--根轨迹绘制的基本法则

合集下载

第四章 线性系统的根轨迹法-4-2——【南航 自动控制原理】

第四章 线性系统的根轨迹法-4-2——【南航 自动控制原理】

根轨迹起于开环极点,终于开环零点。
由根轨迹方程,有
m
n
K (s zi )+ (s pi )=0
i 1
i 1
根轨迹起点 K =0 s pi , i 1, , n n个开环有限极点
由根轨迹方程,又有
m
n
(s zi )+(K )1 (s pi )=0
i 1
i 1
根轨迹终点 K s zi , i 1, , m m个开环有限零点
a
(2k 1)
nm
, k 0, 1,
ቤተ መጻሕፍቲ ባይዱ
a
=
(a1 n
b1 m
)
由多项式的根与系数关系
n
n
a1 pi b1 zi
i 1
i 1
n
m
pi z j
a
i 1
j 1
nm
例4.2-1 已知单位反馈系统的开环传递函数为
K G(s)
s(s 3) (s )2 2
0, 0
试分析开环极点参数变化时渐近线。
1
n
1
j1 d z j i1 d pi
分离点处相邻两条根 轨分迹离分点支处切一线共之有间多的少
夹条角根等轨于迹分支/?l
分离点处根轨迹的分离角d 为
d (2k 1) / l k 0,1,
分离点处,根轨迹进
侧的开环实有限零极点数为奇数。
系统的开环零极点分为 两类:实数零极点和复数 零极点,且复数零点或复 数极点必共轭成对。
系统开环零极点的分布为
图示,取实轴任一点 s=s1
·对复共轭开环极点
p4 j, p5 p4 j,
(s1 j)+(s1 +j)=2

自动控制第五章根轨迹法资料

自动控制第五章根轨迹法资料

8
绘制根轨迹的基本条件
根轨迹的幅值条件:
n
s pj
j 1
负反馈根轨迹的相角条件:
m
n
(s z j ) (s pi ) (2q 1)
j 1
i 1
满足此式的根轨迹,称为1800根轨迹;
正反馈根轨迹的相角条件:
m
n
(s z j ) (s pi ) (2q)
j 1
i 1
满足此式的根轨迹,称为00根轨迹;
9
绘制根轨迹的基本条件
n
s pi
i 1 m
K1
s zj
j 1
m
n
(s z j ) (s pi ) (2q 1)
j 1
i 1
➢ 根轨迹的幅值条件不仅取决于系统开环零极点的分 布,同时还取决于开环根轨迹的增益K1。
➢ 根轨迹的相角条件仅仅取决于系统开环零极点的分 布,与开环根轨迹的增益K1无关。
2
第一章根轨迹的基本概念
根轨迹的概念的提出 反馈控制系统的性质取决于闭环传函。只要求解
出闭环系统的根,系统的响应就迎刃而解。但是对于 3阶以上的系统求根比较困难。如果系统中有一个可 变参数时,求根更困难了。
1948年,伊凡思提出了一种确定系统闭环特征根 的图解法——根轨迹法。在已知开环零极点分布的基 础上,当某些参数变化时确定闭环极点的一种简单的 图解方法。
12
第二节 绘制根轨迹的基本规则
当K1 时,① s z j ( j 1 ~ m) ,上式成立。 z j 是开环传递
函数有限值的零点,有m个。故n阶系统有m支根轨迹的终点在
利用这一方法可以分析系统的性能,确定系统应 有的结构和参数。
3
第一节 根轨迹的基本概念

