高中数学-单位圆与三角函数线练习题
高中数学第七章三角函数7.2.2单位圆与三角函数线课时素养评价含解析第三册

单位圆与三角函数线(20分钟35分)1。
如图,点P从出发,沿单位圆按顺时针方向运动弧长到达Q点,则Q点坐标为()A. B.C。
D.【解析】选A。
点P从出发,沿单位圆按顺时针方向运动弧长到达Q点,所以∠QOx=-,所以Q,即Q点坐标为。
【补偿训练】已知α是第二象限角,其终边与单位圆的交点为P,则cos α=()A。
— B.C。
D。
—【解析】选A.由题意知,解得m=-,所以cos α=—。
2。
如果〈α<,那么下列不等式成立的是()A.cos α<sin α〈tan αB.tan α〈sin α<cos αC.sin α〈cos α<tan αD。
cos α〈tan α〈sin α【解析】选A.方法一:(特值法)令α=,则cos α=,tan α=,sin α=,故cos α<sin α〈tan α。
方法二:如图所示,在单位圆中分别作出α的正弦线、余弦线、正切线,则cos α<sin α<tan α。
3.(2020·济南高一检测)使sinx≤cosx成立的x的一个变化区间是()A.B.C。
D。
【解析】选A.如图所示,当x=和x=—时,sin x=cos x,故使sin x≤cos x成立的x的一个变化区间是。
4。
有三个命题:①与的正弦线相等;②与的正切线相等;③与的余弦线相等.其中真命题的个数为()A。
1 B.2 C。
3 D。
0【解析】选B.根据三角函数线的定义可知,与的正弦线相等,与的正切线相等,与的余弦线相反。
5。
比较大小:tan 1tan 。
(填“>"或“〈")【解析】因为1〈,且都在第一象限,由它们的正切线知tan 1〈tan .答案:〈6.作出-的正弦线、余弦线和正切线。
【解析】如图所示,所以角-的正弦线为,余弦线为,正切线为。
(30分钟60分)一、单选题(每小题5分,共20分)1.设a<0,角α的终边与单位圆的交点为P(—3a,4a),那么sin α+2cos α的值等于()A。
高中数学必修4 1.2.2单位圆与三角函数线

利用三角函数线比较函数值大小课后作业:一、选择题1.对三角函数线,下列说法正确的是( ) A .对任何角都能作出正弦线、余弦线和正切线 B .有的角正弦线、余弦线和正切线都不存在C .任何角的正弦线、正切线总是存在,但余弦线不一定存在D .任何角的正弦线、余弦线总是存在,但是正切线不一定存在2.角α(0<α<2π)的正弦线与余弦线长度相等且符号相同,那么α的值为( )A.π4或34πB.5π4或74πC.π4或54πD.π4或74π 3.若角α的正切线位于第一象限,则角α属于( )A .第一象限B .第一、二象限C .第三象限D .第一、三象限 4.下列命题中为真命题的是( )A .三角形的内角必是第一象限的角或第二象限的角B .角α的终边在x 轴上时,角α的正弦线、正切线都变成一个点C .终边在第二象限的角是钝角D .终边相同的角必然相等5.若-3π4<α<-π2,则sin α、cos α、tan α的大小关系是( )A .sin α<tan α<cos αB .tan α<sin α<cos αC .cos α<sin α<tan αD .sin α<cos α<tan α6.在[0,2π]上满足sin x ≥12的x 的取值范围是( )A .[0,π6]B .[π6,5π6]C .[π6,2π3]D .[5π6,π]7.在(0,2π)内使cos x >sin x >tan x 成立的x 的取值范围是( )A .(π4,3π4)B .(5π4,3π2)C .(3π2,2π)D .[3π2,7π4]8.如果cos α=cos β,则角α与β的终边除可能重合外,还有可能( )A .关于x 轴对称B .关于y 轴对称C .关于直线y =x 对称D .关于原点对称9.设a =sin 5π7,b =cos 2π7,c =tan 2π7,则( )A .a <b <cB .a <c <bC .b <c <aD .b <a <c 10.函数x x y cos sin -+=的定义域是( )A .))12(,2(ππ+k k ,Z k ∈B .])12(,22[πππ++k k ,Z k ∈C .])1(,2[πππ++k k , Z k ∈ D .[2k π,(2k+1)π],Z k ∈二、填空题11.不等式cos α≤12的解集为________.12.若θ∈(3π4,π),则下列各式错误的是________.①sin θ+cos θ<0;②sin θ-cos θ>0;③|sin θ|<|cos θ|;④sin θ+cos θ>0.13.若0≤sin θ<32,则θ的取值范围是________.14.函数y =sin x +cos x -12的定义域是____________.。
高中数学第一章三角函数1.2.2三角函数线练习(含解析)新人教A版必修4

高中数学第一章三角函数1.2.2三角函数线练习(含解析)新人教A版必修41.对于三角函数线,下列说法正确的是( )A.对任何角都能作出正弦线、余弦线和正切线B.有的角的正弦线、余弦线和正切线都不存在C.任何角的正弦线、正切线总是存在,但余弦线不一定存在D.任何角的正弦线、余弦线总是存在,但是正切线不一定存在答案 D解析当角的终边落在y轴上时,正切线不存在,但对任意角来说,正弦线、余弦线都存在.2.若角α的余弦线是单位长度的有向线段,那么角α的终边在( )A.y轴上 B.x轴上C.直线y=x上 D.直线y=-x上答案 B解析由题意得|cosα|=1,即cosα=±1,角α终边在x轴上,故选B.A.sin1>cos1>tan1 B.sin1>tan1>cos1C.tan1>sin1>cos1 D.tan1>cos1>sin1答案 C解析设1 rad角的终边与单位圆的交点为P(x,y),∵π4<1<π2,∴0<x<y<1,从而cos1<sin1<1<tan1.4.设a=sin(-1),b=cos(-1),c=tan(-1),则有( )A.a<b<c B.b<a<cC.c<a<b D.a<c<b答案 C解析作α=-1的正弦线、余弦线、正切线,可知:b=OM>0,a=MP<0,c=AT<0,且MP>AT.∴c<a<b.5.若α为第二象限角,则下列各式恒小于零的是( )A.sinα+cosα B.tanα+sinαC.cosα-tanα D.sinα-tanα答案 B解析如图,作出sinα,cosα,tanα的三角函数线.显然△OPM∽△OTA,且|MP|<|AT|.∵MP>0,AT<0,∴MP<-AT.∴MP+AT<0,即sinα+tanα<0.6.已知MP,OM,AT分别是75°角的正弦线、余弦线、正切线,则这三条线从小到大的排列顺序是________.答案OM<MP<AT解析如图,在单位圆中,∠POA=75°>45°,由图可以看出OM<MP<AT.7.利用三角函数线比较下列各组数的大小.(1)tan 4π3与tan 7π6;(2)cos 11π6与cos 5π3.解 (1)如图1所示,设点A 为单位圆与x 轴正半轴的交点,角4π3和角7π6的终边与单位圆的交点分别为P ,P ′,PO ,P ′O 的延长线与单位圆的过点A 的切线的交点分别为T ,T ′,则tan 4π3=AT ,tan 7π6=AT ′.由图可知AT >AT ′>0,所以tan 4π3>tan 7π6.(2)如图2所示,设角5π3和角11π6的终边与单位圆的交点分别为P ,P ′,过P ,P ′分别作x 轴的垂线,分别交x 轴于点M ,M ′,则cos 11π6=OM ′,cos 5π3=OM .由图可知0<OM <OM ′,所以cos 5π3<cos 11π6.答案 0,π4∪π2,5π4∪3π2,2π解析 由0≤θ<2π且tan θ≤1,利用三角函数线可得θ的取值范围是0,π4∪π2,5π4∪3π2,2π.9.在单位圆中画出适合下列条件的角α的终边的范围,并由此写出角α的集合. (1)sin α≥32; (2)cos α≤-12;(3)tan α≥-1. 解 (1)作直线y =32交单位圆于A ,B 两点,连接OA ,OB ,则OA 与OB 围成的区域即为角α的终边的范围,故满足条件的角α的集合为α2k π+π3≤α≤2k π+2π3,k ∈Z .(2)作直线x =-12交单位圆于C ,D 两点,连接OC ,OD ,则OC 与OD 围成的区域(图中阴影部分)即为角α终边的范围.故满足条件的角α的集合为⎩⎪⎨⎪⎧⎭⎪⎬⎪⎫α⎪⎪⎪2k π+2π3≤α≤2k +4π3,k ∈Z.(3)在单位圆过点A (1,0)的切线上取AT =-1,连接OT ,OT 所在直线与单位圆交于P 1,P 2两点,则图中阴影部分即为角α终边的范围,所以α的取值集合是⎩⎪⎨⎪⎧⎭⎪⎬⎪⎫α⎪⎪⎪-π4+k π≤α<π2+k π,k ∈Z,如图.一、选择题1.已知α(0<α<2π)的正弦线与余弦线的长度相等,且方向相同,那么α的值为( ) A .5π4或7π4 B .π4或3π4C .π4或5π4D .π4或7π4答案 C解析 因为角α的正弦线与余弦线长度相等,方向相同,所以角α的终边在第一或第三象限,且角α的终边是象限的角平分线,又0<α<2π,所以α=π4或5π4,选C .2.若α是三角形的内角,且sin α+cos α=23,则这个三角形是( )A .等边三角形B .直角三角形C .锐角三角形D .钝角三角形 答案 D解析 当0<α≤π2时,由单位圆中的三角函数线知,sin α+cos α≥1,而sin α+cos α=23,∴α必为钝角. 3.