二维水体污染扩散模型的集成

合集下载

平面二维水流-水质有限体积法及黎曼近似解模型

平面二维水流-水质有限体积法及黎曼近似解模型

平面二维水流-水质有限体积法及黎曼近似解模型平面二维水流水质有限体积法及黎曼近似解模型引言:在水环境研究中,对于水流和水质模拟是非常重要的,这不仅可以帮助我们了解水体的流动特性,还可以预测和评估水质的变化和影响。

在这篇文章中,我们将介绍平面二维水流水质有限体积法及黎曼近似解模型的原理和应用。

通过理论阐述和实例分析,我们希望能够全面而深入地了解这两种模型的优势、限制和适用范围。

第一部分:平面二维水流水质有限体积法1. 模型原理平面二维水流水质有限体积法是一种基于物质守恒定律和动量方程的数值模拟方法。

它将水流问题转化为有限体积内的水体加权平均值,并通过离散化和数值计算来解决。

2. 数学表述该方法的数学表述包括质量守恒方程和动量方程。

质量守恒方程描述了水体中物质的流动和浓度的变化,动量方程描述了液体的流动和流速的变化。

3. 优势和限制平面二维水流水质有限体积法具有灵活性高、计算量小、数值稳定性好等优势。

然而,由于该模型是基于近似解法的,它在处理流体不连续性和复杂边界条件时存在一定的局限性。

4. 应用实例平面二维水流水质有限体积法已被广泛应用于河流、湖泊、水库等水域的水流和水质模拟。

通过该模型,我们可以预测和评估污染物的扩散和迁移,以及水体中溶解氧、氨氮、藻类等水质指标的变化趋势。

第二部分:黎曼近似解模型1. 模型原理黎曼近似解模型是一种基于黎曼问题理论的模型,它将水流问题转化为求解一组非线性偏微分方程的问题。

在求解过程中,通过将问题分割成一个个宏观单元来近似求解。

2. 数学表述该模型的数学表述包括守恒方程和状态方程。

守恒方程描述了物质的流动和质量守恒,状态方程描述了物质的热力学性质和状态。

3. 优势和限制黎曼近似解模型具有精度高、计算速度快、边界条件处理灵活等优势。

然而,由于该模型需要求解多组偏微分方程,其计算量相对较大,不适用于大规模复杂水体的模拟。

4. 应用实例黎曼近似解模型在流体力学研究中有广泛应用,可用于模拟水流在管道、河道、溃口等场景中的流动情况。

污染物在水体中的扩散

污染物在水体中的扩散

进入水体污染物有两大类:保守物质和非保守物质
污染物衰减
衰减发生在非持久污染物的溶解氧化过程中 和放射性物质衰变过程中。持久性污染物不 发生衰减。 衰减过程基本符合一级反应动力学规律: dc — =-kc dt
Kc为反映速度常数

综上所述可知:
①推移作用:总量不变,分布状态也不变;
②推移+分散:总量不变,分布状态发生变化; ③推移+分散+衰减:总量变化,分布状态变化。


三种扩散系数的量质范围(数量级):
分子扩散Em:10-5~10-4 m2/s


湍流扩散系Ex,Ey,Ez:10-2~100 m2/s
弥散系数Dx,Dy,Dz:101~104 m2/s

3.衰减和转化
保守物质:随水流运动而不断变换所处的空间位置,不断向 周围扩散而降低其初始浓度,但不改变总量。重金属,高分 子有机化合物 非保守物质:不断扩散而降低浓度外,因污染物自身衰减而 加速浓度的下降。衰减:自身运动变化规律决定的,在水环 境里由于化学的或生物的反应不断衰减。有机物在水体微生 物作用下的氧化分解过程。

③.弥散: 由横断面流速不均引起,即由湍流时平均值与时均 值的空间平均值的系统差列所产生的分散现象。 c I”x=-Dx—, x c I”y=-Dy—, y c I”z=-Dz — z
I,,x , I,,y , I,,z:弥散作用导致的污染物质量通量; Dx, Dy, Dz :弥散系数;c:湍流时平均浓度的空间平均值。
2、二维稳态模型:
Dx 2c/ x2+Dy 2c/ y2-ux c/ x-uy c/ y- kc=0 (2)
在均匀流场中其解析解为: C(x,y)=Q/4 h(x/ux)2√(Dx Dy))*[exp(y-uyx/ux)2/4Dyx/ux) ]*exp(-kx/ux)

