初中应用题分类
初中数学常见应用题归纳

初中数学常见应用题归纳【文章】初中数学常见应用题归纳数学是一门应用广泛、内容丰富的学科,而在初中阶段,我们学习的数学知识也逐渐增多,其中包括了很多常见的应用题。
在这篇文章中,我将对初中数学常见应用题进行一个归纳,以帮助我们更好地理解和应对这些题型。
一、图形的面积和周长1. 矩形的面积和周长矩形是最常见的图形之一,其面积计算公式为:面积=长×宽,周长计算公式为:周长=2×长+2×宽。
我们需要注意将题目中给出的长度、宽度代入公式进行计算。
2. 三角形的面积三角形的面积计算公式为:面积=底×高÷2。
其中,底和高指的是三角形的底边和垂直于底边的高。
在计算时,需注意正确地选取底和高,并将其代入公式进行计算。
3. 圆的面积和周长圆的面积计算公式为:面积=πr²,其中π≈3.14,r为圆的半径。
圆的周长计算公式为:周长=2πr。
当题目中给出了半径或直径时,我们可直接代入公式计算;若未给出,则需根据已知信息推算出半径或直径,再进行计算。
二、比例和百分数1. 比例的计算比例是一种表示两个或多个物体或量之间关系的方式。
计算比例时,需将题目中给出的各个物体或量代入比例式中,再进行计算。
例如,确定两个长度的比例,可用公式:比例=较大的长度÷较小的长度。
2. 百分数的计算百分数是一种表示数值相对大小的方式,以百分号“%”表示,相当于除以100。
计算百分数时,需将题目中给出的部分或整体数量代入百分比公式中,再进行计算。
如计算某数占总数的百分比,可用公式:百分数=某数÷总数×100%。
三、速度、时间和距离1. 速度的计算速度是表示物体在单位时间内移动的距离,计量单位通常为米/秒(m/s)。
计算速度时,需将题目中给出的距离和时间代入速度公式中,再进行计算。
公式为:速度=距离÷时间。
2. 时间和距离的计算时间和距离之间有着紧密的关系。
初中数学常见应用题分类总结

初中数学常见应用题分类总结数学作为一门重要的学科,是我们日常生活中必不可少的一部分。
在初中阶段,学生们学习了许多数学知识,包括各种应用题。
应用题是将数学知识应用到实际问题中的题目,它们在学生的日常生活中起着重要的作用。
在本文中,我们将对初中数学常见应用题进行分类总结,并提供相应的解题思路和方法。
一、比例与比较1. 比例问题比例问题是初中数学中最常见的应用题之一。
它们涉及到两个或多个变量之间的比例关系。
在解决比例问题时,我们需要确定已知条件,建立比例关系并解方程,再根据所求条件求解。
常见的比例问题包括物品的价格比例,速度的比例等。
2. 比较问题比较问题要求我们根据已知条件对不同情况进行比较。
例如,如果给出两个商品的价格、重量等信息,我们需要确定哪一个商品更具性价比。
解决比较问题时,我们需要将已知条件转化为可比较的形式,并利用数学方法进行分析和比较。
这种类型的应用题在生活中非常常见。
二、百分比与利率1. 百分比问题百分比问题要求我们求解某个数值相对于另一个数值的百分比。
例如,求解一个商品的打折率,或者计算考试成绩的百分比。
当解决这类问题时,我们需要将百分数转化为小数,并根据已知条件进行计算。
2. 利率问题利率问题涉及到利息的计算和相关问题。
例如,计算存款利息、贷款利率等。
在解决利率问题时,我们需要了解利率的概念和计算方法,并应用相关的公式进行计算。
三、平均数与中位数1. 平均数问题平均数问题要求我们计算一组数据的平均值。
例如,求解一组考试成绩的平均分。
在解决这类问题时,我们需要将数据相加,并除以数据的个数,得到平均值。
平均数在生活中应用广泛,有助于我们对数据进行整体把握。
2. 中位数问题中位数问题要求我们找到一组数据的中间值。
例如,找到一组数中位于中间位置的值。
在解决中位数问题时,我们需要将数据按照大小进行排列,并找到中间位置的数。
中位数在统计和排序等领域有重要的应用。
四、图表与统计1. 图表问题图表问题要求我们根据给定的图表信息进行分析和计算。
初中数学应用题例题总结

初中数学应用题例题总结在初中数学学习过程中,应用题是不可或缺的一部分。
通过解决应用题,学生不仅可以将所学的数学知识应用于实际问题中,还可以培养解决问题的能力。
本文将总结几个常见的初中数学应用题例题,帮助同学们更好地理解和掌握解题方法。
一、含义类应用题1. “个旗子排成一列,若每个旗子上都涂上一个不同的数字,使得左右两边的数字之和相等。
”请问,若共有5个旗子,应涂写哪几个数字?解答:根据题目要求,我们可以列出方程式:第一个数字 + 第五个数字 = 第二个数字 + 第四个数字。
由于共有5个旗子,我们可以设第一个数字为1,第五个数字为n(n为正整数)。
将方程代入数字后,可得出以下结果:1 + n = 2 + (n-1),整理方程后得 n=3。
因此,应涂写的数字为1、2、3、2、1。
2. “甲、乙两人年龄之和为30岁,甲比乙大5岁。
请问他们的年龄是多少?”解答:设甲的年龄为x岁,那么乙的年龄就是x-5岁。
根据题目给出的条件,我们可以列出方程式:x + (x-5) = 30。
整理方程后,得到2x - 5 = 30。
继续整理,得到2x = 35,最后得到x = 17.5。
因为年龄是整数,所以17.5岁不符合实际生活情况。
因此,我们应该找到符合实际情况的整数解。