根轨迹的绘制法则

根轨迹的绘制法则
注意:分离点、会合点一定在实轴上



a

6、 根轨迹的渐近线 ——有独立的(n-m)条
渐近线包括 ⑴ 渐近线的倾角 设在无穷远处有特征根sk ,则s平面上所有开环有限零点 渐近线的倾角 渐近线的交点 两方面内容
-zi和极点-pj到sk的矢量辐角都相等,即:i=j=
代入幅角条件,得:
本 节 返 回
根轨迹的绘制法则
绘制根轨迹的一般法则
本 章 返 回
根轨迹的绘制法则
绘制根轨迹的一般法则
绘制根轨迹应确定以下几个方面的内容: (9项) 起点、终点、根轨迹数、实轴上的根轨迹、
分离点和汇合定、根轨迹的渐近线、根轨迹的出射
本 节 返 回
角和入射角、根轨迹和虚轴的交点、根轨迹的走向。 注意:实际绘制根轨迹时应根据具体情 况有选择性地考虑以上9项内容。
本 节 返 回
本 章 返 回
4.2 根轨迹的绘制方法
5、分离点与会合点
D' (s) N(s) N' (s)D(s) 0
注意:
求出s=-d后,应把它代入特征方程计算Kd, 只有Kd为正值, s=-d才是分离点或会合点。 6、根轨迹的渐近线
本 节 返 回
180 (1 2 ) 渐近线的倾角: nm
本 节 返 回
N (s) D(s)

j 1 i 1 n
m
( s zi )
sm sn

i 1 n j 1
m
zi s m 1
z
i 1 n j 1
m
i
本 章 返 回
(s p j )

p j s n 1
p

自动控制原理根轨迹法

自动控制原理根轨迹法

21
二、根轨迹绘制的基本法则(4)
法则2
根轨迹的分支数和对称性 根轨迹的分支数与开环极点数n相等(n>m),或与开
环有限零点数m相等(n<m)。 根轨迹连续:根轨迹增益是连续变化导致特征根也连
续变化。 实轴对称:特征方程的系数为实数,特征根必为实数
或共轭复数。
22
二、根轨迹绘制的基本法则(5)
法则3
s(s 2.5)( s 0.5 j1.5)( s 0.5 j1.5)
试绘制该系统概略根轨迹。
解:将开环零、极点画在后面图中。按如下典型步骤
1)确定实轴上的根轨迹。本例实轴上区域

为轨迹。
0,-1.5
2)确定-根2.轨5,迹-的渐 近线。本例n=4,m=3,故只有
一条 的渐近线。 180
36
K均* 有关。
15
一、 根轨迹法的基本概念(13)
4 -1- 4 根轨迹方程
1、系统闭环特征方程
由闭环传函可得系统闭环特征方程为:
(s)
G(s)
1 G(s)H(s)
1 G(s)H (s) 0
2 、根轨迹方程
当系统有m个开环零点和n个开环极点时,下式称为
根轨迹方程
m
(s z j )
K * j1 n
i 1
j 1
n
n
n
(s si ) sn ( si )sn1 ... (si ) 0
i 1
i 1
i 1
式中,s i 为闭环特征根。
31
二、根轨迹绘制的基本法则(14)
当n m 2 时,特征方程第二项系数与K * 无关,无
论 K * 取何值,开环n个极点之和总是等于闭环特征方程n

4-2根轨迹绘制的基本法则

4-2根轨迹绘制的基本法则

0
0
0
0
0
同学们,头昏了吧?
j
j
j
0
j j 0 0
14
0
2015-1-28
4-2根轨迹绘制的基本法则
作业
• • • • 4 -1 4-3(1)(2) 4—4(1) 4-8(1)
2015-1-28
4-2根轨迹绘制的基本法则
15
4 3 2 * s 5 s 8 s 6 s k 0 2)渐近线。由于n m 4 ,故有四条渐近线, a 1.25 a 45 , 135 应用劳思判据
3)确定分离点。
1 0 i 1 d pi
n
s4 1 s3 5 s 2 34 / 5 s1 (204 25 K * ) / 34 s0 K*
R( s )
K * ( s 1) s( s 2)( s 3)
C ( s)
j
a (2k 1)180o / (3 1) 90o
a (0 2 3) (1) / (3 1) 2
(4)分离点(用试探法求解)
1 1 1 1 d 1 d d 2 d 3 d 2.47
5)利用模值条件,可得分离点的根轨迹增益
2 4 . 75 7 . 25 K d* i 1 16.37 |d z| 15 .25 i
| d p |
3
所以,当
2015-1-28
K * 16.37
系统输出产生振荡
4-2根轨迹绘制的基本法则 13
根轨迹示例
j
j j 0
j
j j
4-2根轨迹绘制的基本法则
12
例子4-5 P150
解:1) m=1,n=3, K * (s 20) G( s) z1=-20,p1=0,p2=p3=-12, 2 s ( s 24 s 144 ) 2)实轴上0--12 ,-12--20 必为根轨迹。 3)渐近线。n-m=2 故有2条渐近线. 180 12 12 (20) 90 2 2 2 1 2 1 4)确定分离点。 d d 12 d 20 试探法:d=-4.75