如果π<θ<5π4,那么下列各式中正确的是( )A .cos θ<tan θ<sin θB .sin θ<cos θ<tan θC .tan θ<sin θ<cos θD .cos θ<sin θ<tan θ 答案 D解析 本题主要考查利用三角函数线比较三角函数值的大小.由于π<θ<5π4,如图所示,正弦线MP 、余弦线OM 、正切线AT ,由此容易得到cos θ<sin θ<0<tan θ,故选D .4.若0<α<2π,且sin α<32,cos α>12,则角α的取值范围是( ) A .⎝ ⎛⎭⎪⎫-π3,π3 B .⎝⎛⎭⎪⎫0,π3 C .⎝⎛⎭⎪⎫5π3,2π D .⎝ ⎛⎭⎪⎫0,π3∪⎝ ⎛⎭⎪⎫5π3,2π答案 D解析 由图1知当sin α<32时,α∈⎝ ⎛⎭⎪⎫0,π3∪⎝ ⎛⎭⎪⎫2π3,2π.由图2知当cos α>12时,α∈⎝ ⎛⎭⎪⎫0,π3∪⎝ ⎛⎭⎪⎫5π3,2π,∴α∈⎝ ⎛⎭⎪⎫0,π3∪⎝ ⎛⎭⎪⎫5π3,2π. 5.已知sin α>sin β,那么下列命题正确的是( ) A .若α,β是第一象限的角,则cos α>cos β B .若α,β是第二象限的角,则tan α>tan β C .若α,β是第三象限的角,则cos α>cos β D .若α,β是第四象限的角,则tan α>tan β 答案 D解析 解法一:(特殊值法)取α=60°,β=30°,满足sin α>sin β,此时cos α<cos β,所以A 不正确;取α=120°,β=150°,满足sin α>sin β,这时tan α<tan β,所以B 不正确;取α=210°,β=240°,满足sin α>sin β,这时cos α<cos β,所以C 不正确.解法二:如图,P 1,P 2为单位圆上的两点, 设P 1(x 1,y 1),P 2(x 2,y 2),且y 1>y 2.若α,β是第一象限角,又sin α>sin β, 则sin α=y 1,sin β=y 2,cos α=x 1,cos β=x 2. ∵y 1>y 2,∴α>β.∴cos α<cos β.∴A 不正确.若α,β是第二象限角,由图知P 1′(x 1′,y 1′),P 2′(x 2′,y 2′),其中sin α=y 1′,sin β=y 2′,则tan α-tan β=y 1′x 1′-y 2′x 2′=x 2′y 1′-x 1′y 2′x 1′x 2′. 而y 1′>y 2′>0,x 2′<x 1′<0, ∴-x 2′>-x 1′>0,∴x 1′x 2′>0,x 2′y 1′-x 1′y 2′<0,即tan α<tan β.∴B 不正确.同理,C 不正确.故选D . 二、填空题6.若α是第一象限角,则sin2α,cos α2,tan α2中一定为正值的个数为________.答案 2解析 由α是第一象限角,得2k π<α<π2+2k π,k ∈Z ,所以k π<α2<π4+k π,k ∈Z ,所以α2是第一或第三象限角,则tan α2>0,cos α2的正负不确定;4k π<2α<π+4k π,k ∈Z ,2α的终边在x 轴上方,则sin2α>0.故一定为正值的个数为2.7.若0≤θ<2π,且不等式cos θ<sin θ和tan θ<sin θ成立,则角θ的取值范围是________.答案π2,π 解析 由三角函数线知,在[0,2π)内使cos θ<sin θ的角θ∈π4,5π4,使tan θ<sin θ的角θ∈π2,π∪3π2,2π,故θ的取值范围是π2,π.8.若函数f (x )的定义域是(-1,0),则函数f (sin x )的定义域是________. 答案 -π+2k π,-π2+2k π∪-π2+2k π,2k π(k ∈Z )解析 f (x )的定义域为(-1,0),则f (sin x )若有意义,需-1<sin x <0,利用三角函数线可知-π+2k π<x <2k π,且x ≠-π2+2k π(k ∈Z ).三、解答题9.比较下列各组数的大小:(1)sin1和sin π3;(2)cos 4π7和cos 5π7;(3)tan 9π8和tan 9π7;(4)sin π5和tan π5.解 (1)sin1<sin π3.如图1所示,sin1=MP <M ′P ′=sin π3.(2)cos 4π7>cos 5π7.如图2所示,cos 4π7=OM >OM ′=cos 5π7.(3)tan 9π8<tan 9π7.如图3所示,tan 9π8=AT <AT ′=tan 9π7.(4)sin π5<tan π5.如图4所示,sin π5=MP <AT =tan π5.10.设θ是第二象限角,试比较sin θ2,cos θ2,tan θ2的大小.解 ∵θ是第二象限角,∴2k π+π2<θ<2k π+π(k ∈Z ),故k π+π4<θ2<k π+π2(k∈Z ).作出θ2所在范围如图所示.当2k π+π4<θ2<2k π+π2(k ∈Z )时,cos θ2<sin θ2<tan θ2. 当2k π+5π4<θ2<2k π+3π2(k ∈Z )时,sin θ2<cos θ2<tan θ2.。
高中数学 三角函数5部分25个考点100道典型题!

三角函数超全考点与题型分析第一部分三角函数定义【思维导图】【常见考法】考点一:终边相同的角1.终边在第二、四象限的角平分线上的角可表示为。
【答案】180135,k k Z⋅︒+︒∈【解析】角的终边在第二象限的角平分线上,可表示为:13601352180135k k α=⋅︒+︒=⋅︒+︒,k Z ∈,角的终边在第四象限的角平分线上,可表示为:2360315(21)180135k k α=⋅︒+︒=+⋅︒+︒,k Z ∈.故当角的终边在第二、四象限的角平分线上时,可表示为:180135k α=⋅︒+︒,k Z ∈.2.下列各组角中,终边相同的角是。
A.2k π与()2k k Z ππ+∈B.3±k ππ与()3k k Z π∈C.()21+k π与()()41k k Z π±∈D.6k ππ+与()6k k Z ππ±∈【答案】C【解析】对于A 选项,()2k k Z π∈表示2π的整数倍,()()2122k k k Z πππ++=∈表示2π的奇数倍,2k π与()2k k Z ππ+∈的终边不一定相同;对于B 选项,()()3133k k k Z πππ±±=∈ ,()31k k Z +∈表示除3余数为1的整数,()()31312k k k Z -=-+∈表示除3余数为2的整数,而()3k k Z π∈表示3π的整数倍,所以,,,33k x x k k Z x x k Z πππ⎧⎫⎧⎫=±∈=∈⎨⎬⎨⎬⎩⎭⎩⎭Ö,则3±k ππ与()3k k Z π∈的终边不一定相同;对于C 选项,对于()41k π±,取1k k Z =∈得()()14141k k ππ±=±,对于()21+k π,取2k k Z =∈得()()22121k k ππ+=+,()()()()12121241214222k k k k k k ππππ+-+=-=- ,()()()()1212124121422221k k k k k k ππππ--+=--=--均为2π的整数倍,则()21+k π与()()41k k Z π±∈的终边相同;对于D 选项,显然,66x x k k Z x x k k Z ππππ⎧⎫⎧⎫=+∈=±∈⎨⎬⎨⎬⎩⎭⎩⎭Ö,则6k ππ+与()6k k Z ππ±∈的终边不一定相同.故选:C.3.已知集合|22,42k k k Z ππαπαπ⎧⎫+≤≤+∈⎨⎬⎩⎭则角α的终边落在阴影处(包括边界)的区域是。
高中数学第七章三角函数7.2.2单位圆与三角函数线课时素养检测含解析第三册

课时素养检测四单位圆与三角函数线(30分钟60分)一、选择题(每小题4分,共24分,多选题全部选对得4分,选对但不全对的得2分,有选错的得0分)1。
角和角有相同的()A.正弦线B.余弦线C。
正切线 D.不能确定【解析】选A.因为与的终边关于y轴对称,故与有相同的正弦线。
2.设a=tan 35°,b=cos 55°,c=sin 23°,则()A.a>b〉cB.b>c〉aC。
c>b>a D.c〉a〉b【解析】选A。
由题可知,b=cos 55°=sin 35°,sin 35°>sin 23°,有b〉c,利用三角函数线比较tan 35°,sin 35°,如图,通过比较三角函数线可知,tan 35°〉sin 35°,则有a>b,综上,a〉b〉c。
【补偿训练】下列各式正确的是()A。
sin 1〉sin B。
sin 1〈sinC。
sin 1=sin D.sin 1≥sin【解析】选B.1和的终边均在第一象限,且的正弦线大于1的正弦线,则sin 1〈sin .3。
使sin x≤cos x成立的x的一个变化区间是()A. B.C.D。
[0,π]【解析】选A.当x的终边落在如图所示的阴影部分时,满足sin x ≤cos x.4。
(多选题)若tan x=,且-π<x〈2π,则满足条件的x的值为()A.或B。
或C。
-D。
—【解析】选AC.因为tan x=,在单位圆中画出正切线||=的角的终边为直线OT(如图),所以x=kπ+,k∈Z,又因为—π〈x<2π,所以x=—,,.5.在[0,2π]上,满足sin x≥的x的取值范围是()A. B.C.D。
【解析】选B.作直线y=与单位圆相交,如图中阴影部分即表示sin x≥的x的取值范围。
6。
下列不等式中,正确的是()A。
高中数学人教B版必修4 1.2 同步练习 《单位圆与三角函数线》(人教)

《单位圆与三角函数线》同步练习1、已知α(0<α<2π)的正弦线和余弦线长度相等,且符号相同,那么α的值为( )。
A .3π4或π4B .5π4或7π4C .π4或5π4D .π4或7π42、下列不等式中,成立的是( )。