结合题目条件,我们可以得到甲的年龄为22岁,乙的年龄为27岁。
二、几何类应用题1. “一个矩形的长是宽的4倍,矩形的长和宽的和为40。
请问这个矩形的长和宽分别是多少?”解答:设矩形的宽为x,则矩形的长为4x。
根据题目给出的条件,我们可以列出方程式:x + 4x = 40。
整理方程后,得到5x = 40。
解方程可以得到x = 8。
因此,这个矩形的宽为8,长为32。
2. “小明想在一块正方形的花坛周围种植玫瑰花,已知花坛的周长为40米。
请问小明最多能种植多少株玫瑰花?”解答:设正方形的边长为x,则花坛的周长为4x。
根据题目给出的条件,我们可以列出方程式:4x = 40。
初中七年级数学应用题分类及公式详解 (包含上下册)

列方程解应用题的一般步骤我们首先来解析一下解应用题的步骤有哪些?1.审题:认真审题,弄清题意,找出能够表示本题含义的相等关系(找出等量关系),解读题目的实质,也是考察学生的阅读理解的能力;2.设出未知数:根据提问,巧设未知数;3.列出方程:设出未知数后,表示出有关的含字母的式子,然后利用已找出的等量关系列出方程,可以利用自由表格的形式来梳理信息;4.解方程:解所列的方程,求出未知数的值.5、检验答案:做完了之后不知道自己做的答案是否正确,可以带入原方程检验一下,也要注意是否符合应用题的实际情况。
2一元一次方程类型1:相遇追及问题行程问题三大基础公式:路程=速度×时间;速度=路程÷时间;时间=路程÷速度。
相遇问题:它的特点是相向而行,可以画线段图帮助理解与分析。
这类问题的等量关系是:双方所走的路程之和=总路程。
追及问题:它的特点是同向而行,可以画线段图帮助理解与分析。
其等量关系式是:两者的行程差=开始时两者相距的路程。
航行问题:①船在静水中的速度+水速=船的顺水速度;②船在静水中的速度-水速=船的逆水速度;③顺水速度-逆水速度=2×水速。
注意:飞机航行问题同样会出现顺风航行和逆风航行。
类型2:火车过桥问题火车过桥问题中,你一定要注意到火车的自身长度,即:总路程=火车车身长度+桥长=火车速度×过桥时间。
类型3:销售利润问题(1)利润=售价-成本(进价);(2)利润率=(售价-进价)/进价×100%或利润率=(售价-成本)/成本×100%(3)利润=成本(进价)×利润率;(4)标价=成本(进价)×(1+利润率);(5)实际售价=标价×打折率。
注意:“商品利润=售价-成本”中的右边为正时,是盈利;为负时,就是亏损。
打几折就是按标价的十分之几或百分之几十销售。
(例如八折就是按标价百分之八十出售)类型4:分段计费问题关于分段计费问题,可以利用表格的形式将题目表述出来,一定要注意计算的数值的范围,不要重复计算。
初中数学应用题

初中数学应用题应用题一:小明乘公交车上学小明每天乘坐公交车上学,公交车每隔20分钟一班,小明家离学校有7公里,他每小时步行4公里的速度。
如果他下午5点放学,问他能否赶上5点40分的公交车?解答:小明步行4公里每小时,那么他步行7公里需要多长时间?7公里 ÷ 4公里/小时 = 1.75小时小明放学后5点,他需要1.75小时才能到达公交车站。
而公交车每隔20分钟一班,5点40分就是40分钟后,共有40 ÷ 20 = 2班公交车经过。
由此可知,小明可以赶上5点40分的公交车。
应用题二:图书馆还书小华上图书馆借了一本书,借期为21天。
他决定在借期结束前的最后一天还书。
假设小华从借期的第2天开始每天读书8小时,那么借期结束前他一共读了多少小时?解答:借期为21天,借期的第一天小华没有读书。
所以小华从借期的第2天开始读书,可以读21 - 1 = 20天。
每天读书8小时,那么小华一共读了 20天 × 8小时/天 = 160小时。
借期结束前,小华一共读了160小时。
应用题三:水果比例在一个篮子里有3个苹果、5个梨和2个桃子。
如果从篮子中任意取出一个水果,求取到的是桃子的概率。
解答:篮子中共有10个水果(3个苹果 + 5个梨 + 2个桃子)。
取到桃子的可能性为取到桃子数(2个桃子)除以篮子中总水果数(10个水果)。
所以取到桃子的概率为2/10 = 1/5。
因此,取到的是桃子的概率为1/5。
应用题四:汽车行程小明驾驶一辆汽车从A市到B市,全程320公里,中间经过了2个加油站。
第一个加油站离出发地A市80公里,第二个加油站离出发地160公里。
小明的汽车油箱容量为40升。
假设汽车每升油可行驶8公里,问小明是否需要在第一个加油站加油?解答:全程320公里,小明的汽车油箱容量为40升,每升油可行驶8公里。
那么汽车一次加满油最多可行驶 40升 × 8公里/升 = 320公里。
第一个加油站离出发地80公里,小明到达第一个加油站时,已经行驶了80公里,剩下的行程为 320公里 - 80公里 = 240公里。
七年级经典应用题十六类

七年级经典应用题可以分为以下十六类:
1.和差倍分问题:利用和差、和倍、差倍或分数关系,求解未知量的问题。
2.行程问题:涉及速度、时间和距离的关系,如相遇、追及等问题。
3.工程问题:通过工作效率、工作时间和工作总量之间的关系,求解工程完成的时间
或效率等问题。
4.利润和折扣问题:涉及商品的进价、售价、利润率和折扣等概念,求解相关的问题。
