角大于任何一个和它不相邻的内角.1.布置作业:从教材“习题”中选取.2.完成练习册中本课时的练习.本课时教学应突出学生主体性原则,即通过探究学习,指引学生独立思考,自主得到结果,再让学生相互交流,或上台展示自己的发现,或表述个人的体验,从中获取成功的体验后,激发学生探究的激情.第3课时 二次函数y =a (x -h )2+k 的图象和性质1.会用描点法画出y =a (x -h )2+k 的图象.2.掌握形如y =a (x -h )2+k 的二次函数图象的性质,并会应用.3.理解二次函数y =a (x -h )2+k 与y =ax 2之间的联系.一、情境导入对于二次函数y =(x -1)2+2的图象,你能说出它的顶点坐标、对称轴和开口方向吗?你能再说出一个和这个函数图象的顶点坐标、对称轴和开口方向一致的二次函数吗?二、合作探究探究点一:二次函数y =a (x -h )2+k 的图象和性质【类型一】二次函数y =a (x -h )2+k 的图象求二次函数y =x 2-2x -1的顶点坐标、对称轴及其最值.解析:把二次函数y =x 2-2x -1化为y =a (x -h )2+k (a ≠0)的形式,就会很快求出二次函数y =x 2-2x -1的顶点坐标及对称轴.解:y =x 2-2x -1=x 2-2x +1-2=(x -1)2-2,∴顶点坐标为(1,-2),对称轴是直线xx =1时,y 最小值=-2.方法总结:把二次函数y =ax 2+bx +c (a ≠0)化成y =a (x -h )2+k (a ≠0)形式常用的方法是配方法和公式法.【类型二】二次函数y =a (x -h )2+k 的性质如图是二次函数y =ax 2+bx +c (a ≠0)图象的一部分,x =-1是对称轴,有下列判断:①b -2a =0;②4a -2b +c <0;③a -b +c =-9a ;④若(-3,y 1),(32,y 2)是抛物线上两点,则y 1>y 2.其中正确的是( )A .①②③B .①③④C .①②④D .②③④解析:∵-b2a =-1,∴b =2a ,即b -2a =0,∴①正确;∵当x =-2时点在x 轴的上方,即4a -2b +c >0,②不正确;∵4a +2b +c =0,∴c =-4a -2b ,∵b =2a ,∴a -b +c =a -b -4a -2b =-3a -3b =-9a ,∴③正确;∵抛物线是轴对称图形,点(-3,y 1)到对称轴x =-1的距离小于点(32,y 2)到对称轴的距离,即y 1>y 2,∴④正确.综上所述,选B.方法总结:抛物线在直角坐标系中的位置,由a 、b 、c 的符号确定:抛物线开口方向决定了a 的符号,当开口向上时,a >0,当开口向下时,a <0;抛物线的对称轴是x =-b2a ;当x =2时,二次函数的函数值为y =4a +2b +c ;函数的图象在x 轴上方时,y >0,函数的图象在x 轴下方时,y <0.【类型三】利用平移确定y =a (x -h )2+k 的解析式将抛物线y =13x 2向右平移2个单位,再向下平移1个单位,所得的抛物线是( )A .y =13(x -2)2-1B .y =13(x -2)2+1C .y =13(x +2)2+1D .y =13(x +2)2-1解析:由“上加下减”的平移规律可知,将抛物线y =13x 2向下平移1个单位所得抛物线的解析式为:y =13x 2-1;由“左加右减”的平移规律可知,将抛物线y =13x 2-1向右平移2个单位所得抛物线的解析式为y =13(x -2)2-1,故选A.探究点二:二次函数y =a (x -h )2+k 的应用【类型一】y =a (x -h )2+k 的图象与几何图形的综合如图,在平面直角坐标系中,点A 在第二象限,以A 为顶点的抛物线经过原点,与x 轴负半轴交于点B ,对称轴为直线x =-2,点C 在抛物线上,且位于点A 、B 之间(C 不与A 、B 重合).若△ABC 的周长为a ,则四边形AOBC 的周长为________.