A .sin1>sin2B .cos1<cos2C .tan1>tan2D .cot1<cot2 3、若α是第一象限角,则sin α+cos α的值与1的大小关系是( )。
A .sin α+cos α>1B .sin α+cos α=1C .sin α+cos α<1D .不能确定4、使sin x ≤cos x 成立的x 的一个区间是( )。
A .[-3π4,π4] B .[-π2,π2] C .[-π4,3π4] D .[0,π]5、利用单位圆,可得满足sin α<22,且α∈(0,π)的α的集合为___________。
6、sin π5与cos π5的大小关系是___________。
7、利用三角函数线,求sin.α < 12的角α 的范围. 8、确定下式的符号:sin 1-cos 1。
9、利用单位圆中的三角函数线求满足cos α≤-12的角α 的取值范围。
10、求满足下列条件的角x 的集合:(1) 已知tan x > 0,且sin x +cos x > 0 ;(2) 已知tan x < 0,且sin x -cos x < 0。
答案和解析1、C2、C3、A4、A5、{ α|0 < α < π4 或 3π4< α < π } 6、sin π5 < cos π57、⎩⎨⎧⎭⎬⎫α⎪⎪2k π+5π6<α<2k π+13π6,k ∈Z 首先在y 轴上找到 12,过此点作平行于x 轴的直线,交单位圆于P 1与P 2两点。
若sin α= 12 ,则α=2k π+π6 或α=2k π+56π(k ∈Z ),角α所对应的正弦线分别为M 1P 1、M 2P 2,当角2k π+π6 的终边按逆时针方向旋转至2k π+5π6 时,显然sin α > 12,故应舍去,所以α应取线OP 1和线OP 2以下的角,如图的阴影部分所示.故α的取值集合是⎩⎨⎧⎭⎬⎫α⎪⎪2k π+5π6<α<2k π+13π6,k ∈Z 。
(易错题)高中数学必修四第一章《三角函数》测试(包含答案解析)(2)

一、选择题1.在平面直角坐标系中,AB 是单位圆上的一段弧(如右图),点P 是圆弧AB 上的动点,角α以Ox 为始边,OP 为终边.以下结论正确的是( )A .tan α<cos α<sin αB .cos α<tan α<sin αC .sin α<cos α<tan αD .以上答案都不对2.已知函数()cos2sin 2f x x x =-,将()y f x =的图象向左平移a (0a >)个单位长度可以得到一个奇函数的图象,将()y f x =的图象向右平移b (0b >)个单位长度可以得到一个偶函数的图象,则a b -的最小值等于( ) A .0B .8π C .4π D .2π 3.声音是由物体振动产生的声波.我们听到的每个音都是由纯音合成的,纯音的数学模型是函数sin y A wt =.音有四要素:音调、响度、音长和音色,它们都与函数sin y A wt =中的参数有关,比如:响度与振幅有关,振幅越大响度越大,振幅越小响度越小;音调与频率有关,频率低的声音低沉,频率高的声音尖利.像我们平时听到乐音不只是一个音在响,而是许多音的结合,称为复合音.我们听到的声音函数是111sin sin 2sin 3sin 4234y x x x x =++++.结合上述材料及所学知识,你认为下列说法中正确的有( ).A .函数1111sin sin 2sin3sin 4sin100234100y x x x x x =+++++不具有奇偶性; B .函数111()sin sin 2sin3sin 4234f x x x x x =+++在区间,1616ππ⎡⎤-⎢⎥⎣⎦上单调递增;C .若某声音甲对应函数近似为111()sin sin 2sin3sin 4234f x x x x x =+++,则声音甲的响度一定比纯音1()sin 22h x x =响度大; D .若某声音甲对应函数近似为1()sin sin 22g x x x =+,则声音甲一定比纯音1()sin33h x x =更低沉.4.下列命题正确的是( )A .函数sin ||y x =是偶函数又是周期函数B .函数3tan lg3tan xy x+=-是奇函数C .函数tan 6y ax π⎛⎫=+ ⎪⎝⎭的最小正周期是a πD .函数cos(sin )y x =是奇函数 5.已知函数()sin 213f x x π⎛⎫=++ ⎪⎝⎭,下列说法错误的是( ) A .3π是函数()f x 的一个周期 B .函数()f x 的图象关于,13π⎛⎫⎪⎝⎭成中心对称 C .函数的一条对称轴为712x π= D .函数图象向左平移6π个单位后关于y 轴对称 6.函数3cos 2cos 2sin cos cos510y x x x ππ=-的递增区间是( ) A .2[,]105k k ππππ-+(k Z ∈) B .2[,]510k k ππππ-+ (k Z ∈) C .3[,]510k k ππππ-- (k Z ∈) D .37[,]2020k k ππππ-+ (k Z ∈) 7.675︒用弧度制表示为( ) A .114π B .134π C .154π D .174π 8.函数2()cos sin (R)f x x x x =+∈的最小值为( ) A .54B .1C .1-D .2-9.现有四个函数:①y =x |sin x |,②y =x 2cos x ,③y =x ·e x ;④1y x x=+的图象(部分)如下,但顺序被打乱,则按照从左到右将图象对应的函数序号安排正确的一组是( )A .①②③④B .①③②④C .②①③④D .③②①④10.设函数()sin()(0,||)f x x ωϕωϕπ=+><.若5()8f x f π⎛⎫≤ ⎪⎝⎭对任意的实数x 都成立,且1108f π⎛⎫= ⎪⎝⎭,()f x 在443,ππ⎛⎫-⎪⎝⎭单调,则( ) A .23ω=,12πϕ=B .23ω=,1112πϕ=- C .13ω=,1124πϕ=-D .13ω=,724πϕ= 11.函数1cos y x x=+的图象可能是( ) A . B .C .D .12.若函数)22()sin 23cos sin f x x x x =-的图像为E ,则下列结论正确的是( ) A .()f x 的最小正周期为2π B .对任意的x ∈R ,都有()()3f x f x π=-C .()f x 在7(,)1212ππ上是减函数D .由2sin 2y x =的图像向左平移3π个单位长度可以得到图像E 二、填空题13.2020年是苏颂诞辰1000周年,苏颂发明的水运仪象台被誉为世界上最早的天文钟.水运仪象台的原动轮叫枢轮,是一个直径约3.4米的水轮,它转一圈需要30分钟.如图,当点P 从枢轮最高处随枢轮开始转动时,退水壶内水面位于枢轮中心下方1.19米处.此时打开退水壶出水口,壶内水位以每分钟0.017米的速度下降,将枢轮转动视为匀速圆周运动,则点P 至少经过______分钟(结果取整数)进入水中.(参考数据:cos0.9815π≈,2cos0.9115π≈,cos 0.815π≈)14.已知函数()22cos f x x ω=-(0>ω)的图象关于点3,04π⎛⎫⎪⎝⎭对称,且()f x 在区间20,3π⎛⎫⎪⎝⎭上单调,则ω的值为______. 15.将函数()4cos 2f x x π⎛⎫=⎪⎝⎭与直线()1g x x =-的所有交点从左到右依次记为125,,...,A A A ,若P 点坐标为()0,3,则125...PA PA PA +++=____.16.某校运动会开幕式上举行升旗仪式,旗杆正好处在坡度15的看台的某一列的正前方,从这一列的第一排和最后一排测得旗杆顶部的仰角分别为60和30,第一排和最后一排的距离为106米(如图所示),旗杆底部与第一排在一个水平面上,若国歌长度约为50秒,升旗手应以__________(米 /秒)的速度匀速升旗.17.将函数sin y x =图像上所有点向左平移4π个单位,再将横坐标变为原来的1ω倍(0)>ω,纵坐标不变,得到函数()y f x =图像,若函数()y f x =在0,2π⎛⎫⎪⎝⎭上有且仅有一条对称轴和一个对称中心,则ω的取值范围为_______________.18.设函数()y f x =的定义域为D ,若对任意的1x ∈D ,总存在2x ∈D ,使得()()121f x f x ⋅=,则称函数()f x 具有性质M .下列结论:①函数3y x x =-具有性质M ; ②函数35x x y =+具有性质M ;③若函数()[]8log 2,0,y x x t =+∈具有性质M ,则510t =; ④若3sin y x a =+具有性质M ,则5a =. 其中正确结论的序号是____________.19.关于函数()sin |||sin |f x x x =+有下述四个结论: ①()f x 是偶函数;②()f x 在区间,2ππ⎛⎫⎪⎝⎭单调递增; ③()f x 在[],ππ-有4个零点;④()f x 的最大值为2; 其中所有正确结论的编号是_________. 20.给出下列命题: ①函数()4cos 23f x x π⎛⎫=+⎪⎝⎭的一个对称中心为5,012π⎛⎫-⎪⎝⎭; ②若α,β为第一象限角,且αβ>,则tan tan αβ>;③在ABC ∆中,内角A ,B ,C 所对的边分别为a ,b ,c ,若40a =,20b =,25B =︒,则ABC ∆必有两解.④函数sin 2y x =的图象向左平移4π个单位长度,得到sin 24y x π⎛⎫=+ ⎪⎝⎭的图象.其中正确命题的序号是 _________(把你认为正确的序号都填上).三、解答题21.