5.浓度问题:通过溶质、溶剂和溶液之间的关系,求解浓度或质量分数等问题。
6.配套问题:涉及按比例分配或组合的问题,如零件配套、服装配套等。
7.分配问题:通过比例关系或平均分配原则,求解分配量或分配比例等问题。
8.增长率问题:涉及增长率、增长量、原量和现量等概念,求解相关的问题。
9.方程问题:通过列方程或方程组,求解未知量的问题。
10.不等式问题:通过列不等式或不等式组,求解未知量的取值范围或最值等问题。
11.函数问题:通过函数的性质、图像和解析式等,求解与函数相关的问题。
12.三角形问题:涉及三角形的边、角、面积和相似性等概念,求解相关的问题。
13.平行四边形和梯形问题:通过平行四边形的性质、判定和面积公式等,求解相关的
问题;通过梯形的性质、判定和面积公式等,求解相关的问题。
14.圆的问题:涉及圆的性质、判定和面积公式等,求解相关的问题。
15.统计与概率问题:通过数据的收集与整理、概率初步知识与事件的概率等,求解相
关的问题。
16.综合应用问题:将多个知识点融合在一起,求解复杂的应用题。
以上十六类应用题是七年级数学中常见的经典题型,需要学生掌握相应的解题方法和技巧。
(完整)初中数学一元一次方程应用题九大类型
七年级方程应用题九大类型一、列一元一次方程解应用题的一般步骤二、一元一次方程解决应用题的分类1、市场经济、打折销售问题2、方案选择问题3、储蓄、储蓄利息问题4、工程问题5、行程问题6、环行跑道与时钟问题7、若干应用问题等量关系的规律8、数字问题9、日历问题一、列一元一次方程解应用题的一般步骤(1)审题:弄清题意.(2)找出等量关系:找出能够表示本题含义的相等关系.(3)设出未知数,列出方程:设出未知数后,表示出有关的含字母的式子,•然后利用已找出的等量关系列出方程.(4)解方程:解所列的方程,求出未知数的值.(5)检验,写答案:检验所求出的未知数的值是否是方程的解,•是否符合实际,检验后写出答案.一.市场经济、打折销售问题(一)知识点:(1)商品利润=商品售价-商品成本价×100%(2)商品利润率=商品利润商品成本价(3)商品销售额=商品销售价×商品销售量(4)商品的销售利润=(销售价-成本价)×销售量(5)商品打几折出售,就是按原价的百分之几十出售,如商品打8折出售,即按原价的80%出售.(二)例题解析1、某高校共有5个大餐厅和2个小餐厅.经过测试:同时开放1个大餐厅、2个小餐厅,可供1680名学生就餐;同时开放2个大餐厅、1个小餐厅,可供2280名学生就餐.(1)求1个大餐厅、1个小餐厅分别可供多少名学生就餐;(2)若7个餐厅同时开放,能否供全校的5300名学生就餐?请说明理由.解:(1)设1个小餐厅可供y名学生就餐,则1个大餐厅可供(1680-2y)名学生就餐,根据题意得:2(1680-2y)+y=2280解得:y=360(名)所以1680-2y=960(名)⨯+⨯=>,(2)因为9605360255205300所以如果同时开放7个餐厅,能够供全校的5300名学生就餐.练习题2、工艺商场按标价销售某种工艺品时,每件可获利45元;按标价的八五折销售该工艺品8件与将标价降低35元销售该工艺品12件所获利润相等.该工艺品每件的进价、标价分别是多少元?3、某地区居民生活用电基本价格为每千瓦时0.40元,若每月用电量超过a千瓦则超过部分按基本电价的70%收费.(1)某户八月份用电84千瓦时,共交电费30.72元,求a.(2)若该用户九月份的平均电费为0.36元,则九月份共用电多少千瓦?•应交电费是多少元?4、某商店开张为吸引顾客,所有商品一律按八折优惠出售,已知某种旅游鞋每双进价为60元,八折出售后,商家所获利润率为40%。
初中应用题的几种类型、
初中应用题的几种类型、初中应用题的几种类型应用题是数学中非常重要的一部分,它旨在帮助学生将数学知识应用到实际生活中,解决实际问题。
初中应用题的类型有很多种,以下是其中几种常见的类型:1、代数应用题代数应用题是初中数学中最常见的一种应用题。
这类问题通常涉及到变量的概念,以及方程和不等式的求解。
例如,某公司需要生产某种产品,已知每件产品的成本和售价,该公司需要确定生产多少件产品才能获得最大的利润。
这个问题可以通过建立数学模型,使用代数方法来解决。
2、几何应用题几何应用题通常涉及到形状、测量和几何变换等概念。
这类问题通常会给出一些几何图形,然后要求解某些几何量,如角度、长度、面积等。
例如,一个建筑公司需要建造一个圆形花坛,已知花坛的半径和需要种植的花的种类,该公司需要计算需要的土壤量和水的数量。
这个问题可以通过使用几何公式和测量来解决。
3、概率应用题概率应用题涉及到随机事件和概率的概念。
这类问题通常会给出一些随机事件或试验,然后要求计算某个事件发生的概率或者进行一些相关的统计推断。
例如,一个保险公司需要估计客户索赔的概率,已知公司的客户数量和过去的索赔记录,该公司需要使用概率方法来预测未来的索赔概率。
4、统计应用题统计应用题涉及到数据的收集、整理和分析。
这类问题通常会给出一些数据,然后要求进行数据的描述和分析。
例如,一个市场调研公司需要分析某产品的销售数据,已知销售数据和产品的种类,该公司需要计算每种产品的销售量和销售额,并预测未来的销售趋势。
初中应用题的几种类型都是与实际生活紧密相关的。