污染物扩散模型的构建与模拟分析

污染物扩散模型的构建与模拟分析

污染物扩散模型的构建与模拟分析随着现代工业化及城市化的不断发展,环境污染问题越来越突出,这对人类的健康、生态环境及生物多样性等方面都带来了极大的威胁。

而污染物的扩散是导致环境污染的主要原因之一。

因此,对污染物的扩散模型的构建与模拟分析具有重要的理论和实际意义。

一、污染物扩散模型的基本概念污染物扩散模型是指对污染物在大气、水体、土壤等介质中扩散传播过程进行数学建模的过程。

其核心思想是通过数学公式描述污染物扩散、转化与传递规律,对污染物的特征、分布、浓度、影响等进行评估和预测,为环境保护和污染控制提供支持。

在污染物扩散模型中,其中一个关键要素是扩散系数,它主要考虑污染物的扩散现象。

扩散系数大小与被扩散的分子量、临界温度、扩散介质温度、压力等成正比例关系。

此外,影响扩散的还有风速、风向、湍流强度等气象因素。

因此,在具体构建模型时需要考虑多方面因素的影响。

二、污染物扩散模型的分类理论上,污染物扩散模型可以分为两大类,即基于经典物理学的扩散模型和基于统计物理学的扩散模型。

前者主要是基于物质的微观规律进行建模,如分子运动、质量传递、动能转移等;后者则是基于大量粒子的统计规律,如统计热力学、热力学平衡等。

在实际应用中,也可以根据具体的扩散介质、污染物种类、浓度范围等多种因素,将扩散模型进行进一步分类。

例如,大气扩散模型可以分为高斯模型、拉格朗日模型、欧拉模型等;水体扩散模型可以分为点源模型、面源模型、非定常模型、在线模型等。

在具体的应用中,需要根据污染物的种类、具体的观测数据、模拟环境等情况,选择适合的模型类型。

三、模型参数估计及优化在进行污染物扩散模型构建时,需要确定相关的模型参数。

而在实际操作过程中,往往难以对所有模型参数进行测量和确定。

此时,需要通过已有的或者历史数据,进行参数估计或反演,以得到合理的参数值。

传统的参数估计方法包括拟合法、极大似然法、贝叶斯反演等。

其中,拟合法最为常见,即根据已有的观测数据,通过试探性调整参数值,将模型预测值与实际观测值拟合。

河流污染二维水质模型研究及RMA4模型概述

河流污染二维水质模型研究及RMA4模型概述

Absr t tac :Th o mo eh d o tr q aiy mo es a d t e p i t o ovn h tr q ai ec m n m t o f2D wae u l d l n h on s fr s l ig t e wa e u lt t y
c a a trsis we e a ay e h rc e itc r n lz d.F n ly t e d v l pn r n so i lto frv rwae u lt sdic s e i al h e eo ig te d fsmu ai n o ie t rq ai wa s u s d. y Th si e e iilt u l ig a d u i g ma h ma imo est i l t h i e trq lt . i s b n fca o b idn n sn t e t c d l o smu a e t e rv rwa e u iy
模 型进 行水 质 模 拟 提 供 一 定 的思 路 和依 据 . 关键 词 : 流 ; 维 ; 质 模 型 ; MA 河 二 水 R 4 中 图 分类 号 :5 2 0 4 . X 2 ;2 2 1 文 献 标 志 码 : A 文 章 编 号 :00— 12 2 1 ) l 00 0 10 2 6 (0 1 o 一 12— 7
S ud n i t g a in o D t r t y o n e r to f2 wa e
qu l y m o l nd r v e o a i des a e i w fRM A4 m o e t dl
M A , Li GUIHe rn .CAO Pe g q a g —o g r n 。in
基 金 项 目 : 徽 省 学 术 与技 术带 头 人 基 金 资 助 项 目 安 作者简介 : 马 莉 (9 3 ) 女 , 宁 沈 阳 人 , 南 职 业 技术 学 院讲 师 , 徽理 工 大 学 在 读 博 士 . 18一 , 辽 淮 安