已知函数()2cos 2cos 1(0)212212212x x x f x ωπωπωπω⎛⎫⎛⎫⎛⎫=++-++>⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭图象上相邻的两个最高点之间的距离为π. (1)求()f x 的单调增区间;(2)是否存在两个不同的实数1x ,20,2x π⎡⎤∈⎢⎥⎣⎦,使得点()()11,x f x ,()()22,x f x 关于8x π=的对称点都在函数cos y x x a =+的图象上,若存在,请求出实数a 的取值范围;若不存在,请说明理由.22.如图,在矩形OABC 中,22OA OC ==,将矩形OABC 绕着顶点O 逆时针旋转,得到矩形OA B C ''',记旋转的角度为θ,0,2πθ⎛⎫∈ ⎪⎝⎭旋转前后两个矩形公共部分的面积为()S θ.(1)求3S π⎛⎫⎪⎝⎭; (2)若()72S θ=,求sin θ. 23.已知函数()1tan ln1tan xf x x-=+.(1)判断函数()f x 的奇偶性,并证明;(2)若()()()1tan tan f xa x g x e x-=-在,04π⎛⎫- ⎪⎝⎭上有零点,求实数a 的取值范围. 24.函数()cos()0,02f x x πωϕωϕ⎛⎫=+><< ⎪⎝⎭的部分图象如图所示.(1)写出()f x 的解析式; (2)将函数()f x 的图象向右平移12π个单位后得到函数()g x 的图象,讨论关于x 的方程()3()0f xg x m -=(11)m -<≤在区间,2ππ⎡⎤-⎢⎥⎣⎦上的实数解的个数. 25.一只红蚂蚁与一只黑蚂蚁在一个圆(半径为1cm 的圆)的圆周上爬动,且两只蚂蚁均从点1,0A 同时逆时针匀速爬动,红蚂蚁每秒爬过α角,黑蚂蚁每秒爬过β角(其中0180αβ︒︒<<<).如果两只蚂蚁都在第14秒时回到A 点,并且在第2秒时均位于第二象限.(1)求α,β的值.(2)两只蚂蚁的爬行速度保持不变,若红蚂蚁从点A逆时针...匀速爬行,黑蚂蚁同时从点A顺时针...匀速爬行,求当它们从点A出发后第一次相遇时,红蚂蚁爬过的距离.26.海水受日月的引力,在一定的时候发生涨落的现象叫潮,一般地,早潮叫潮,晚潮叫汐.在通常情况下,船在涨潮时驶进航道,靠近码头;卸货后,在落潮时返回海洋.下面是某港口在某季节每天的时间与水深关系表:时刻0:001:002:003:004:005:00水深 5.000 6.2507.1657.5007.165 6.250时刻6:007:008:009:0010:0011:00水深 5.000 3.754 2.835 2.500 2.835 3.754时刻12:0013:0014:0015:0016:0017:00水深 5.000 6.2507.1657.5007.165 6.250时刻18:0019:0020:0021:0022:0023:00水深 5.000 3.754 2.835 2.500 2.835 3.754(1)这个港口的水深与时间的关系可用函数(,)近似描述,试求出这个函数解析式;(2)一条货船的吃水深度(船底与水面的距离)为5米,安全条例规定至少要有1.25米的安全间隙(船底与洋底的距离),利用(1)中的函数计算,该船何时能进入港口?在港口最多能呆多久?【参考答案】***试卷处理标记,请不要删除一、选择题1.D解析:D【分析】根据三者的符号可得sin cos ,sin tan αααα>>,利用作差法可得tan ,cos αα大小关系不确定,从而可得正确的选项. 【详解】由题设可得AB 上的动点P 的坐标为()cos ,sin αα且()()1122cos ,sin ,cos ,sin A B θθθθ,其中122πθαθπ<<<<,12324ππθθπ<<<<, 注意到当13,4παθ⎛⎤∈ ⎥⎝⎦,tan 1α≤-,故按如下分类讨论: 若1324ππθα<<≤,则sin 0,cos 1,tan 1ααα>>-≤-, 故sin cos tan ααα>>.若234παθ<≤,则sin 0,cos 0,tan 0ααα><<,且20sin sin 2θα<≤<所以2222sin sin 1sin sin 1θθαα+-≤+-<,因为234πθπ<<,故20sin θ<<2221sin sin 1θθ-<+-<, 所以222sin sin 1θθ+-有正有负,所以2sin sin 1αα+-有正有负,而2sin sin 1tan cos cos ααααα+--=,cos 0α<,故tan cos αα-有正有负,故tan ,cos αα大小关系不确定. 故选:D. 【点睛】方法点睛:三角函数式的大小比较,可先依据终边的位置判断出它们的符号,也可以利用作差作商法来讨论,注意根据三角函数值的范围确定代数式的符号.2.A解析:A 【分析】先整理函数,再根据平移后函数的奇偶性得到a ,b 的值,即可得结果. 【详解】解:函数()cos 2sin 224f x x x x π⎛⎫=-=+ ⎪⎝⎭,函数()24f x x π⎛⎫=+ ⎪⎝⎭的图象向左平移a 个单位得到()224g x x a π⎛⎫=++ ⎪⎝⎭,又因为函数为奇函数,则242a k πππ+=+(k Z ∈),整理得28k a ππ=+(k Z ∈);函数()24f x x π⎛⎫=+ ⎪⎝⎭的图象向右平移b 个单位得到()224h x x b π⎛⎫=-+ ⎪⎝⎭,由于得到的函数的图象为偶函数,2=4b k ππ-+-,=,()82k b k Z ππ+∈; 当0k =时,min 0a b -= 故选:A. 【点睛】本题考查了三角函数的平移变换和奇偶性,属于中档题.3.B解析:B 【分析】A.结合奇偶性的定义判断即可B.用正弦型函数的单调性作出判断 CD 可取特值说明 【详解】A. ()1111sin sin 2sin 3sin 4sin100234100f x x x x x x =+++++ ()()()()()()()1111sin sin 2sin 3sin 4sin 100234100f x x x x x x f x -=-+-+-+-++-=-,()f x 为奇函数B. ,1616x ππ⎡⎤∈-⎢⎥⎣⎦时,2,88x ππ⎡⎤∈-⎢⎥⎣⎦,333,1616x ππ⎡⎤∈-⎢⎥⎣⎦,4,44x ππ⎡⎤∈-⎢⎥⎣⎦,故sin ,sin 2,sin 3,sin 4x x x x 在,1616ππ⎡⎤-⎢⎥⎣⎦上均为增函数故111()sin sin 2sin3sin 4234f x x x x x =+++在区间,1616ππ⎡⎤-⎢⎥⎣⎦上单调递增. C. ()()11()sin sin 3sin 434g x f x h x x x x =-=++()()11()sin sin 3sin 434g x f x h x x x x =-=++()()11()sin sin 3sin 4034g f h ππππππ=-=++=故声音甲的响度不一定比纯音1()sin 22h x x =响度大 D. ()11()()sin sin 2sin 323h x g x h x x x x =-=+- ()11()()sin sin 2sin 3023h g h ππππππ=-=+-=甲不一定比纯音1()sin33h x x =更低沉 故选:B 【点睛】“新定义”主要是指即时定义新概念、新公式、新定理、新法则、新运算五种,然后根据此新定义去解决问题,有时还需要用类比的方法去理解新的定义,这样有助于对新定义的透彻理解.但是,透过现象看本质,它们考查的还是基础数学知识,所以说“新题”不一定是“难题”,掌握好三基,以不变应万变才是制胜法宝.4.B解析:B 【分析】根据函数的奇偶性与周期性判断各个选项. 【详解】sin y x =是偶函数,但不是周期函数,A 错误;对函数()f x =0>得tan x <<,33k x k k Z ππππ-<<+∈,定义域关于原点对称,()()f x f x -==-=-,函数是奇函数,B 正确;tan 6y ax π⎛⎫=+ ⎪⎝⎭的最小正周期是a π,C 错误;记()g x cos(sin )x =,定义域是R ,()()cos sin cos(sin )cos(sin )()g x x x x f x -=-=-==⎡⎤⎣⎦,()f x 是偶函数,D 错误.故选:B . 【点睛】关键点点睛:本题考查函数的奇偶性与周期性.判断奇偶性一般用奇偶性的定义进行判断.tan y x ω=的最小正周期是T πω=,sin()y x ωϕ=+的最小正周期是2πω.5.D【分析】根据正弦函数性质周期,对称性,图象变换判断各选项. 【详解】函数()f x 的最小正周期为π,故3π是函数()f x 的一个周期,A 正确; 当3x π=时,sin 203x π⎛⎫+= ⎪⎝⎭,故B 正确; 当712x π=时,函数()f x 取得最小值,712x π=为对称轴,C 正确; 函数图象向左平移6π个单位后函数解析式为sin 2163y x ππ⎡⎤⎛⎫=+++ ⎪⎢⎥⎝⎭⎣⎦,即2sin 213y x π⎛⎫=++ ⎪⎝⎭,不是偶函数,图象不关于y 轴对称,D 错误. 故选:D. 【点睛】本题考查正弦型函数的性质,考查周期的概念,对称轴与对称中心、奇偶性等性质,属于基础题.6.C解析:C 【分析】利用三角恒等变换的公式,化简得由函数cos(2)5y x π=+,再根据余弦型函数的性质,即可求解函数的单调递增区间,得到答案. 【详解】由函数3cos 2cos2sin cos cos cos 2cos sin 2sin cos(2)510555y x x x x x x πππππ=-=-=+, 令222,5k x k k Z ππππ-+≤+≤∈,整理得3,510k x k k Z ππππ-+≤≤-+∈, 所以函数的单调递增区间为3[,],510k k k Z ππππ-+-+∈,故选C. 