(用含a 的式子表示)解析:如图,∵对称轴为直线x =-2,抛物线经过原点,与x 轴负半轴交于点B ,∴OB =4,∵由抛物线的对称性知AB =AO ,∴四边形AOBC 的周长为AO +AC +BC +OB =△ABC 的周长+OB=a+4.故答案是:a+4.方法总结:二次函数的图象关于对称轴对称,本题利用抛物线的这一性质,将四边形的周长转化到已知的线段上去,在这里注意转化思想的应用.【类型二】二次函数y=a(x-h)2+k的实际应用心理学家发现,学生对概念的接受能力y与提出概念所用的时间x(分钟)之间满足函数y=-110(x-13)2+59.9(0≤x≤30),y值越大,表示接受能力越强.(1)x在什么范围内,学生的接受能力逐步增强?x在什么范围内,学生的接受能力逐步降低?(2)第10分钟时,学生的接受能力是多少?(3)第几分钟时,学生的接受能力最强?解:(1)0≤x≤13时,学生的接受能力逐步增强;13≤x≤30时,学生的接受能力逐步降低.(2)当x=10时,y=-110(10-13)2+59.9=59.故第10分钟时,学生的接受能力是59.(3)当x=13时,y值最大,,故第13分钟时,学生的接受能力最强.三、板书设计教学过程中,强调学生自主探索和合作交流,在操作中探究二次函数y=a(x-h)2+k的图象与性质,体会数学建模的数形结合思想方法.第1课时单项式与单项式、多项式相乘一、新课导入1.导入课题:有一块长方形的大型画布,它的长为5×103cm,宽为3×102cm,你能计算出它的面积吗?画布的面积是(5×103)×(3×102)cm2,你能计算出它的结果是多少吗?2.学习目标:(1)能叙述出单项式乘以单项式,单项式乘以多项式的运算法则.(2)灵活地运用法则进行计算和化简.3.学习重、难点:重点:单项式乘单项式及单项式乘以多项式的运算法则及应用.难点:单项式乘单项式及单项式乘以多项式的运算法则的应用.二、分层学习1.自学指导:(1)自学内容:探究单项式乘以单项式的运算法则.(2)自学时间:5分钟.(3)自学方法:采用“计算、观察、比较、归纳”的学习方法获取结论.(4)自学参考提纲:①怎样计算(5×103)×(3×102)?计算过程中用到哪些运算律及运算性质?(5×103)×(3×102)=5×3×103×102运用了乘法交换律.=(5×3)×(103×102)运用了乘法结合律.=15×105=1.5×106.运用了乘法的运算.②如果将上式中不是指数的数字改为字母,能得到怎样的算式,写出试试看.计算ac5·bc2=ab·c7; 3a2b·2ab3=6a3b4.③通过刚才的尝试,能归纳出单项式与单项式相乘的运算法则吗?④完成教材第99页“练习”第2题.2.自学:学生结合自学参考提纲进行自主探究.3.助学:(1)师助生:①明了学情:抽查不同层次的学生,了解学生完成探究的过程和结果是否正确.②差异指导:引导学困生复习回顾幂的乘方、同底数幂的乘法,积的乘方法则及运算律.(2)生助生:学生之间相互交流帮助解决疑难问题.4.强化:(1)单项式与单项式相乘的法则.(2)计算:(1)2c5·5c2;(2)(-5a2b3)·(-4b2c).解:(1)10c7;(2)20a2b5c1.自学指导:(1)自学内容:教材第98页例4.(2)自学时间:5分钟.(3)自学方法:认真观察例4解题的过程,注意符号变化和运算顺序.(4)自学参考提纲:①请你回忆同底数幂的乘法、幂的乘方、积的乘方的法则.②计算(2x)3·(-5xy2)时,先算(2x)3,再与(-5xy2)相乘.为什么?因为有理数的混合运算法则为:①先算乘方,再乘除,最后加减;②同级运算,从左到右进行;③如有括号按小括号、中括号、大括号依次进行.③计算:3x2·5x3=15x5;2ab·5ab2·3a2b=30a4b4;4y·(-2xy2)=-8xy3;(a3b)2·(a2b)3=a12b5.2.自学:结合自学指导,研读课本例题.3.助学:(1)师助生:①明了学情:抽查不同层次学生的计算情况,了解存在的主要问题.