污染物的传输与扩散模型研究

污染物的传输与扩散模型研究

污染物的传输与扩散模型研究1. 引言随着工业化的迅速发展和人口的急剧增加,污染物的排放和传输成为了当代社会面临的重要环境问题之一。

了解污染物在大气、水体和土壤中的传输与扩散规律,对于制定合理的环境保护政策及预防和治理环境污染具有重要意义。

本文旨在介绍污染物传输与扩散模型的研究现状和应用。

2. 大气环境中污染物传输与扩散模型大气环境中的污染物传输与扩散因大气层结、气象条件、底层摩擦等因素的影响具有很大的复杂性。

目前,常用的大气污染物传输与扩散模型主要包括高斯模型、拉盖尔模型和CALPUFF模型等。

其中,高斯模型适用于近距离传输,拉盖尔模型适用于中距离传输,而CALPUFF模型则适用于远距离传输,能够满足复杂气象条件下的模拟需求。

3. 水体环境中污染物传输与扩散模型水体环境中的污染物传输与扩散主要受到水流、水深、水体特性和污染物特性等因素的影响。

常用的水体污染物传输与扩散模型有一维河道模型、二维河道模型和三维数值模型等。

其中,一维河道模型适用于河道流向上的污染物传输预测,二维河道模型适用于平面上的污染物传输预测,而三维数值模型则能够更真实地反映水体中污染物的传输与扩散过程。

4. 土壤环境中污染物传输与扩散模型土壤环境中的污染物传输与扩散因土壤性质、水分运动、渗透性和土壤剖面结构等因素的影响具有一定的复杂性。

常用的土壤污染物传输与扩散模型有对流-扩散模型、Richards方程模型和有限元法模型等。

其中,对流-扩散模型适用于均质土壤体系,Richards方程模型适用于细密土壤体系,而有限元法模型则适用于具有复杂土壤剖面结构的土壤体系。

5. 污染物传输与扩散模型研究的应用污染物传输与扩散模型的研究在环境保护和灾害防治中具有广泛应用。

通过模型的建立和模拟,可以预测和评估不同污染物在环境中的迁移路径和扩散范围,为环境工程和应急管理提供决策支持。

此外,传输与扩散模型还可以用于评估污染物对人体和生态环境的风险,为环境监测和评估提供科学依据。

水体污染物传输与扩散过程分析模型构建研究

水体污染物传输与扩散过程分析模型构建研究

水体污染物传输与扩散过程分析模型构建研究水体污染物传输与扩散过程是水环境领域的重要研究内容。

构建准确可靠的水体污染物传输与扩散分析模型,对于评估水体污染风险、制定有效的水环境管理措施具有重要意义。

本文将重点讨论水体污染物传输与扩散模型的构建方法和相关研究进展。

首先,传统的水体污染物传输与扩散模型通常基于水动力学理论,采用质点追踪方法来描述污染物的传输过程。

其中,最经典的是拉格朗日模型和欧拉模型。

拉格朗日模型以污染物质点的运动轨迹为基础,能够精确描述个别点的传输情况。

欧拉模型则以流体的机械性质为基础,描述流体内污染物浓度的分布情况。

这两种模型在实践中常常结合使用,以获得更为准确的传输与扩散结果。

然而,传统的水体污染物传输与扩散模型对于实际情况的假设过于简单,无法完全反映复杂的水环境系统。

为了解决这一问题,近年来出现了基于数值模拟和统计学方法的新型模型。

数值模拟方法借助计算机对水体流动和污染物传输进行数值模拟,能够解决不规则地形条件下流体运动的问题,并提供更精确的模拟结果。

统计学方法则通过统计分析大量实测数据,掌握水体污染物传输过程中的规律性,以此反推可能的传输路径和扩散方式。

此外,为了提高水体污染物传输与扩散模型的准确性,研究人员还引入了环境因子的考虑。

例如,气象因子(风速、风向等)和水文因子(水深、流速等)都对污染物的传输过程产生重要影响。

因此,在构建模型时,需要综合考虑多个环境因子的相互作用,以获得更为准确的模拟结果。

除了传输过程的模型构建,对于污染物浓度分布的模拟也是水体污染模型研究的重点。

传统的模型通常采用估算公式或者经验公式来估计水体污染物的浓度。

而现代模型则更多地采用基于混合层模型、稳态模型和非稳态模型的方法来描述水体污染物的浓度分布。

这些模型基于不同假设和方程,能够更准确地预测污染物在水体中的浓度分布情况。