【点睛】本题主要考查了三角恒等变换的化简,以及三角函数的性质的应用,其中解答中根据三角恒等变换的公式,化简得到函数的解析式,再利用三角函数的性质求解是解答的关键,着重考查了运算与求解能力,属于基础题.7.C解析:C 【分析】根据弧度制与角度制的关系求解即可.因为180π︒=弧度, 所以156********4ππ︒=⨯=, 故选:C8.C解析:C 【分析】由平方关系化为sin x 的函数,换元后利用二次函数性质得最小值. 【详解】由已知2()1sin sin f x x x =-+,令sin t x =,则[1,1]t ∈-,2()()1f x g t t t ==-++215()24t =--+,∵[1,1]t ∈-,∴1t =-时,min ()1g t =-. 故选:C . 【点睛】本题考查与三角函数有关的复合函数的最值.求三角函数的最值有两种类型:(1)利用三角恒等变换公式化函数为()sin()f x A x k ωϕ=++形式,然后由正弦函数性质得最值或值域.(2)转化为关于sin x (或cos x )的函数,用换元法,设sin t x =(或cos t x =)变成关于t 的二次函数,利用二次函数的性质求得最值或值域.9.D解析:D 【分析】根据各函数的特征如函数值的正负,单调性、奇偶性,定义域、值域等进行判断. 【详解】左边第一个图象中0x <时,0y <,只有③满足,此时只有D 可选,实际上,左边第二个图象关于y 轴对称,是偶函数,只有②满足,而0x >时,10y x x=+>恒成立,只有最右边的图象满足,由此也可得顺序是③②①④,选D . 故选:D . 【点睛】思路点睛:本题考查由函数解析式选择函数图象,解题时可两者结合,由函数解析式和图象分别确定函数的性质,如奇偶性、单调性、函数值的正负,特殊的函数值,变化趋势等等,两者对照可得结论.10.A解析:A 【分析】5()8f x f π⎛⎫≤⎪⎝⎭对任意的实数x 都成立,可得 58x π=时函数取得最大值,则函数满足518f π⎛⎫= ⎪⎝⎭,1108f π⎛⎫= ⎪⎝⎭,且()f x 在443,ππ⎛⎫-⎪⎝⎭单调,再利用排除法可得答案. 【详解】 因为5()8f x f π⎛⎫≤⎪⎝⎭对任意的实数x 都成立,则58x π=时函数取得最大值, 所以函数满足518f π⎛⎫= ⎪⎝⎭,1108f π⎛⎫= ⎪⎝⎭,且()f x 在443,ππ⎛⎫- ⎪⎝⎭单调, 对于A ,若23ω=,12πϕ=,可得2()sin 312f x x π⎛⎫=+ ⎪⎝⎭,5sin 182f ππ⎛⎫== ⎪⎝⎭,11sin 08f ππ⎛⎫== ⎪⎝⎭,3254412,,4,31222x x πππππππ⎛⎫⎛⎫⎡⎤∈-⇒+∈-⊆- ⎪⎪⎢⎥⎝⎭⎝⎭⎣⎦,则2()sin 312f x x π⎛⎫=+ ⎪⎝⎭在443,ππ⎛⎫- ⎪⎝⎭单调递增,故A 符合题意; 对于B ,若23ω=,1112πϕ=-,可得211()sin 312f x x π⎛⎫=- ⎪⎝⎭,5sin 1182f ππ⎛⎫⎛⎫=-=-≠ ⎪ ⎪⎝⎭⎝⎭,故B 不符合题意; 对于C ,若13ω=,1124πϕ=-,可得111()sin 324f x x π⎛⎫=-⎪⎝⎭,5sin 1842f ππ⎛⎫⎛⎫=-=-≠ ⎪ ⎪⎝⎭⎝⎭,故C 不符合题意; 对于D ,若13ω=,724πϕ=,可得17()sin 324f x x π⎛⎫=+ ⎪⎝⎭,113sin 084f ππ⎛⎫==≠ ⎪⎝⎭,故D 不符合题意; 故选:A. 【点睛】方法点睛:特殊法是“小题小做”的重要策略,排除法解答选择题是高中数学一种常见的解题思路和方法,这种方法即可以提高做题速度和效率,又能提高准确性,这种方法主要适合下列题型:(1)求值问题(可将选项逐个验证);(2)求范围问题(可在选项中取特殊值,逐一排除);(3)图象问题(可以用函数性质及特殊点排除);(4)解方程、求解析式、求通项、求前n 项和公式问题等等.11.C解析:C 【分析】利用函数的奇偶性和特殊的函数值的正负排除错误选项. 【详解】函数定义域是{|0}x x ≠,关于原点对称,记1()cos f x x x=+,则11()cos()cos f x x x x x -=-+=+-()f x =,是偶函数,排除BD , 11()cos 10f ππππ=+=-+<,排除A .故选:C . 【点睛】思路点睛:函数图象的辨识可从以下方面入手:(1)从函数的定义域,判断图象的左右位置;从函数的值域,判断图象的上下位置. (2)从函数的单调性,判断图象的变化趋势; (3)从函数的奇偶性,判断图象的对称性; (4)从函数的特征点,排除不合要求的图象.12.C解析:C 【分析】利用二倍角和辅助角公式化简函数为()2sin(2+)3f x x π=;根据正弦型函数的性质验证选项得解 【详解】()sin 222sin(2+)3f x x x x π==()f x 最小正周期22T ππ==,A 错误; ()2sin[2()+]2sin(2)2sin 2333f x x x x ππππ-=-=-=,B 错误; 当7(,)1212x ππ∈时,32(,)322x πππ+∈ ()f x ∴在7(,)1212ππ上是减函数,C 正确; 将2sin 2y x =向左平移3π个单位长度得到22sin[2()]2sin(2)33y x x ππ=-=-,D 错误. 故选:C 【点睛】本题考查正弦型函数性质的相关命题的辨析,涉及到二倍角和辅助角公式化简三角函数、正弦型函数的周期性、对称性和单调区间的求解、三角函数平移变换的应用等知识;关键是能够熟练掌握整体对应的方法,通过代入检验,结合正弦函数图象可确定正弦型函数的性质.二、填空题13.【分析】根据题意作出示意图结合枢纽中心到初始水平面的高度水面下降的高度刚进入水面时枢纽中心到水面的高度这三者间的关系列出关于运动时间的方程结合所给数据分析的取值即可【详解】设至少经过分钟进入水中如下 解析:13【分析】根据题意作出示意图,结合枢纽中心到初始水平面的高度、水面下降的高度、P 刚进入水面时枢纽中心到水面的高度这三者间的关系,列出关于运动时间x 的方程,结合所给数据分析x 的取值即可. 【详解】设至少经过x 分钟,P 进入水中,如下图P '为刚好进入水中的位置,由条件可知: 1.7, 1.19OP OA '==,P 转过的角度为23015x x ππ⋅=,所以15xP OB ππ'∠=-,因为OA AB OB +=,所以1.170.017 1.7cos 15x x ππ⎛⎫+=-⎪⎝⎭,所以70100cos 15x x ππ⎛⎫+=- ⎪⎝⎭(*),根据所给数据可知:当12x =时,(*)的左边82=,右边81=,此时左边>右边,说明P 还未进入水中,当13x =时,(*)的左边83=,右边91=,此时左边<右边,说明P 已经进入水中, 当14x =时,(*)的左边84=,右边98=,此时左边<右边,说明P 已经进入水中, 由上可知:x 的取值介于12和13之间,又因为x 的结果取整数,所以13x =, 故答案为:13.【点睛】关键点点睛:解答本题的关键是通过示意图寻找到枢纽中心到水面的高度与水面下降高度之间的等量关系,通过所给的数据去分析方程的解也是很重要的一步.14.【分析】根据函数图像的对称点得到的表达式根据在区间上单调得到的范围从而得到的范围再得到的值【详解】函数的图像关于点对称所以即得到在区间上单调所以即所以所以而所以故答案为:【点睛】本题考查根据余弦型函解析:23【分析】根据函数图像的对称点,得到ω的表达式,根据()f x 在区间20,3π⎛⎫⎪⎝⎭上单调,得到T 的范围,从而得到ω的范围,再得到ω的值. 【详解】函数()f x x ω=-的图像关于点3,04π⎛⎫⎪⎝⎭对称,所以304πω⎛⎫-= ⎪⎝⎭,即342k ππωπ=+,k ∈Z ,得到4233k ω=+,k ∈Z , ()f x 在区间20,3π⎛⎫⎪⎝⎭上单调, 所以223T π≥,即43T π≥, 所以243ππω≥,所以32ω≤,而0>ω,所以0k =,23ω=.故答案为:23.【点睛】本题考查根据余弦型函数的对称中心求参数的值,根据余弦型函数的周期求参数的值,属于中档题.15.10【分析】由函数与直线的图象可知它们都关于点中心对称再由向量的加法运算得最后求得向量的模【详解】由函数与直线的图象可知它们都关于点中心对称所以【点睛】本题以三角函数和直线的中心对称为背景与平面向量解析:10 【分析】由函数()4cos 2f x x π⎛⎫=⎪⎝⎭与直线()1g x x =-的图象可知,它们都关于点3(1,0)A 中心对称,再由向量的加法运算得1253...5PA PA PA PA +++=,最后求得向量的模. 【详解】由函数()4cos 2f x x π⎛⎫=⎪⎝⎭与直线()1g x x =-的图象可知, 它们都关于点3(1,0)A 中心对称,所以1253...5||5(010PA PA PA PA +++===. 【点睛】本题以三角函数和直线的中心对称为背景,与平面向量进行交会,考查运用数形结合思想解决问题的能力.16.6【分析】根据题意可求得然后利用正弦定理求得最后在中利用求得答案【详解】在中由正弦定理得;在中(米)所以升旗速度(米/秒)故答案为06【点睛】本题主要考查了解三角形的实际应用此类问题的解决关键是建立解析:6 【分析】根据题意可求得,45BDC ∠=︒,30CBD ∠=︒,CD =BC ,最后在Rt ABC 中利用sin60AB BC =︒求得答案. 【详解】在BCD 中,45BDC ∠=︒,30CBD ∠=︒,CD =由正弦定理,得sin 45sin 30CD BC ︒==︒在Rt ABC 中,sin?6030AB BC =︒==(米). 