②差异指导:对理解运算顺序的确定有困难的学生进行指导.(2)生助生:学生之间相互交流帮助.4.强化:交流与总结:①运算顺序;②运算符号.1.自学指导:(1)自学内容教材第99页到教材第100页例5上面.(2)自学时间:5分钟.(3)自学方法:认真看书,重要的内容打上记号,有疑问的地方做上记号.(4)自学参考提纲:①等式p(a+b+c)=pa+pb+pc,是根据矩形的面积关系得出来的,你能根据分配律得到这个等式吗?②等式p(a+b+c)=pa+pb+pc提供了单项式与多项式相乘的方法,你是如何理解的?③单项式乘以多项式应用了乘法的什么运算律?乘法分配律.④试标出单项式乘以多项式的运算法则中的关键字词.⑤试一试:-2x(x+y)=-2x2-2xy;3ab(a+b)=3a2b+3ab2;-(m-n+2)=-m+n-2.2.自学:学生结合自学指导进行自学.3.助学:(1)师助生:①明了学情:教师采取交谈、抽查方式了解自学进度及存在的问题.②差异指导:强调法则要点:“乘多项式的每一项”,“把所得的积相加”,并注意符号法则.(2)生助生:生生互相交流帮助解决疑难.4.强化:(1)运算法则:①文字表达:单项式与多项式相乘,就是用单项式去乘多项式的每一项,再把所得的积相加.②式子表达:p(a+b+c)=pa+pb+pc.(2)单项式乘以多项式中的每一项,不要漏掉任何一项,并要注意符号的确定,合并同类项之前的项数与多项式的项数相同.(3)计算:(-2a2)·(3ab2-5ab3).=-6a3b2+10a3b31.自学指导:(1)自学内容:教材第100页例5.(2)自学时间:5分钟.(3)自学方法:认真观察例5的计算过程的依据,要注意去括号后的符号变化.(4)自学参考提纲:①标出例5题目中的单项式和多项式.②通过例5尝试归纳单项式乘多项式的计算步骤.③单项式乘以多项式的运算法则,就是把单项式乘以多项式的问题转化为单项式乘以单项式的问题.④思考:结合例5,你能说说当式子中含有负号时的简化方法吗?2.自学:结合自学参考提纲进行自学.3.助学:(1)师助生:①明了学情:了解学生是否领会单项式乘多项式的方法和依据.②差异指导:重点对第(1)、(2)小题符号问题进行指导.(2)生助生:学生之间互助交流解决疑难.4.强化:(1)将单项式乘以多项式转化为单项式乘以单项式的乘法,将新知识转化为已学过的知识.(2)计算:①(-2a)·(2a+1) ②2x2(3x2-5y) ③3a(5a-2b)=-4a2-2a =6x4-10x2y =15a2-6ab(3)根据提示填空:计算:(12ab2-13a2b-6ab)·(-6ab)方法一:原式=12ab2·(-6ab)+(-13a2b)·(-6ab)+(-6ab)·(-6ab)=-3a2b3+2a3b2+36a2b2方法二:原式=12ab2·(-6ab)-13a2b·(-6ab)-6ab·(-6ab).=-3a2b3+2a3b2+36a2b2三、评价1.学生的自我评价:各小组组长汇报本组的学习情况,总结经验、收获和不足.2.教师对学生的评价:(1)表现性评价:对学生在学习中的态度、方法、收效及不足进行点评.(2)纸笔评价:课堂评价检测.3.教师的自我评价(教学反思):本课时教学应由学生根据已有知识(如乘法分配律法则等)自主推导出单项式与单项式、单项式与多项式相乘的法则,充分体现学生课堂上的主体作用,再结合具体问题的解答,由学生间互相交流,体会法则计算的本质,以便灵活应用于解题之中.一、基础巩固(第1题25分,第2题20分,第3题15分,共60分)1.细心填一填.(1)(-2a2b3)(-3ab)=6a3b4;(2)(4×105)·(5×104)=2×1010;(3)(-2ab2)2·(-a2b)3=-4a8b7;(4)(x2-2y)·(-xy)=-x3y+2xy2;(5)(-a2)·(ab+abc)=-a3b-a3bc.2.认真选一选.(1)化简x(2x-1)-x2(2-x)的结果是(B)A.