此外,水体污染物传输与扩散模型的研究还面临着一些挑战。

首先,水体环境系统具有时空尺度的不均匀性,模型需要能够兼顾不同尺度上的传输与扩散过程。

二维水质扩散时空模拟及可视化

二维水质扩散时空模拟及可视化

f e x p ( 一 茜) + e ) ( p ( _ ) 1
污染物进 入水 体后 ,不能在 短 时间 内达 到全 断 面 浓度 混合 均 匀,或在 纵 向和横 向上都 存在 比较 显 著的
差异 时, 一 维模 型 不 能 满足 需要 , 需要 用二 维模 拟 。
3 二维水质扩 散模型可视化 解决思路
式 中,C为 污染物 浓度 / mg / L; 为 时 间 / s ; “为 河流
平均 流速 / m/ s: x为 河 流 纵 向 距 离 / m; E 为 河 流 纵 向
使 GI S与应 用分析模 型在 空 间坐标层 次上 统一起 来 。
本 系统 采 用 平 面 离 散 点 的 三 角 剖 分 法 生 成 的 V o r o n o i
收稿 日期 : ! …3 ~ l ( 1 _ 2 6
2 0 1 5年 6月 第1 3卷 第 3期






J u n. 。 2 0 1 5 V 0 1 . 1 3. No. 3
( ( ) SI ’ A l ’ l A【 l
( ) l { MA } 、 I ( )
二维 水质扩散 时空模拟及 可视化
刘章恒 ,秦 小迪 ,解 新路
弥散 系数 / m / s ; K为河流降解 系数 / m / s 。
图。Ⅳ个在 平 面上有 区别的 点 ,按 照最邻 近原 则 划分
平 面,每 个点 与它 的最 近邻 区域 相 关联 。De l a u n a y三
角 形是 由与相 邻 Vo r o n o i 多边 形 共 享 一 条 边 的 相 关 点 连
水体介 质 中通过 分散 作 用得 到稀 释 ,分散 作 用 包括 分

二维水质模型定义

二维水质模型定义

二维水质模型定义水质模型是通过对水体特定参数进行数学建模和模拟,来研究、预测和评估水体环境的变化和质量的方法。

水质模型的目的是更好地理解水体中的污染物传输、生态系统变化和水质改善措施的效果。

本文将重点讨论二维水质模型的定义、原理和应用。

二维水质模型是一种通过建立二维网格来模拟和分析水体内污染物及其水质变化的方法。

它考虑到水体的水平平面分布和水流运动,并使用物理方程和计算方法来模拟和预测水体中污染物的扩散和转运。

在二维水质模型中,水体被划分为若干个网格单元,每个单元代表一个小的空间区域。

通过测量和监测,可以获取水体的初始条件和边界条件,并将其输入到模型中。

随着时间的推移,模型根据初始条件、边界条件和物理方程进行计算和模拟,以得到水体中污染物的浓度和分布。

二维水质模型的基本原理是质量平衡方程和扩散方程。

质量平衡方程描述了污染物在水体中的产生、输入、输出和转化过程,扩散方程则描述了污染物的扩散和输运。

这些方程考虑了水体中物质的浓度、流速和水动力学特性,并使用数值方法进行离散化和求解。

通过这些模型的建立和求解,可以预测不同情况下水质的变化,如污染物浓度的分布、水体的富营养化程度、溶解氧的含量等。

二维水质模型在水环境管理和水资源规划中具有广泛的应用。

它可以用于评估污染事件的影响、指导水体治理和保护措施的制定,并预测未来水质的变化趋势。

通过改变模型中的参数和输入条件,可以进行不同的情景分析和模拟实验,以评估不同的污染控制策略和方案的效果和可行性。

此外,二维水质模型还可以与其他模型相结合,如水动力模型、生态模型和气象模型,以更全面地模拟和评估水体的水文、水力和水质过程。

这种耦合模型的应用可以提供更准确的结果和更全面的分析,为决策者提供指导,以保护和改善水体环境。

总之,二维水质模型是一种有效的工具,用于研究水体环境的变化和质量的评估。

它基于物理方程和计算方法,通过建立二维网格来模拟和分析水体内污染物及其水质的变化。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