180根轨迹绘制法则

180根轨迹绘制法则
s(s 2.5)(s 0.5 1.5 j)(s 0.5 1.5 j)
解:将开环零极点标注在s平面上。
j
由法则1,确定根轨迹起点和终点。
由法则2,确定有4条根轨迹分支。
由法则4,确定实轴上的根轨迹 [-∞,-2.5]、[-1.5,0] 。
由法则3,确定根轨迹有1条渐近线
-3 -2 -1 0
K1 K1 0
K1 0
m
1
n

1
j1 d z j i1 d pi
K1
分分离点离点
分离角: (2k 1) / l
K1
K1 0
K1
会合? 点? ?
K1 0
式中,zi , pj 分别为开环系统 的零点和极点; l 为在s平面上 相遇又立即分开的根轨迹的条 数,k 0,1, , l 1。
称为终值角,以 zi 标志。
根轨迹的
j
起始角 [s]
p1 p1
p3
0

p2
p2
根轨迹的j 终止角
p1
z1
p1
z1
z1
0
z2
z2 p2 z2源自p2j[s] p1
p1
[s]

0

p2 p2
出射角对(a)复极点,
(b入) 射角对复零点。
法则6:根轨迹起始角和终值角。
用试探法得d≈-2.3。
由法则6,确定起始角和终止角。
p3 (2k 1) (135o 90o 26.6o ) 71.6o p4 71.6o 本题无须确定终止角。
由法则7,确定根轨迹与虚轴的交点。
闭环特征方程为:s4 5s3 8s2 6s K* 0

绘制根轨迹图的规则

绘制根轨迹图的规则

K *的表达式为
K*
j 1 m
(s zi )
iห้องสมุดไป่ตู้1
则在分离点处有
dK* 0 ds
分离点坐标d是以下方程的解。
m 1
n1
i1 d zi j1 d p j
在一般情况下,绘制多回路系统的根轨迹时,首先根据内反馈回路的开环传递 函数,绘制内反馈回路的根轨迹,并确定内反馈回路的极点分布;然后由内反馈回 路的零、极点和内反馈回路外的零、极点构成整个多回路系统的开环零、极点;再 按照单回路根轨迹的基本规则,绘制出系统总的根轨迹。但这样绘制出来的根轨迹 只能确定多回路系统极点的分布,而多回路系统的零点还需要根据系统的闭环传递 函数来确定。
(z j
zi )
l 1
( zi
pl
)
,为开环零点(除
zi 外)和开环极
(i j)
点往零点 引zi 出向量的相角净值。
规则9 根轨迹的分离点。两条或两条以上的根轨迹分支,在s平 面上某处相遇后又分开的点,称为根轨迹的分离点(或会合点)。 可见,分离点就是特征方程出现重根之处。重根的重数就是会合到 (或离开)该分离点的根轨迹分支的数目。
坐标及相应的 K值* 可由劳斯判据求得,也可在特征方程中令 s j,然
后使特征方程的实部和虚部分别等于零而求得。根轨迹与虚轴相交,表明系 统在相应 K值* 下处于临界稳定状态。此处的根轨迹增益 K*称为临界根轨 迹增益。
【例 3-2】
设系统的开环传递函数为
Gk
(s)
s(s
K* 1)(s
2)
,求根轨迹与
时的根轨迹方程则有
m
K* (s zi )
i 1