-x3-x 3-x C.-x2-1 3-1(2)化简a(b-c)-b(c-a)+c(a-b)的结果是(B)A.2ab+2bc+2acB.2ab-2bc D.-2bc(3)如图是L形钢条截面,它的面积为(B)A.ac+bcB.ac+(b-c)cC.(a-c)c+(b-c)cD.a+b+2c+(a-c)+(b-c) (4)下列各式中计算错误的是(C)A.2x·(2x3+3x-1)=4x4+6x2-2xB.b(b2-b+1)=b3-b2+bC.-12x(2x2-2)=-x3-xD.23x(32x3-3x+1)=x4-2x2+23x3.计算:(3x2+12y-23y2)·(-12xy)3解:原式=(3x2+12y-23y2)·(-18x3y3)=-38x5y3-116x3y4+112x3y5.二、综合应用(每题10分,共20分)4.某地有一块梯形实验田,它的上底为m (m),下底为n (m),高是h (m).(1)用m、n、h表示这块梯形的面积S;(2)当m=8m,n=14m,h=7m时,求S.解:(1)S=12(m+n)h(2)S=12×(8+14)×7=77(m2)5.某商家为了给新产品做宣传,向全社会征集广告用语及商标图案,结果下图商标中标,求此商标图案阴影部分的面积.解:S阴影=14πa2+2a·a-12·3a·a=1 4πa2+12a2三、拓展延伸(每题10分,共20分)6.已知:单项式M、N满足2x(M+3x)=6x2y2+N,求M、N. 解:2x(M+3x)=6x2y2+N,2x·M+6x2=6x2y2+N∴N=6x22x·M=6x2y2M=3xy27.若(a m+1b n+2)·(a2n-1b2m)=a5b3,求m+n的值.解:(a m+1b n+2)(a2n-1b2m)=a5b3a m+2n b2m+n+2=a5b3m+2n=52m+n=3-2∴3m+3n=6∴m+n=2.。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
三角形的外角》教案
一、教学目标:
1、知识与技能:了解三角形的外角概念和三角形外角的性质,初步学会数学说理。
2、数学思考:能剪剪拼拼,动手操作,探索发现有关结论。
3、解决问题:通过小组学习等活动经历得出三角形的外角概念和三角形的外角性质。
学会运用简单的说理来计算三角形相关的角。
4、情感与态度目标:通过观察和动手操作,体会探索过程,学会推理的数学思想方法,培养主动探索、勇于发现,敢于实践及合作交流的习惯。
二、教学重点与难点:重点:三角形的外角及其性质难点:运用三
角形外角性质进行有关计算时能准确地表
达推理的过程和方法。
三、教材分析:
教材由学生已经熟悉的三角形的内角和定理引入,然后探索三角形外角的性质。
在呈现方式上改变了以往“结论一例题一练习”的陈述模式,而是采用“问题一探究一发现” 的研究模式,并采用了拼图和数学说理两种方法,一方面,让学生通过剪剪拼拼,动手操作,探索发现有关结论,另一方面又加以简单的数学说理,使学生初步体会,要得到一个数学结
论,可以采用观察实验的方法,还可以采用数学推导说理的方法,观察实验只能给我们带来一个直观形象的数学结论,而推导说理才能使我们确信这一数学结论是否正确,当然对于这一点的认识还有待于以后学习。
四、学校与学生情况分析:
保亭县第二中学位于保亭县城内,是一所普通中学,历届学生都由重点中学录取后,剩余的成绩低下的学生就由我们学校录取,因此,大部分学生的基础比较差,缺乏自学能力,不过,上个学期在新的教学理念的指导下,重视学生学习兴趣和态度的培养、重视学生的自主探索和合作交流以及新意识的培养。
另外,七年级学生都有好胜、好强的特点,现在班级中,已有一部分学生初步形成了动手操作、自主探索和合作交流的良好气氛。
五、教学准备:
学生:三角尺、铅画纸、小剪刀
教师:多媒体
六、教学过程设计
问题与情境
师生行为
设计意图
[ 活动1]
问题:上节课我们是用什么方法来说明三角形内角和等
于180 °的?