所以升旗速度300.650t AB v ===(米/秒). 故答案为0.6. 【点睛】本题主要考查了解三角形的实际应用.此类问题的解决关键是建立数学模型,把实际问题转化成数学问题,利用所学知识解决,属于中档题.17.【分析】根据图象变换求出解析式再结合正弦函数的性质建立不等式即可求出的取值范围【详解】将函数图像上所有点向左平移个单位得到的图象再将横坐标变为原来的倍纵坐标不变得函数在上有且仅有一条对称轴和一个对称解析:35,22⎛⎤⎥⎝⎦【分析】根据图象变换求出()f x 解析式,再结合正弦函数的性质建立不等式,即可求出ω的取值范围. 【详解】将函数sin y x =图像上所有点向左平移4π个单位,得到sin 4y x π⎛⎫=+ ⎪⎝⎭的图象,再将横坐标变为原来的1ω倍(0)>ω,纵坐标不变,得()sin 4y f x x πω⎛⎫==+⎪⎝⎭, 函数()y f x =在0,2π⎛⎫⎪⎝⎭上有且仅有一条对称轴和一个对称中心, 由0,2x π⎛⎫∈ ⎪⎝⎭,得,4424x,3242,解得3522. 故答案为:35,22⎛⎤ ⎥⎝⎦. 【点睛】本题考查三角函数的图象变换,以及根据相关性质求参数,属于中档题.18.②③【分析】根据函数性质的定义结合每个选项中具体函数的定义即可判断【详解】①当时显然不存在是的故①错误;②是单调增函数其值域为对任意的总存在使得故②正确;③函数在上是单调增函数其值域为要使得其具有性解析:②③ 【分析】根据函数性质M 的定义,结合每个选项中具体函数的定义,即可判断. 【详解】①当10x =时,显然不存在2x ,是的()()121f x f x =,故①错误; ②35x x y =+是单调增函数,其值域为()0,∞+,对任意的1x ∈D ,总存在2x ∈D ,使得()()121f x f x ⋅=,故②正确; ③函数()8log 2y x =+在[]0,t 上是单调增函数,其值域为()88log 2,log 2t ⎡⎤+⎣⎦要使得其具有M 性质,则88881log 2log (2)1log (2)log 2t t ⎧≤⎪+⎪⎨⎪+≤⎪⎩,即()88log 2log 21t ⨯+=,解得()328t +=,故510t =.故③正确;④若函数3y sinx a =+具有性质M ,一方面函数值不可能为零,也即30sinx a +≠对任意的x 恒成立, 解得3a >或3a <-,在此条件下, 另一方面,13y sinx a=+的值域是3y sinx a =+值域的子集.3y sinx a =+的值域为[]3,3a a -+,13y sinx a =+的值域为11,33a a ⎡⎤⎢⎥+-⎣⎦要满足题意,只需113,333a a a a ≥-≤++-,解得291a -=,故a =.故④错误. 综上所述,正确的是②③. 故答案为:②③ 【点睛】本题考查函数新定义问题,涉及正弦函数值域的求解,对数函数值域的求解,属综合中档题.19.①④【分析】结合题意得出函数的奇偶性根据奇偶性研究函数在时的性质对结论逐一判断即可【详解】解:∵定义域为∴∴函数是偶函数故①对;当时∴由正弦函数的单调性可知函数在区间上单调递减故②错;当时由得根据偶解析:①④ 【分析】结合题意,得出函数的奇偶性,根据奇偶性研究函数在0x >时的性质对结论逐一判断即可. 【详解】解:∵()sin |||sin |f x x x =+,定义域为R ,∴()()sin |||sin |f x x x -=-+-sin sin ()x x f x =+=, ∴函数()f x 是偶函数,故①对;当[]0,x π∈时,()sin |||sin |f x x x =+sin sin 2sin x x x =+=, ∴由正弦函数的单调性可知,函数()f x 在区间,2ππ⎛⎫⎪⎝⎭上单调递减,故②错; 当[]0,x π∈时,由()2sin 0f x x ==得0x =,x π=,根据偶函数的图象和性质可得,()f x 在[),0π-上有1个零点x π=- , ∴()f x 在[],ππ-有3个零点,故③错;当0x ≥时,()sin |||sin |f x x x =+sin sin x x =+2sin ,sin 00,sin 0x x x ≥⎧=⎨<⎩,根据奇偶性可得函数()f x 的图象如图,∴当sin 1x =时,函数()f x 有最大值()max 2f x =,故④对; 故答案为:①④. 【点睛】本题主要考查与三角函数有关的命题的真假判断,结合绝对值的应用以及利用三角函数的性质是解决本题的关键,属于中档题.20.①③【分析】分别利用余弦函数的对称性正切函数的单调性正弦定理三角函数图象变换等知识对各个命题判断【详解】①令是函数的一个对称中心①正确;②若它们为第一象限角且但②错;③在中内角所对的边分别为若∵∴∴解析:①③ 【分析】分别利用余弦函数的对称性,正切函数的单调性,正弦定理,三角函数图象变换等知识对各个命题判断. 【详解】 ①,令55()4cos()4cos()012632f ππππ-=-+=-=,5,012π⎛⎫- ⎪⎝⎭是函数()4cos 23f x x π⎛⎫=+ ⎪⎝⎭的一个对称中心,①正确;②若136απ=,3πβ=,它们为第一象限角,且αβ>,但3tan tan 3αβ=<=②错;③在ABC ∆中,内角A ,B ,C 所对的边分别为a ,b ,c ,若40a =,20b =,25B =︒,sin sin 2sin 251a BA b==︒<,∵b a <,∴B A <,∴A 可能为锐角,也可能为钝角,则ABC ∆有两解,③正确;④函数sin 2y x =的图象向左平移4π个单位长度,得到sin 2()sin(2)42y x x ππ=+=+的图象,④错.故答案为:①③. 【点睛】本题考查命题的真假判断,掌握三角函数的图象与性质是解题关键.本题需要掌握余弦函数的对称性,正切函数的单调性,正弦定理,三角函数图象变换等知识,属于中档题.三、解答题21.(1)单调增区间为,44k k ππππ⎡⎤-++⎢⎥⎣⎦,k Z ∈;(2)存在,).【分析】(1)先对函数化简得()2sin f x x ω=,由函数图像上相邻的两个最高点之间的距离为π,可得函数的周期为π,从而由周期公式可得2ω=,则()2sin 2f x x =,由22222k x k ππππ-+≤≤+,可求得()f x 的单调增区间;(2)由题意得点()(),x f x 关于8x π=对称点为,2sin 24x x π⎛⎫-⎪⎝⎭,在2y x a =+上,所以2sin 22x x a =,由此可得方程()sin 23a x θ-=在0,2π⎡⎤⎢⎥⎣⎦上有两个不同的解1x ,2x ,其中sin 3θ=,2cos 3θ=,只要函数sin(2)y x θ=-的图像与直线3a y =在0,2π⎡⎤⎢⎥⎣⎦上有两个不同的交点即可 【详解】(1)函数()2cos 2cos 1212212212x x x f x ωπωπωπ⎛⎫⎛⎫⎛⎫=++-++⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭cos 2sin 2sin 6666x x x x ππππωωωω⎛⎫⎛⎫⎛⎫=+-+=+-= ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭由题意,最小正周期T π=,即2||T ππω==, 因为0>ω,所以2ω=,即有()2sin 2f x x =, 令22222k x k ππππ-+≤≤+,解得44k x k ππππ-+≤≤+,从而得()f x 的单调增区间为,44k k ππππ⎡⎤-++⎢⎥⎣⎦,k Z ∈ (2)由题意,点()(),x f x 关于8x π=对称点为,2sin 24x x π⎛⎫-⎪⎝⎭,在2y x a =+上,有:22sin 22x a x π⎛⎫-+= ⎪⎝⎭,即方程2sin 22x x a =,即方程()sin 23a x θ-=在0,2π⎡⎤⎢⎥⎣⎦上有两个不同的解1x ,2x ,其中sin θ=,2cos 3θ=,θ为锐角当0,42x πθ⎡⎤∈+⎢⎥⎣⎦时,函数sin(2)y x θ=-单调递增,且当0x =时,sin(2)sin()sin 3x θθθ-=-=-=-; 当42x πθ=+时,sin(2)sin12x πθ-==,所以13y -≤≤, 当,422x πθπ⎡⎤∈+⎢⎥⎣⎦时,函数sin(2)y x θ=-单调递减,且当2x π=时,sin(2)sin()sin x θπθθ-=-==1y ≤≤, 所以要使方程()sin 23a x θ-=在0,2π⎡⎤⎢⎥⎣⎦上有两个不同的解,即函数sin(2)y x θ=-的图像与直线3a y =在0,2π⎡⎤⎢⎥⎣⎦上有两个不同的交点,13a≤<3a <; 综上所述,在0,2π⎡⎤⎢⎥⎣⎦上存在两个不同的实数1x ,2x 满足条件,此时a 的取值范围是). 【点睛】关键点点睛:此题考查三角函数的恒等变换,考查三角函数的图像和性质,解题的关键是把点()()11,x f x ,()()22,x f x 关于8x π=的对称点都在函数cos y x x a =+的图象上,转化为点()(),x f x 关于8x π=对称点为,2sin 24x x π⎛⎫-⎪⎝⎭,在2y x a =+上,从而可得方程()sin 23a x θ-=在0,2π⎡⎤⎢⎥⎣⎦上有两个不同的解1x ,2x ,再转化为函数sin(2)y x θ=-的图像与直线3a y =在0,2π⎡⎤⎢⎥⎣⎦上有两个不同的交点,属于中档题 22.(1)336S π⎛⎫= ⎪⎝⎭;(2)1sin 3θ=. 