解决这些问题的关键是要建立合适的数学模型,并使用合适的数学方法来求解。
反思性学习是一种以反思为基础的学习方式,它旨在提高学习者的反思能力、自主学习能力和问题解决能力。
以下是几种常见的反思性学习类型:自我反思:自我反思是一种学习者对自己学习过程进行审视和思考的学习方式。
学习者可以通过回顾自己的学习过程、总结自己的收获和不足,以及思考如何改进自己的学习方法来提高自己的学习效果。
初中数学应用题归类
类型01 日历表格等数字规律排列的问题1.如图1是一个数表,用一个矩形在数表中任意框出4个数,如图所示,•若所框出四个数和为56,则这四个数为______,______,______,_______.图14.如图是2011年8月的月历,现用一长方形在月历中任意框出4个代表日期的数,请用一个等式表示a,b,c,d之间的关系:。
3.探索规律:将连续的偶2,4,6,8,…,排成如下表:2 4 6 8 1012 14 16 18 2022 24 26 28 3032 34 36 38 40… …(1)若将十字框上下左右移动,可框住五位数,设中间的数为x,用代数式表示十字框中的五个数的和,(2)若将十字框上下左右移动,可框住五位数的和能等于2010吗?如能,写出这五位数,如不能,说明理由。
类型02 分段讨论的问题(难点)1.甲,乙两班学生到集市上购买苹果,苹果价格如下表所示:购苹果数不超过30kg 30kg以上但不超过500kg 50kg以下价格/元/kg 3 元 2.5元2元甲班分两次共购买苹果70kg(第二次多于第一次),共付189元,•而乙班则一次购买苹果70kg.(1)乙班比甲班少付多少元?(2)甲班第一次,第二次分别购买苹果多少千克?2.参加保险公司的医疗保险,住院治疗的病人享受分段报销,保险公司制定的报销细则如下表:某人住院治疗得到保险公司报销金额是1100•元,•那么此人住院的医疗费是______元.3.为了加强公民的节水意识,合理利用水资源,•某市采用价格调控手段达到节水的目的,该市自来水收费价格见价目表.注:水费按月结算.若某户居民1月份用水8m3,则应收水费:2×6+4×(8-6)=20元.(1)若该户居民2月份用水12.5m3,则应收水费_______元;(2)若该户居民3,4月份共用水15m3(4月份用水量超过3月份),共交水费44元,则该户居民3,4月份各用水多少立方米?4.芜湖供电公司分时电价执行时段分为平,谷两个时段,•平段为:8:00~22:00,14小时,谷段为22:00~次日8:00,10小时.•平段用电价格在原销售电价基础上每千瓦时上浮0.03元,谷段电价在原销售电价基础上每千瓦时下浮0.25元,小明家5月份实用平段电量40千瓦时,谷段电量60千瓦时,按分时电价付费42.73元.(1)问小明家该月支付的平段、谷段电价每千瓦时各为多少元?(2)如不使用分时电价结算,5月份小明家将多支出电费多少元?类型03 两种模型综合的问题(难点)1.农科所向农民推荐渝江Ⅰ号和渝江Ⅱ号两种新型良种稻谷,•在田间管理和土质相同的情况下,Ⅱ号稻谷单位面积的产量比Ⅰ号稻谷低20%,•但Ⅱ号稻谷的米质好,价格比Ⅰ号稻谷高.已知Ⅰ号稻谷国家收购价是1.6元/千克.(1)当Ⅱ号稻谷的国家收购价是多少时,在田间管理,•土质和面积相同的两块田里分别种植Ⅰ号,Ⅱ号稻谷的收益相同?(2)去年小王在土质,面积相同的两块田里分别种植Ⅰ号,Ⅱ号稻谷,且进行了相同的田间管理.收获后,小王把稻谷全部卖给国家.卖给国家时,Ⅱ号稻谷的国家收购价定为2.2元/千克.Ⅰ号稻谷国家收购价不变,这样小王卖Ⅱ号稻谷比卖Ⅰ号稻谷多收入1040元,那么小王去年卖给国家的稻谷共有多少千克?2.有一些相同的房间需要粉刷,一天3名师傅去粉刷8个房间,结果其中有40m2墙面未来得及刷;同样的时间内5名徒弟粉刷了9个房间的墙面.每名师傅比徒弟一天多刷30m2的墙面.(1)求每个房间需要粉刷的墙面面积;(2)张老板现有36个这样的房间需要粉刷,若请1名师傅带2名徒弟去,需要几天完成?(3)已知每名师傅,徒弟每天的工资分别是85元,65元,张老板要求在3天内完成,问如何在这8个人中雇用人员,才合算呢?类型04 行程问题和可以化为行程问题的问题(热点)1.陈老师在晚会上为学生们讲数学故事,•他发现故事开始时时钟的时针和分针的恰好成90°角,这时是七点多,故事结束时间两针也是恰好成90°,•这时是八点多,他还发现,讲故事当中,两针成90°角的有趣图形还出现过一次,那么,陈老师讲故事所用时间是多少小时?2.敌我两军相距14千米,敌军于1小时前以4千米/时的速度逃跑,现我军以7千米/时的速度追击,几小时后可追上敌军?若设x小时后可追上敌军,则可列方程为__________________.3. A、B两城相距720km,普快列车从A城出发120km后,特快列车从B城开往A城,6h后两车相遇. 若普快列车是特快列车速度的,且设普快列车速度为xkm/h,则下列所列方程错误的是????? (?? )4.成渝铁路全长504千米. 一辆快车以90千米/时的速度从重庆出发,1小时后,另有一辆慢车以48千米/时的速度从成都出发,则慢车出发________小时后两车相遇(沿途各车站的停留时间不计)5、小明从家里骑自行车到学校,每小时骑15km,可早到10分钟,每小时骑12km就会迟到5分钟.