你能动手给大家演示一下吗?学生思考并回答问题。
教师把学生的拼合方法放在投影仪上,让全班学生观察本次活动中,教师应重点关注:
1、学生能否积极参与活动。
2、学生在小组活动的合作与交流意识引导学生回忆用度量和拼合的方法可以得出三角形内角和定理的结论,激发学生的学习兴趣,调动他们的学习积极性,同时为下一环节做准备。
此活动鼓励学生找到多种拼合方法。
问题与情境
师生行为
设计意图
[ 活动2]
问题1:图中那个角是三角形的外角?(多媒体显示图形)
问题2:三角形的外角有什么特点?根据这些特点,谁能说说什么叫做三角形的外角?
学生观察图形找出三角形的外角引出本节课题。
学生仔细观察图形和学生间交流,师生共同得出:1、三角形外角
的特点:①顶点在三角形的一个顶点上。
②一条边是三角形的一条边。
③另一条边是三角形的某条边的延长线2、三角形的外角的概
念:本次活动中,教师应重点关注:1、学生能否主动参与数学学
习活动。
2、学生是否敢于发表个人观点。
培养学生仔细观察能力,和语言
表达能力。
问题与情境
师生行为
设计意图
[ 活动3]
问题1:如图,△ ABC中,/ A=70°,/ B=60°/ ACD 是厶ABC 的一个外角,能由/ A、/ B求出/ ACD吗?如果能, / ACD与/ A、/ B有什么关系?
问题2:任意一个厶ABC的一个外角/ ACD与/ A、/ B 的大小会有什么关系呢?
学生先独立思考每个问题再分组讨论、交流。
并解决问题。
教师深入小组参与活动,及时了解学生情况,同时引导学生说出推理过程:
因为/ ACB+/ ACD=180° / ACB+/ A+/ B=180° 比较两个式
子可得/ ACD=/ A+/ B 师生共同归纳三角形外角的性质。
本次活动中,教师应重点关注:
①学生能否在小组活动中与他人交流思考过程。
②学生能否积极地参加小组探究活动。
③学生能否采用不同方法解
决问题。
培养学生仔细观察的能力,并进行大胆猜想,再操作确认,培养学生勤于动手,乐于探究的良好习惯。
在交流与合作的过程中,感受合作的重要性。
教师引导学生说出推理过程,让学生体验证明的必要性,初步学会说理。
[ 活动4] 问题:你能运用三角形的外角性质解决问题吗?1、教科书81 页练习
2、教科书82 页第5 题
3、教科书83 页第9 题学生独立思考解决问题,教师总结结论。
本次活动中,教师应重点关注:①学生能否运用三角形外角性质解决问题。
②学生能否有条理地表达自己的思考过程。
了解学习效果,让学生经历运用知识解决问题的过程,给学生以获得成功体验的空间,激发学习的积极性,建立学好数学的自信心。
问题与情境
师生行为
设计意图
[ 活动5]
1、小结:
通过本节课学习,你有什么收获?
2、布置作业:
①教科书82 页第6、8 题学生反思和解决问题的过程教师对学生的进步给予肯定,树立学生学好数学的自信心。
本次活动中,教师应重点关注:
①学生能否正确地分析问题和解决问题。
②学生能否用文字、字母符号等清楚的表达解决问题的过程。
③不同层次学生对本节知识的掌握情况。
学会总结反思,初步学会
自我评价学习效果。
教师及时了解学生对本节知识的掌握情况,对教学进度
和教学方法进行适当调整,并对有困难的学生给予适时的指。