K*
n

2绘制根轨迹的基本法则

2绘制根轨迹的基本法则
K
g
s ( s + 1 )( s + 5 )
,试确定根轨
上例已经确定了渐近线、实轴上的根轨迹段和分离(会合)点等, 下面确定根轨迹与虚轴的交点。
方法一:闭环特征方程: 3 + 6s 2 + 5s + K g = 0 ,令 s = jω 代入闭环特 s 征方程 ( jω ) 3 + 6( jω ) 2 + 5( jω ) + K g = 0 分解为实部和虚部: K g − 6ω 2 ) + j (5ω − ω 3 ) = 0 ( K g − 6ω 2 = 0 ω = 1,± 5 于是有: ,显然交点为 ⇒ 3 K g = 0,30 5ω − ω = 0 方法二:构造劳斯表
根据根轨迹相角条件可以写出的方向角其它各极点指向的方向角各零点指向的方向角其它各极点指向的方向角由各零点指向的方向角其它各极点指向的方向角由各零点指向的方向角其它各极点指向的方向角由各零点指向考虑到k的取值为所以上式可以写成为
4.2 绘制根轨迹的基本法则
一、 180°根轨迹作图法则
法则1:根轨迹的起点和终点 根轨迹的起点是指根轨迹增益 K g = 0 时,闭环极点在s平面上的位置, K g时闭环极点在s平面上的位置。 =∞ 而根轨迹的终点则是指 根轨迹起始于系统的开环极点(包括重极点),而终止于开环零点。 根轨迹起始于系统的开环极点(包括重极点),而终止于开环零点。 ),而终止于开环零点 法则2:根轨迹的连续性和对称性 根轨迹具有连续性,且对称于实轴。 根轨迹具有连续性,且对称于实轴。 法则3:根轨迹的分支数 根轨迹的分支数取传递函数分子、分母阶数 和 的大者 的大者。 根轨迹的分支数取传递函数分子、分母阶数m和n的大者。 法则4:根轨迹的渐近线 当系统的开环增益Kg→∞时趋向无穷远处的根轨迹共有n-m条,n-m条 根轨迹趋向无穷远的方位由渐近线决定。
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
K KG
G 2 1 2
( s zi ) ( s pi )
i 1
l j 1 h
f
i 1 q
反馈通路根轨迹增益
* H (s) K H
(s z )
j
TT
2 1 2
(s p )
j j 1
第四章 线性系统的根轨迹法
6
卢p67;胡p139
3、闭环与开环零、极点的关系
R(s) G(S) H(s)
前向通路增益
2 2 2 2 2 2
C(s)
闭环传递函数为:
G( s) ( s) 1 G( s) H ( s)
前向通路根轨迹增益
K G ( 1s 1)( s 2 2 2 s 1) * G ( s) v KG s (T1s 1)(T s 2 2T2 s 1)
根轨迹起点:p1=0,p2=-4, p3=-1+j , p4=-1-j 终点:z1=-1、无穷远处
1
K 0
-4 -3 -2
第四章 线性系统的根轨迹法
7
卢p68;胡p140
4、根轨迹方程
1 G( s) H ( s) 0 闭环系统特征方程: 当系统有m个开环零点和n个开环极点时,上式等价为
根轨迹方程
充要条件
K

(s z
j 1 n i 1
m
j
) 1
(s p )
i
相角条件
模值条件
1 1e
第四章 线性系统的根轨迹法
11
4-2-1 根轨迹绘制的基本法则

法则3
根轨迹的渐近线
a
n>m时,有n-m条渐近线 渐近线与实轴交角:
(2k 1) a ; nm
n m
k 0, 1, 2, n m 1
n-m=1: =2: =3: =4:
a
0
渐近线与实轴交点:
a
p z
第四章 根轨迹法
本章在课程中的地位:
数学模型->系统分析->系统设计
分析系统的方法- 时域分析法 复域分析法-根轨迹法 频域分析法
根轨迹的基本概念 根轨迹的基本法则 广义根轨迹 系统性能的分析