问他家到学校的路程是多少km?设他家到学校的路程是6.轮船沿江从A港顺流行驶到B港,比从B港返回A港少用3小时,若船静水速度为26千米/小时,水速为2千米/时,则A港和B港相距______千米.类型05 增长率模型或者比率模型的问题1.甲,乙两厂去年分别完成生产任务的112%和110%,共生产机床4000台,•比原来两厂之和超产400台.问甲厂原来的生产任务是多少台?•设甲厂原生产x•台,•得方程_____,解得x=_____台.2.磁悬浮列车是一种科技含量很高的新型交通工具,它具有速度快,爬坡能力强,能耗低的特点,它每个座位的平均能耗仅为飞机每个座位的平均能耗的三分之一,•是汽车每个座位的平均能耗的70%,那么汽车每个座位的平均能耗是飞机每个座位平均能耗的()A.37B.73C.1021D.21103.随着科技的进步,高科技产品的成本价在降低.某种品牌的电脑成本降低8%,而零售价不变,那么利润将由目前的x%增加到(x+10)%,求x的值.4.某工业园区用于甲、乙两个不同项目的投资共2 000万元.甲项目的年收益率为5.4%,乙项目的年收益率为8.28%,该工业园区仅以上两个项目可获得收益1 224 000元.问该工业园区对两个项目的投资各是多少万元.5.某石油进口国这个月的石油进口量比上个月减少了5%,由于国际油价上涨,这个月进口石油的费用反而比上个月增加了14%. 求这个月的石油价格相对上个月的增长率.类型06积分问题1.一张试卷上只有20道选择题,做对一道题得4分,做借一道题倒扣1分,•某学生做了全部试卷共得70分,他做对了_______道.2.足球比赛的记分规则为:胜一场得3分,平一场得1分,输一场得0分.•一支足球队在某个赛季中共需比赛14场,现已比赛了8场,输了1场,得17分.请问:(1)前8场比赛中,这支球队共胜了多少场?(2)这支球队打满14场比赛,最高能得多少分?3.某队在一次比赛中,22投14中,得28分,•除了3•个3•分球全中外,•他还投中了_____个2分球和______个罚球.4.小明在一场篮球比赛中,他一人得25分,如果他投2分球比3分球多5个,那么他投2分球个数为______.5.中国足球甲级联赛规定:每队胜一场得3分,平一场得1分,负一场得0分.•武汉黄鹤楼队前14场保持不败,共得34分,该队共平了()A.3场B.4场C.5场D.6场6.某区中学生足球赛共赛8轮(即每队均需参赛8场),胜一场得3分,平一场得1分,负一场得0分.在这次足球联赛中,猛虎队踢平的场数是所负场数的2倍,共得17分,该队共胜多少场?类型07盈余或不足的模型1.(过程探究题)今有其买鸡,人出九,盈十一;人出六,不足十六,问人数、•鸡价各几?意思是:有几个人共同出钱买鸡,每人出钱9,则多了钱11,每人出钱6,则少了钱16,那么有几人共同买鸡?鸡的价钱是多少?解答:设有x人共同买鸡,则共用钱可用二个式子表示,一个是9x-11,•另一个是______,则得方程9x-11=6x+______.解得x=______,9x-11=_______.答:_______.类型08商品销售问题(重点)1.某商店有一种商品.(1)成本为100元,提价20%,则售价为_____元.(2)成本为x元,提价25%,则售价为_____元.2.一种国产电器,由于质量好,销量大,厂家决定降低原售价的10%销售,•现价是270元,设原售价是x元.(1)降低后的售价用含x式子表示为_____元,(2)得方程_____.3.(教材变式题)某DVD进价是400元,标价是600元,打折销售时的利润是5%,则该商品打几折销售?解答:设此商品按x折销售,则实际售价为______元,利润为____元,利润用含x的式子表示为______,得方程______.x=______.4.(经典题)某商店有两个进价不同的计算器都卖64元,其中一个赢利60%,•另一个亏本20%,则这次买卖中,这家商店是赚还是亏呢?解答:设其中一种计算器进价为x元,赢利60%,由方程64-x=x·60%,解得x=_____(元).另一个计算器进价y元,亏本20%得方程:y-64=______,解得y=_______(元).所以:2×64-(x+y)=______=_____答:商店是_____了_______元.5.(1)某商品原每件售价是a元,现在每件降20%,降价后每件售价是______元.(2)某种品牌手机降价10%以后,每台售价为m元,则手机原价是_______元.6.500元的八折价是______,x折的价是______元.7.一商品把彩电按标价的9折出售,仍可获利20%,若该彩电的进价是2400元,•则彩电的标价为_______元.8.(过程探究题)有一位经销商以1050元购进某商品,按进价的150%标价,若他打算获得此商品的利润率不低于20%,那么他最低可以打几折,请你帮他设计一下,小明解答过程:解答:设打算获得此商品的利润率不低于20%,最低可以以原价的x折卖出,•依题意,得1050×150%×10x -1050=_______.方程两边约去1050,得0.15x -1=0.2,∴x=_____.答:最低打______折销售.完成上述填空.9.