【分析】(1)作出图形,可知公共部分区域为直角三角形,计算出两直角边的长,由此可求得该直角三角形的面积; (2)分6πθ=、06πθ<<、62ππθ<<三种情况讨论,求出()S θ的表达式,结合()728S θ=可求得sin θ的值. 【详解】 (1)当3πθ=时,A '点在矩形OABC 外部,公共部分形状为三角形,设A O BC D '⋂=,则6COD π∠=,3tan63CD CO π==, 则11331322S CD CO π⎛⎫=⨯⨯=⨯⨯=⎪⎝⎭;(2)①当6πθ=时,点A '在线段BC 上,此时,223A C A O OC ''-=113136222S OC A C π⎛⎫'=⨯=⨯=⎪⎝⎭; ②当06πθ<<时,公共部分为四边形,A '点在矩形OABC 内部,过点A '作线段AB 的平行线,分别交线段AO 、BC 于点E 、F ,设A B BC G ''⋂=,则有如下长度:2cos OE θ=,22cos AE θ=-,2sin A E θ'=,12sin A F θ'=-,()12sin tan FG θθ=-,则()OEA A FG OABC AEFB S S S S S θ''=---△△矩形矩形, 即()()()()111222cos 2cos 2sin 12sin 12sin tan 22S θθθθθθθ=⨯---⨯⨯-⨯-- ()2sin 12sin 45sin 2cos 2sin cos 2cos 2cos θθθθθθθθ--=--=,由题知45sin 722cos θθ-=,两边同时平方得221640sin 25sin 494cos 32θθθ-+=, 由22cos 1sin θθ=-,整理得2249sin 320sin 790θθ-+=,即()()3sin 183sin 790θθ--=,因为06πθ<<,所以1sin 2θ<,故1sin 3θ=; ③当62ππθ<<时,公共部分为三角形,且()13721362S S πθ⎛⎫<=⨯=< ⎪⎝⎭,不合题意; 综上所述,1sin 3θ=. 【点睛】关键点点睛:解决本题第二问的关键就是找出θ的临界情况,然后对θ的取值进行分类讨论,确定公共区域的形状,计算求出()S θ的表达式,结合已知条件求解sin θ的值. 23.(1)函数()f x 为奇函数,证明见解析;(2)(),0-∞. 【分析】(1)求出函数()f x 的定义域,计算得出()f x -与()f x 之间的关系,由此可得出结论;(2)由,04x π⎛⎫∈- ⎪⎝⎭可得出1tan 0x -<<,1tan 0x ->,利用()0g x =可得出tan 1tan x a x =+,求出函数tan 1tan x y x =+在,04π⎛⎫- ⎪⎝⎭上的值域,由此可得出实数a 的取值范围. 【详解】(1)对于函数()1tan ln1tan x f x x -=+,有1tan 01tan xx->+,即tan 10tan 1x x -<+,解得1tan 1x -<<,解得()44k x k k Z ππππ-<<+∈,所以,函数()f x 的定义域为(),44k k k ππππ⎛⎫-+∈ ⎪⎝⎭Z , ()()()()11tan 1tan 1tan 1tan ln ln ln ln 1tan 1tan 1tan 1tan x x x x f x f x x x x x ---+--⎛⎫-====-=- ⎪+--++⎝⎭, 所以,函数()f x 为奇函数; (2)()()()()1tan 1tan 1tan tan 1tan tan f x a x a x x g x e x x x---=-=-+, 04x π-<<,则1tan 0x -<<,1tan 0x ->,所以,0tan 11x <+<,令()0g x =,可得()tan 11tan 1101tan tan 1tan 1x xa x x x +-===-<+++, 所以,实数a 的取值范围是(),0-∞. 【点睛】方法点睛:已知函数有零点(方程有根)求参数值(取值范围)常用的方法: (1)直接法:直接求解方程得到方程的根,再通过解不等式确定参数范围; (2)分离参数法:先将参数分离,转化成求函数的值域问题加以解决;(3)数形结合法:先对解析式变形,进而构造两个函数,然后在同一平面直角坐标系中画出函数的图象,利用数形结合的方法求解. 24.(1)()cos(2)6f x x π=+;(2)见解析.【分析】(1)根据图象求出周期,再根据最低点可求ϕ,从而得到函数解析式. (2)求出()g x 的解析式,故方程可化为cos 206m x π⎛⎫---= ⎪⎝⎭,可通过直线y m =-与cos 26y x π⎛⎫=- ⎪⎝⎭ 的图象的交点的个数解决方程的解的个数.【详解】(1)由函数的图象可得()f x 的周期为2236πππ⎛⎫⨯-=⎪⎝⎭,故22πωπ==,。
高中数学-单位圆与三角函数线练习

高中数学-单位圆与三角函数线练习(限时:10分钟)1.已知α(0<α<2π)的正弦线和余弦线相等,且符号相同,那么α的值为( ) A.3π4或π4 B.5π4或7π4 C.π4或5π4 D.π4或7π4答案:C2.已知角α的正弦线和余弦线是符号相反、长度相等的有向线段,则α的终边在( ) A .第一象限的角平分线上 B .第四象限的角平分线上 C .第二、四象限的角平分线上 D .第一、三象限的角平分线上解析:由条件知sin α=-cos α,α的终边应在第二、四象限的角平分线上. 答案:C3.若α是第一象限角,则sin α+cos α的值与1的大小关系是( ) A .sin α+cos α>1 B .sin α+cos α=1 C .sin α+cos α<1 D .不能确定解析:作出α的正弦线和余弦线,由三角形“任意两边之和大于第三边”的性质可知sin α+cos α>1.答案:A4.若π4<θ<π2,则下列不等式成立的是( )A .sin θ>cos θ>tan θB .cos θ>tan θ>sin θC .sin θ>tan θ>cos θD .tan θ>sin θ>cos θ解析:如图,由三角函数线可知,AT >PM >OP ,即tan θ>sin θ>cos θ答案:D5.已知π4<x <π2,a =21-sin x ,b =2cos x ,c =2tan x,试比较a 、b 、c 的大小.解析:如图所示,在单位圆中MP 、OM 、AT 分别是x 的正弦线、余弦线、正切线.在△OMP 中,OM >OP -MP 即cos x >1-sin x 又∵AT >OA ,∴tan x >1 ∴tan x >cos x >1-sin x , ∴2tan x>2cos x>21-sin x∴c >b >a(限时:30分钟)1.在[0,2π]上满足sin x ≥12的x 的取值范围是( )A.⎣⎢⎡⎦⎥⎤0,π6B.⎣⎢⎡⎦⎥⎤π6,5π6C.⎣⎢⎡⎦⎥⎤π6,2π3D.⎣⎢⎡⎦⎥⎤5π6,π解析:可以直接用特殊角来验证.取x =π6,则sin x =12≥12成立,故排除D ;再取x =π2,则sin x =1≥12成立,排除A ;再取x =5π6,则sin x =sin 5π6=12≥12成立,故选B.答案:B2.设a =sin(-1),b =cos(-1),c =tan(-1),则有( ) A .a <b <c B .b <a <c C .c <a <b D .a <c <b解析:如图作出角α=-1 rad 的正弦线、余弦线及正切线,显然b =cos(-1)=OM >0,c =tan(-1)<a =sin(-1)<0,即c <a <b .答案:C3.在(0,2π)内,使sin x >cos x 成立的x 的取值范围是( ) A.⎝⎛⎭⎪⎫π4,π2∪⎝ ⎛⎭⎪⎫π,54π B.⎝ ⎛⎭⎪⎫π4,π C.⎝ ⎛⎭⎪⎫π4,54π D.⎝ ⎛⎭⎪⎫π4,π∪⎝⎛⎭⎪⎫54π,32π解析:如图,当π4<α<5π4时,sin α>cos α,故选C.答案:C4.cos1,sin1,tan1的大小关系是( ) A .sin1<cos1<tan1 B .tan1<sin1<cos1 C .cos1<tan1<sin1 D .cos1<sin1<tan1解析:如图,有OM <MP <AT ,即cos1<sin1<tan1. 答案:D5.下列关系中正确的是( ) A .sin11°<cos10°<sin12° B .sin12°<sin11°<cos10° C .sin11°<sin 12°<cos10°D .sin12°<cos10°<sin11°解析:在单位圆中画出角12°,11°的相应正弦线,10°的相应余弦线,直接观察可知选C.答案:C6.在(0,2π)内使cos x >sin x >tan x 成立的x 的取值范围是( ) A.⎝⎛⎭⎪⎫π4,3π4 B.⎝ ⎛⎭⎪⎫5π4,3π2 C.⎝ ⎛⎭⎪⎫3π2,2π D.⎣⎢⎡⎦⎥⎤3π2,7π4解析:在同一个单位圆中分别作出正弦线、余弦线、正切线,即可看出. 答案:C7.若α、β为第二象限角,且sin α>sin β,则cos α与cos β的大小关系为__________. 解析:如图,显然有cos α>cos β. 答案:cos α>cos β 8.若θ∈⎝⎛⎭⎪⎫3π4,π,则下列各式错误的是________.①sin θ+cos θ<0; ②sin θ-cos θ>0; ③|sin θ|<|cos θ|; ④sin θ+cos θ>0.解析:若θ∈⎝ ⎛⎭⎪⎫3π4,π,则sin θ>0,cos θ<0,sin θ<|cos θ|,所以sin θ+cos θ<0.答案:④9.函数y =sin x +cos x -12的定义域是________.解析:由题意得⎩⎪⎨⎪⎧sin x ≥0,cos x ≥12,利用单位圆中的三角函数线得⎩⎪⎨⎪⎧2k π≤x ≤2k π+πk ∈Z ,2k π-π3≤x ≤2k π+π3k ∈Z .