流场地图显示 水流模型计算 流场三维显示 污染物浓度等值线地图显示 污染物扩散模型 污染物浓度等值线三维显示
School of Resource & Environment Engineering WHUT
8.4.3 二维水体污染扩散模型的集成
School of Resource & Environment Engineering WHUT
School of Resource & Environment Engineering WHUT
包头市大气二氧化硫分布图
School of Resource & Environment Engineering WHUT
增加不同参数污染源的污染分布图
School of Resource & Environment Engineering WHUT
8.4 水体污染扩散模拟GIS

水环境模型及其GIS表达 GIS与一维水体污染扩散模型的集成
第八章 环境污染模拟与预测GIS



环境污染模拟与预测 GIS环境下模型空间离散技术 大气污染扩散模拟GIS 水体污染扩散模拟GIS
School of Resource & Environment Engineering WHUT
8.1
环境污染模拟与预测
基于GIS的环境污染模拟与预测主要
是利用GIS对环境污染状况进行模拟分析, 预测其影响范围、空间分布特征和时间动
另外,系统还提供了图形编辑功能, 便于专业人员在系统分类的基础上结合 该区区域地质环境特征进行图形再编辑, 使评价结果更加合理化、实用化。
系统应用举例
School of Resource & Environment Engineering WHUT
8.4.2 二维水体污染扩散模型
二 维 水 污 染 扩 散 模 型 任意河段有限元格网剖分 格网显示
大气质量模型
问题定义
数据输入
分析操作
显示输出
流程框图
School of Resource & Environment Engineering WHUT
8.3.5 GIS与环境模型的集成方式
School of Resource & Environment Engineering WHUT
大气污染监测管理
8.3.1 GIS在环境模型研究中的应用

数据集成管理器 模型二次开发 数据查询分析
可视化输出
School of Resource & Environment Engineering WHUT
8.3.2 系统功能实现

数据的集成管理 大气扩散模型计算 模型计算结果的评价分析

可视化表现
School of Resource & Environment Engineering WHUT
8.3.3 大气扩散模式

高架点源扩散模式 面源扩散模式 线源扩散模式


School of Resource & Environment Engineering WHUT
8.3.4 高斯大气扩散模式与GIS的集成
大气环境影响预测
● 了解项目建成后对大气环境质量影响的程度和范围。 ● 比较各种假设方案的大气环境质量的影响。 ● 给出各类或各个污染源对任一点污染物浓度的贡献。
8.2
GIS环境下模型空间离散技术
利用网格剖分技术将连续的空间离散化, 以网格点为控制点,将模型空间和地理空间对
应起来。这是基于GIS环境模拟和预测的基础。
态变化等。
School of Resource & Environment Engineering WHUT
★ 大气环境影响预测
利用数学模式和必要的模拟实验, 计算或者估算建设项目的污染因子在 评价区域内对大气环境质量的影响。
School of Resource & Environment Engineering WHUT
1)评价指标选择与评价采样点设 置
●评价指标选择有两种方式:从外挂数 据库中或从评价图层属性列表中选择。 ●评价采样点设置了3 种方式,一是点 选;二是拖动矩形框选择;三是多边形选 择,此外可选择拟参与评价的采样点的 起始和终止时间。
2) 评价单元的构建
系统设置两种构建评价单元的方法, 即栅格型和矢量型。前者是由一系列正交 网格组成的评价单元,用户以人机对话方 式可以选择横向和纵向网格个数与间距; 后者是利用GIS 软件的空间叠置分析功能, 生成评价单元,此方式较前者降低了评价 过程中人为因素干预, 对于较少的评价指 标往往具有良好的效果。
School of Resource & Environment Engineering WHUT
3)
设置指标权重
超指标值法
专家赋值法
层次分析法
School of Resource & Environment Engineering WHUT
4)评价模型的建立与评价结果的表达
根据解决实际问题的需要,用户可选 取综合评分模型和模糊综合评判模型, 通过输入评价分级数,系统将自动生成 评价结果图。
★ 矩形网格
★ 三角形网格
★ 正交曲线网格
School of Resource & Environment Engineering WHUT
8.3 大气污染扩散模拟GIS

大气扩散指标
GIS与大气质量模型的集成 基于GIS的大气环境影响预测与模拟


School of Resource & Environment Engineering WHUT


GIS与二维水体污染扩散模型的集成
School of Resource & Environment Engineering WHUT
8.4.1 系统评价实现步骤


评价指标选择与评价采样点设置
评价单元的构建 设置指标权重 评价模型的建立与评价结果的表达
School of Resource & Environment Engineering WHUT
相关文档
最新文档