某商场出售的A 型冰箱每台售价2190元,每日耗电量为1度,而B•型节能冰箱每台售价虽比A 型冰箱高出10%,但是每日耗电量却为0.55度,现将A 型冰箱打折出售,问商场至少打几折,消费者购买才合算?(按使用期为10年,每年365•天,•每度电费按0.40元计算)10.某书城开展学生优惠售书活动,凡一次性购书不超过200元的一律九折优惠,超过200元的,其中200元按九折算,超过200元的部分按八折算.•其学生第一次购书付款72元,第二次又去购书享受了八折优惠.他查看了所买书的定价,•发现两次共节省了34元钱.则该学生第二次购书实际付款多少元?11.某人以8折的优惠价买了一套服装省了25元,那么买这套服装实际用了( )A .31.25B .60C .125D .10012.一个商店把彩电按标价的九折出售,仍可获利20%,若该彩电的进价是2 400元,则彩电标价是( )A .3 200元B .3 429元C .2 667元D .3 168元13.我国政府为解决老百姓看病难,决定下调药品价格,某种药品在2003年涨价30%后,年降价70%调至a 元,则这种药品在2003年涨价前的价格为( )A .10039a 元B .39100a 元C .a (1-40%)元D .140%a 元 14.一件夹克,按成本加5成作为售价,后因季节关系,按售价的8折出售,降价后每件卖60元,问这批夹克每件成本是多少元.降价后每件是赔还是赚,赔或赚多少元?(生活中处处有数学,我们应当善于用数学的眼光去看世界,用数学的方法去分析和解决问题)15.商场出售的A 型冰箱每台售价2 190元,每日耗电量为1度,而B 型节能冰箱每台售价虽比A 型冰箱高出10%,但每日耗电量却为0.55度.商场如果将A 型冰箱打9折出售(打一折后的售价为原价的110),消费者购买合算吗?(按使用期为10每年365天,每度电0.40元计算)若不合算,商场至少打几折,消费者购买才合算?16.某商场同时卖出两件上衣,每件都以135元卖出,若按成本计算,其中一件赢利25%,另一件亏损25%,问这次卖出的两件上衣是赔了还是赚了.类型09 优秀方案选择问题1.小刚为书房买灯,现有两种灯可供选购,其中一种是9瓦(即0.009•千瓦)的节能灯,售价为49元/盏;另一种是40瓦(即0.04千瓦)的白炽灯,售价为18元/盏.假设两种灯的照明亮度一样,使用寿命都可以达到2800小时,•已知小刚家所在地的电价是每千瓦时0.5元.(1)设照明时间是x小时,请用含x的代数式分别表示一盏节能灯的费用和用一盏白炽灯的费用(注:费用=灯的售价+电费);(2)小刚想在这两种灯中选购一盏:①当照明时间是多少时,使用两种灯的费用一样多?②试用特殊值推断:照明时间在什么范围内,选用白炽灯费用低?照明时间在什么范围内,选用节能灯费用低?(3)小刚想在这两种灯中选购两盏:假定照明时间是3000小时,•使用寿命都是2800小时,请你帮他设计费用最低的选灯方案,并说明理由.2.某企业生产一种收音机,其成本24元,直接由厂家门市部销售,每台售价32元,门市部的销售需消耗费用每月2400元,如果委托商店销售,出厂价每台28元,销售多少台时两种销售方式所获得的利润相等?若销售量达每月2000台,问采用哪种销售方式,取得的利润较多?3.某牛奶加工厂现有鲜奶9吨,若在市场直接销售鲜奶,每吨可获取利润500元;制成酸奶销售,每吨可获利1 200元;制成奶片销售,每吨可获利2 000元,该加工厂的生产能力是:如制成酸奶,每天可加工3吨,制成奶片,每天可加工1吨,受条件限制两种加工方式不可同时进行,受气温影响牛奶必须在4天内销售或加工完毕,为此,该加工场设计了两种生产、销售方案:方案一:尽可能地制成奶片,其余直接销售鲜牛奶.方案二:一部分制成奶片,其余全部加工成酸奶,并保证在四天内完成.分别计算两种方案的利润,你认为哪种方案利润高?4.某原料供应商对购买其原料的顾客实行如下优惠办法:(1)一次购买金额不超过1万元,不予优惠;(2)一次购买金额超过1万元,但不超过3万元,全部9折优惠;(3)一次购买的超过3万元,其中3万元9折优惠,超过3万元的部分8折优惠.某人因库容原因,第一次在供应商处购买原料付7800元,第二次购买付款26100元,如果他是一次购买同样数量的原料,则应付款多少元?可少付款多少元?类型10配套问题1.某车间28名工人生产螺栓和螺母,每人每天平均生产螺栓12个或螺母18个.现有x 名工人生产螺栓,其他工人生产螺母,恰好每天生产的螺栓和螺母按1∶2配套,为求x列出的方程是().A.12x=18(28-x) B.12x=2×18(28-x)C.2×18x=18(28-x) D.2×12x=18(28-x)2.某车间每天能生产甲种零件180个或乙种零件120个,若甲、乙两种零件分别取3个、2个配成一套,那么要在30天内生产最多的成套产品,应怎样安排生产甲、乙两种零件的天数?3.用白铁皮做罐头盒,每张白铁皮可制盒身16个或盒底43个,一个盒身与两个盒底配成一套罐头盒,现有150张白铁皮,用多少张白铁皮制盒身、多少张白铁皮制盒底可以正好制成成套罐头盒而无余料?4.某车间有62个工人,生产甲、乙两种零件,每人每天平均能生产甲种零件12个或乙种零件23个. 已知每3个甲种零件和2个乙种零件配成一套,问应分配多少人生产甲种零件,多少人生产乙种零件,才能使每天生产的这两种零件刚好配套?类型11工程问题1.某部队将在指定山区进行军事演习,为了使道路便于部队重型车辆通过,部队工兵连接到抢修一段长3600米道路的任务,按原计划完成总任务的13后,为了让道路尽快投入使用,工兵连将工作效率提高了50%,一共用了10小时完成任务.(1)按原计划完成总任务的13时,已抢修道路___________米;(2)求原计划每小时抢修道路多少米?2.整理一批图书,如果由一个人单独做要用30h,现先安排一部分人用1h整理,随后又增加6人和他们一起又做了2h,恰好完成整理工作,假设每个人的工作效率相同,那么先安排整理的人员有多少?3.假定每人的工作效率都相同,如果个人天做个玩具熊,那么个人做个玩具熊需要______天.。