第四章 线性系统的根轨迹法
1
4-1
根轨迹法的基本概念
本节内容



根轨迹的定义 根轨迹与系统性能 闭环与开环零、极点的关系 根轨迹方程
* KG n
( s zi ) ( s p j )
i 1 j 1 m * j 1
f
n=q+h, m=f+l
h
( s pi ) K ( s z j )
i 1
结论
1)闭环根轨迹增益= KG* ;K* (H=1) 2)闭环零点 {zi , pj}
3)闭环极点 {zj , pi ,K*}
2
-1 K=1
0 -1
特征方程式的根为 s1 1 1 2 K s 2 1 1 2 K
第四章 线性系统的根轨迹法

K=2.5
-2
K
4
卢p66;胡p138
2、根轨迹与系统性能
j
K
R( s)
2
K s (0.5s 1)
C (s)
K=2.5
K=1
k=0.5
i 1 i j 1
j
nm
180° ±90 ° ± 60 °, 180 ° ±45 °, ± 135 °
12
第四章 线性系统的根轨迹法
胡p143
4-2-1 根轨迹绘制的基本法则
R(s)

例题1
j
3
K ( s 1) s ( s 4)( s 2 2 s 2)

C (s)
2
K 0
第四章 线性系统的根轨迹法
2
卢p65
1、根轨迹的定义
根轨迹
开环系统某一参数从零变化到无穷时,闭环系统特征 方程式的根在s平面上变化的轨迹.
稳定性系统闭环极点
稳态与动态性能 闭环零极点在s平面的位置
优点:避免高阶方程求根; 闭环系统时间响应的信息 指明开环零、极点如何变化才能满足系统性能的要求。 注意:当开环零、极点相消时, 闭环特征方程的根 闭环系统的极点
第四章 线性系统的根轨迹法
3
胡p137
1、根轨迹的定义
R( s)
K s (0.5s 1)
C (s)
K
j
闭环传递函数为
K=2.5

2
C ( s) 2K ( s ) 2 R( s ) s 2s 2 K
特征方程式为
K=0 -2
K=1
k=0.5
1 K=0
s 2s 2K 0
j ( 2 k 1)

m
(s z j )
j1

i 1
n
(s pi )
(2k 1)
K
*
s pi s zj
j 1
8
n
i 1 m
k 0, 1, 2,
第四章 线性系统的根轨迹法
4-2 根轨迹绘制的基本法则 180度根轨迹:
• 变化参数为根轨迹增益 K *
1 K=0
s 2 2s 2K 0
K=0 开环极点闭环极点
K=0 -2 -1 K=1
0 -1

K=2.5 -2
稳定性-k0,临界开环增益 稳态性能-极点位置容许范围;根
轨迹增益与开环增益
K

动态性能-阻尼状态
5
第四章 线性系统的根轨迹法
卢p67;胡p139
3、闭环与开环零、极点的关系
• 相角遵循 180 2k 条件
本节内容:

根轨迹绘制的基本法则 闭环极点的确定
9
第四章 线性系统的根轨迹法
4-2-1 根轨迹绘制的基本法则

法则1
根轨迹的起点和终点
根轨迹起于开环极点,终于开环零点. 无限零点、无限极点
根轨迹终点,其余 两个终点为无穷远
j
j
根轨迹终点
K 0
K 0

系统的开环传递函数
G( s) H ( s) K *
( s zi ) ( s z j ) ( s pi ) ( s p j )
j 1 j 1 i 1 q j 1 h
f
l
K* =KG* KH* 开环根轨迹增益

系统的闭环传递函数
G( s) ( s) 1 G( s) H ( s)
K 0 K
K
K 0
0
K K 0
0
根轨迹起点
(a) (n>m)
根轨迹起点, 第三条轨迹 起于无穷远
(b) (n<m)
第四章 线性系统的根轨迹法
10
4-2-1 根轨迹绘制的基本法则

法则2
根轨迹的分支数、对称性和连续性
根轨迹的分支数=max(m,n) m-开环有限零点数, n-开环有限极点数. 根轨迹分支是连续的且对称于实轴
相关文档
最新文档