解得⎩⎨⎧x ⎪⎪⎪⎭⎬⎫2k π≤x ≤2k π+π3,k ∈Z .答案:⎩⎨⎧x ⎪⎪⎪⎭⎬⎫2k π≤x ≤2k π+π3,k ∈Z10.求函数y =log 2sin x 的定义域.解析:要使函数有意义,x 的取值满足sin x >0. 如图所示,MP →是角x 的正弦线,则有sin x =MP >0, ∴MP 的方向向上,∴角x 的终边在x 轴的上方, ∴2k π<x <2k π+π(k ∈Z ),即函数y =log 2sin x 的定义域是(2k π,2k π+π),k ∈Z .11.利用单位圆中的三角函数线,求满足⎩⎪⎨⎪⎧sin x ≥0,2cos x -1>0的x 的取值范围.解析:由⎩⎪⎨⎪⎧sin x ≥0,2cos x -1>0,得⎩⎪⎨⎪⎧sin x ≥0,cos x >12.如图所示,由三角函数线可得⎩⎪⎨⎪⎧2k π≤x ≤2k π+πk ∈Z ,2k π-π3<x <2k π+π3k ∈Z .此交集为图形中的阴影重叠部分, 即2k π≤x <2k π+π3(k ∈Z ).故x 的取值范围为{x |2k π≤x <2k π+π3,k ∈Z }.12.已知α∈⎝⎛⎭⎪⎫0,π2,求证:1<sin α+cos α<π2.证明:如图所示,设角α的终边与单位圆交于点P (x ,y ),过P 作PM ⊥Ox 、PN ⊥Oy ,M 、N 分别为垂足.∴|MP |=y =sin α,|OM |=x =cos α, 在△OMP 中,|OM |+|MP |>|OP |, ∴sin α+cos α>1.∵S △OAP =12|OA |·|MP |=12y =12sin α,S △OBP =12|OB |·|NP |=12x =12cos α, S 扇形OAB =14π×12=π4,又∵S △OAP +S △OBP <S 扇形OAB ,∴12sin α+12cos α<π4,即sin α+cos α<π2,∴1<sin α+cos α<π2.。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
高中数学-单位圆与三角函数线练习题
5分钟训练(预习类训练,可用于课前) 1.若单位圆的圆心与坐标原点重合,有下列结论:①单位圆上任意一点到原点的距离都是1;②单位圆与x 轴的交点为(1,0);③过点(1,0)的单位圆的切线方程为x=1;④与x 轴平行的单位圆的切线方程为y=1.以上结论正确的个数为( )
A.1
B.2
C.3
D.4 解析:单位圆与x 轴的交点为(1,0)和(-1,0);与x 轴平行的单位圆的切线方程为y=±1,所以②④错误.显然①③正确. 答案:B
2.对角α的正弦线叙述错误的是( ) A.正弦线的起点为坐标原点 B.正弦线为有向线段
C.正弦线的长度为不大于1的正数
D.当角α的终边不在坐标轴上时,正弦线所在直线平行于y轴 解析:正弦线的长度有可能为0,所以C 答案错误. 答案:C
3.如图1-1-2,PM⊥x 轴,AT⊥x 轴,则α的正弦线、余弦线、正切线分别是____________、____________、____________,其中OM=___________,MP=____________,AT=____________.
图1-1-2 图1-1-3
解析:根据正弦线、余弦线、正切线的定义作出. 答案:MP OM AT cosα sinα tanα
4.如图1-1-3,分别作出角β的正弦线、余弦线、正切线,并比较角β的正弦值、余弦值、正切值的大小.
解:根据正弦线、余弦线、正切线的定义作出下图.
正弦线、余弦线、正切线分别是''P M 、'OM 、'AT ,并且sinβ>cosβ>tanβ. 10分钟训练(强化类训练,可用于课中) 1.若-
43π<α<2
π-,从单位圆中的三角函数线观察sinα、cosα、tanα的大小是( )
图1-1-4
A.sinα<tanα<cosα
B.tanα<sinα<cosα
C.cosα<sinα<tanα
D.sinα<cosα<tanα 解析:在单位圆中,作出4
3π
-
<α<2π-内的一个角及其正弦线、余弦线、正切线,
|OM |<|MP |<|AT |,考虑方向可得MP <OM <AT .
答案:D
2.若角α的正切线位于第一象限,则角α属于( )
A.第一象限
B.第一、二象限
C.第三象限
D.第一、三象限
解析:由正切线的定义知,当角α是第一、三象限角时,正切线都在第一象限. 答案:D
3.在(0,2π)内,使sinx >cosx 成立的x 的取值范围为( )
A.(
4π,2π)∪(π,45π) B.(4
π
,π)
C.(4π,45π)
D.(4
π
,π)∪(45π,23π)
解析:在单位圆中画三角函数线,如图所示,要使在(0,2π)内sinx >cosx ,则x∈(
4
π
,4
5π
).
答案:C
4.如果cosα=cosβ,则角α与β的终边除可能重合外,还有可能( ) A.关于x 轴对称 B.关于y 轴对称 C.关于直线y=x 对称 D.关于原点对称 解析:利用单位圆中的余弦线即得,如图.
答案:A
5.利用三角函数线证明|sinα|+|cosα|≥1.
证明:当角α的终边在坐标轴上时,正弦线(余弦线)变成一个点,而余弦线(正弦线)的长等于r (r=1),所以|sinα|+|cosα|=1,当角α的终边落在四个象限时,如图,利用三角形两边之和大于第三边有|sinα|+|cosα|=|MP|+|OM|>1,综上有|sinα|+|cosα|≥1.
6.设
4
3π
<α<π,角α的正弦线、余弦线、正切线的数量分别为a 、b 、c ,由图比较a 、b 、c 的大小.
解:如图所示,|MP|<|OM|<|AT|,而a=|MP|,b=-|OM|,c=-|AT|,∴a>b >c.
30分钟训练(巩固类训练,可用于课后)
1.(安徽合肥统考,1)sin4·tan7的值( )
A.大于0
B.小于0
C.等于0
D.不大于0
解析:4弧度的角是第三象限角,7弧度的角是第一象限角,由单位圆中的正弦线和正切线知sin4<0,tan7>0,所以sin4·tan7<0. 答案:B 2.若θ∈(0,
2
π
),则sinθ+cosθ的一个可能值是( ) A.
32 B.7
2π
C.224-
D.1
解析:由θ∈(0,2
π
)知sinθ+cosθ>1,A 、B 、C 、D 四个选项中仅有224->1,故选
C.
答案:C
3.适合cosα≥
2
1
的角α的集合是( ) A.[2kπ+3π,2kπ+35π](k∈Z ) B.[2kπ+3π,2kπ+3
2π
](k∈Z )
C.[2kπ-3π,2kπ+3π](k∈Z )
D.[2kπ+3π,2kπ-3
π
](k∈Z )
解析:在单位圆中作图,如图,α的范围是2kπ-3π≤α≤2kπ+3
π
.
答案:C
4.若sinα=sinβ,则角α与β的终边除可能重合外,还有可能( ) A.关于x 轴对称 B.关于y 轴对称 C.关于直线y=x 对称 D.关于原点对称 解析:利用单位圆中的正弦线即得,如图.
答案:B
5.分别作出下列各角的正弦线、余弦线、正切线:(1)
4
π
;(2)32π-.
解:如图,正弦线:MP ,余弦线:OM ,正切线:AT .
(1) (2)
6.利用三角线,求满足sinx≤2
1
的角x 的集合. 解:由图可知,值为
21的正弦线11P M 和2
2P M ,易得出∠M 1OP 1=6
π
,∠M 2OP 2
=65π,故满足sinx≤21的x 的集合为{x|2kπ+65π≤x≤2kπ+6
13π
,k∈Z }.
7.求函数y=x cos 21-的定义域. 解:如图,因为1-2cosx≥0,所以cosx≤
2
1
,
所以x∈[2kπ+
3
π
,2kπ+35π](k∈Z ).
8.已知关于x 的方程(2sinα-1)x 2
-
4x+4sinα+2=0有两个不相等的正根,试求角α的取
值范围.
解:设方程的两根为x 1、x 2,这个方程有两个不相等正根必满足的条件为
⎪⎩⎪
⎨⎧>•>+>∆,0,0,02
121x x x x 即 ⎪⎪⎪
⎩⎪
⎪
⎪⎨
⎧
>-+>->+---.01
sin 22
sin 4,01sin 24,0)2sin 4)(1sin 2(4)4(2ααααα 化简得⎪⎪
⎪
⎩
⎪
⎪
⎪⎨⎧>-<><<-.21sin 121sin ,21sin ,23sin 23αααα或
故
2
1
<sinα<23.
利用三角函数线,在单位圆中标出满足条件的角α的终边位置,即图中两阴影部分的交集,
故2kπ+
6π<α<2kπ+3π或2kπ+3
2π<α<2kπ+65π,k∈Z ,即α的取值范围是
{α|2kπ+6π<α<2kπ+3π,k∈Z }∪{α|2kπ+3
2π
<α<2kπ+65π,k∈Z }.
9.设α是第二象限的角,作α的正弦线、余弦线、正切线,由图证明cos 2
α+sin 2
α=1. 证明:如图,OM =cosα,MP =sinα,在Rt△MOP 中,|OM|2
+|MP|2
=|OP |2=1,
所以cos 2
α+sin 2
α=1.
10.设α为任意角,求|sinα|+|cosα|的取值范围.
解:由正弦线、余弦线及三角形三边关系,可知|sinα|+|cosα|的取值范围为[1,2]. 11.已知α∈(0,
2
),求证:sinα<α<tanα. 证明:在单位圆中,利用三角函数线的定义,有MP =sinα,AT =tanα.又由
α=,
显然S △OAP <S
扇形OAP
<S △OAT ,即
21·OA ·MP <2
1
·OA ·<
2
1
··AT .化简得<α<,所以sinα<α<tanα.。