初中工程类应用题七种类型
初中工程类应用题七种类型摘要:一、引言二、七种类型工程问题1.管道问题2.流水问题3.相遇问题4.追及问题5.环形运动问题6.火车过桥问题7.复杂工程问题三、解决工程问题的方法1.分析问题类型2.确定相关公式3.代入数据计算四、总结正文:一、引言初中阶段,工程类应用题是数学中的一个重要内容。
为了更好地理解和掌握这类问题,我们需要了解其主要包括哪七种类型。
二、七种类型工程问题1.管道问题:涉及液体或气体的流动,需要求解管道长度、速度等问题。
2.流水问题:涉及河流、溪流等流动的水,需要求解水流速度、时间等问题。
3.相遇问题:涉及两个物体在运动过程中相遇,需要求解相遇时间、距离等问题。
4.追及问题:涉及一个物体追上另一个物体,需要求解追及时间、距离等问题。
5.环形运动问题:涉及物体在环形路径上运动,需要求解速度、时间等问题。
6.火车过桥问题:涉及火车通过桥梁,需要求解速度、时间等问题。
7.复杂工程问题:涉及多个物体、多个运动过程,需要综合运用各种方法求解。
三、解决工程问题的方法1.分析问题类型:首先要识别问题属于哪种类型,然后根据类型确定解题方法。
2.确定相关公式:针对不同类型的问题,要熟练掌握相应的公式,如速度=距离/时间、相遇时间=距离/速度等。
3.代入数据计算:将问题中的数据代入公式,进行计算,得出答案。
四、总结初中工程类应用题包括七种类型,分别是管道问题、流水问题、相遇问题、追及问题、环形运动问题、火车过桥问题和复杂工程问题。
要解决这类问题,关键在于分析问题类型、确定相关公式和代入数据计算。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
应用题分类汇集
一.行程问题——画图分析法(线段图)
解此类题的关键是抓住甲、乙两物体的时间关系或所走的路程关系,一般情况下问题就能迎刃而解。
并且还常常借助画草图来分析,理解行程问题。
1.行程问题中的三个基本量及其关系:
路程=速度×时间时间=路程÷速度速度=路程÷时间
2.行程问题基本类型
(1)相遇问题:快行距+慢行距=原距
(2)追及问题:快行距-慢行距=原距
(3)航行问题:顺水(风)速度=静水(风)速度+水流(风)速度
逆水(风)速度=静水(风)速度-水流(风)速度
水流速度=(顺水速度-逆水速度)÷2
1:甲、乙两站相距480公里,一列慢车从甲站开出,每小时行90公里,一列快车从乙站开出,每小时行140公里。
(1)慢车先开出1小时,快车再开。
两车相向而行。
问快车开出多少小时后两车相遇?(2)两车同时开出,相背而行多少小时后两车相距600公里?
(3)两车同时开出,慢车在快车后面同向而行,多少小时后快车与慢车相距600公里?(4)两车同时开出同向而行,快车在慢车的后面,多少小时后快车追上慢车?
(5)慢车开出1小时后两车同向而行,快车在慢车后面,快车开出后多少小时追上慢车?(此题关键是要理解清楚相向、相背、同向等的含义,弄清行驶过程。
)
2、某人从家里骑自行车到学校。
若每小时行15千米,可比预定的时间早到15分钟;若每小时行9千米,可比预定的时间晚到15分钟;求从家里到学校的路程有多少千米?
3、某人计划骑车以每小时12千米的速度由A地到B地,这样便可在规定的时间到达B地,但他因事将原计划的时间推迟了20分,便只好以每小时15千米的速度前进,结果比规定时间早4分钟到达B地,求A、B两地间的距离。
4、甲、乙两人同时同地同向而行,甲的速度是4千米/小时,乙的速度比甲慢,半小时后,甲调头往回走,再走10分钟与乙相遇,求乙的速度。
5、甲、乙两人同时从A地前往相距25.5千米的B地,甲骑自行车,乙步行,甲的速度比乙的速度的2倍还快2千米/时,甲先到达B地后,立即由B地返回,在途中遇到乙,这时距他们出发时已过了3小时。
求两人的速度。
6、一次远足活动中,一部分人步行,另一部分乘一辆汽车,两部分人同地出发。
汽车速度是60千米/时,步行的速度是5千米/时,步行者比汽车提前1小时出发,这辆汽车到达目的地后,再回头接步行的这部分人。
出发地到目的地的距离是60千米。
问:步行者在出发后经过多少时间与回头接他们的汽车相遇(汽车掉头的时间忽略不计)
7、休息日我和妈妈从家里出发一同去外婆家,我们走了1小时后,爸爸发现带给外婆的礼品忘在家里,便立刻带上礼品以每小时6千米的速度去追我们,如果我和妈妈每小时行2千米,从家里到外婆家需要1小时45分钟,问爸爸能在我和妈妈到外婆家之前追上我们吗?
8、甲骑自行车从A地到B地,乙骑自行车从B到A地,两人都匀速前进,已知两人在上午
8时同时出发,到上午10时,两人还相距36千米,到中午12时,两人又相距36千米,求A、B两地间的路程。
9、甲乙两人在400米的环形跑道上跑步,从同一起点同时出发,甲的速度是5米/秒,乙的速度是3米/秒。
(1)如果背向而行,两人多久第一次相遇?(2)如果同向而行,两人多久第一次相遇?
10、与铁路平行的一条公路上有一行人与骑自行车的人同时向南行进。
行人的速度是每小时3.6km,骑自行车的人的速度是每小时10.8km。
如果一列火车从他们背后开来,它通过行人的时间是22秒,通过骑自行车的人的时间是26秒。
⑴行人的速度为每秒多少米?⑵这列火车的车长是多少米?
11. 一艘船在两个码头之间航行,水流速度是3千米每小时,顺水航行需要2小时,逆水航行需要3小时,求两码头的之间的距离?
12、一架飞机飞行在两个城市之间,风速为每小时24千米,顺风飞行需要2小时50分钟,逆风飞行需要3小时,求两城市间的距离。
13、某船从A码头顺流航行到B码头,然后逆流返行到C码头,共行20小时,已知船在静水中的速度为7.5千米/时,水流的速度为2.5千米/时,若A与C的距离比A与B的距离短40千米,求A与B的距离。
二.工程问题:
(1)、工程问题中的三个量及其关系为:工作总量=工作效率×工作时间
工作总量=人均工作效率×工作时间×人数
(2).经常在题目中未给出工作总量时,设工作总量为单位1。
即完成某项任务的各工作量的和=总工作量=1.
工程问题常用等量关系:先做的+后做的=完成量.
1、 一件工程,甲独做需15天完成,乙独做需12天完成,现先由甲、乙合作3天后,甲有其他任务,剩下工程由乙单独完成,问乙还要几天才能完成全部工程?
2.某工程由甲、乙两队完成,甲队单独完成需16天,乙队单独完成需12天。
如先由甲队做4天,然后两队合做,问再做几天后可完成工程的六分之五?
3、甲、乙两个工程队合做一项工程,乙队单独做一天后,由甲、乙两队合做两天后就完成了全部工程.已知甲队单独做所需天数是乙队单独做所需天数的
3
2,问甲、乙两队单独做,各需多少天?
4、一水池有一个进水管,4小时可以注满空池,池底有一个出水管,6小时可以放完满池的水.
如果两水管同时打开,那么经过几小时可把空水池灌满?
5.整理一批图书,由一个人做要40小时完成。
现计划由一部分人先做4小时,再增加2人和他们一起做8小时,完成这项工作。
假设这些人的工作效率相同,具体先安排多少人工作。
6.某车间加工30个零件,甲工人单独做,能按计划完成任务,乙工人单独做能提前一天半完成任务,已知乙工人每天比甲工人多做1个零件,问甲工人每天能做几个零件?原计划几天完成?
三.分配问题:
1、.学校分配学生住宿,如果每室住8人,还少12个床位,如果每室住9人,则空出两个房间。
求房间的个数和学生的人数。
2.学校春游,如果每辆汽车坐45人,则有28人没有上车;如果每辆坐50人,则空出一辆汽车,并且有一辆车还可以坐12人,问共有多少学生,多少汽车?
四.销售问题
(1)销售问题中常出现的量有:进价(或成本)、售价、标价(或定价)、利润等。
(2)利润问题常用等量关系:
商品利润=商品售价-商品进价=商品标价×折扣率-商品进价
商品利润率=商品利润
商品进价×100%=
商品售价-商品进价
商品进价×100%
(3)商品销售额=商品销售价×商品销售量
商品的销售利润=(销售价-成本价)× 销售量
(4)商品打几折出售,就是按原标价的百分之几十出售,如商品打8折出售,即按原标价的80%出售.即商品售价=商品标价×折扣率.
.1、一家商店将某种服装按进价提高40%后标价,又以8折优惠卖出,结果每件仍获利15元,这种服装每件的进价是多少?
2、某商品进价1500元,提高40%后标价,若打折销售,使其利润率为20%,则此商品是按几折销售的?
五.方案选择问题
1.某家电商场计划用9万元从生产厂家购进50台电视机.已知该厂家生产3•种不同型号的电视机,出厂价分别为A种每台1500元,B种每台2100元,C种每台2500元.(1)若家电商场同时购进两种不同型号的电视机共50台,用去9万元,请你研究一下商场的进货方案.
(2)若商场销售一台A种电视机可获利150元,销售一台B种电视机可获利200元,•销售一台C种电视机可获利250元,在同时购进两种不同型号的电视机方案中,为了使销售时获利最多,你选择哪种方案?。