贝特朗悖论
贝特朗概率悖论的解释

贝特朗概率悖论的解释贝特朗概率悖论的解释贝特朗概率悖论是一个著名的悖论题,与其他的集合悖论不一样,这个悖论只是我们看起来“错”而已,也并没有像集合悖论一样带来一次数学危机,正确审视它,就是让我们对“几何概型”这一概念更加地深入了解而已。
我就不废话,我们直接来看什么是贝特朗概率悖论,百度上有很多,随便一搜就到处都是题目是这样子滴:在圆中做弦MN,求使MN的长大于圆内接正三角形边长的概率。
这道题若从不同的角度看,就有几种不同的答案,百度百科里有,我就不想在这里多费口舌,希望各位先到那里去看看具体的答案,我把图片下来,大家可以自己看:百度百科词条解释虽然这多种解法各有各得说法,似乎每一个都对,但是悖论毕竟是悖论,他终究是错的。
概率问题一个基本的原则就是,不管从哪个角度看,答案只能有一个,否则一件事情的概率都不一致,这问题要么就是本身就有问题,要么就是条件不够。
而对于贝特朗概率悖论所涉及到的问题,正是如此,因为其条件不够。
首先我们看第一种“解法”。
解法1的思路是,在于AB平行的弦中,只有与PQ交点落在MN上的,弦长才大于根号3。
弦与PQ的交点肯定就是落在能分布于以O为圆心,半径为1/2的圆中,而该圆的面积占据大圆的1/4,故概率为1/4.学夫子自己的看法来说,这种解法最牵强,他将弦的分布划归为其中点在圆中的分布,认为“一个中点M只对应于一条弦”,显然这是错误的,因为圆心O所对应的弦有无数条,而对于非圆心的点M,以M为中点的弦只有一条。
所以这本身就不是等可能的,这种解法就是错误,他就跟前两种解法不一样,加上条件就是对的,这种解法无论加什么条件都是错的,因为不是条件缺与不缺的问题,而是犯了概率论中最基本的前提错误——等可能分布。
不过网络上更倾向于第二种方法的答案作为这道题的“标准答案”,因为任意给一条弦,他应该由圆周上的两点决定。
文章。
贝特朗奇论悖论

贝特朗奇论2 . 1 “贝特朗奇论” 的 数学表示 在单位圆内随机取一条弦,弦 长超过3(单位圆内 接等 边三角形的边长)的概率是多少? 这个问题有三种解法, 答案互相矛盾 。
解法一:设弦AB 的一端A 固定于圆周上,另一端B 任意(图1)。
对于等边三角形ACD , 若B 落在劣弧CD 上,则AB > 3 ,P = CD 弧长圆周长 = 13 解法二 : 设弦 AB 垂直于直径 EF , C D = DO( 图 2) , 若 AB的中点落在线段 C D 上 , 则 AB> 3 , 故 P = CD EF = 12 。
解法三 : 作半径为 1/ 2 的 同心圆( 图 3) 。
若 A B 的中 点落在此圆内 , 则 AB> 3 , 故 P =小圆面积大圆面积= 14 。
2. 2 “贝特朗奇论” 的数学辨析同一问题有三种不同的答案, 究其原因, 是在取弦时采用了不同的等可能性的假定。
解法一假定端点在圆周上的落点处处等可能 , 解法二假定中点在直径上的落点处处等可能, 解法三假定中点在圆 内的落点处处等可能。
三种答案对于各自的假定都是正确的。
这样的解释显得似是而非, 但又找不到反驳的理由, 故名奇论。
其实弊病出在概率定义本身。
我们先看看有关概率的三个定义: 概率的统计定义: 在条件相同的n 次试验中事件 A 出现m 次, 如果加大n 时, A 的频率mn逐渐稳定在一个常数附近, 就把这个常数叫做事件 A 的概率。
概率的古典定义:如果一个试验满足两条:(1)试验只有有限个基本结果;(2)试验的每个基本结果出现的可能性是一样的。
这样的试验,成为古典试验。
对于古典试验中的事件A,它的概率定义为:P(A)= mn,n表示该试验中所有可能出现的基本结果的总数目。
m表示事件A包含的试验基本结果数。
这种定义概率的方法称为概率的古典定义。
概率的几何定义:若试验结果只能出现于区域Ω内的某一点,且出现于每一点的可能性相等,又区域A包含于区域Ω中,那么试验结果出现于区域A的概率,即事件A R 的概率P( A ) =区域A的测度/区域Ω的测度。
贝特朗悖论

贝特朗悖论
1899年,法国学者贝特朗提出了所谓“贝特朗悖论”,使我们对概率的定义有了更深的认识。
同一个问题,得出了三种答案,所以该问题一经提出就被人称为“悖论”。
其实,该问题的答案已经被人们证明有无数多个。
现在我们要考虑,同一个问题,为什么答案会有这么多?
之所以被人称之为“悖论”,并不是因为这个问题错了,也不是解答错误,每种答案都对。
但是结果不一样,这是因为人们忽略了概率中的一个定义。
样本空间定义
一个随机试验可能出现不同的结果,这些结果称之为样本点,样本点的全体所构成的集合称之为样本空间Ω,事件A定义为样本空间Ω的一个子集,它包含了若干的样本点。
所以我们要求概率,首先考虑这个试验的样本空间是什么,选择不同的样本空间,会得出不同的答案,我们针对上面三种解法考虑其样本空间:
上面三种解法得出不同答案的实质是因为求解概率的样本空间不同,换句话说就是弦是怎么做出来的,不同的作弦方式会得到不同的样本空间。
该问题之所以称之为悖论,仅仅是因为该问题中并没有阐述圆中的弦是怎么做出来的。
而我们知道,做弦的方式有无数多种,所以贝特朗提出的这个问题有无数种答案。
以下用两题对比来体会样本空间这一概念:
两个题目做出线段CM的方式不同:。
贝特朗悖论

贝特朗悖论贝特朗悖论是一个有关几率论的传统解释会导致的悖论。
约瑟·贝特朗于1888年在他的著作《Calcul des probabilités》中提到此悖论,用来举例说明,若产生随机变数的“机制”或“方法”没有清楚定义好的话,几率也将无法得到良好的定义。
贝特朗悖论的内容如下:考虑一个内接于圆的等边三角形。
若随机选圆上的弦,则此弦的长度比三角形的边较长的几率为何?贝特朗给出了三个论证,全都是明显有效的,但导致的结果都不相同:1.“随机端点”方法:在圆周上随机选给两点,并画出连接两点的弦。
为了计算问题中的几率,可以想像三角形会旋转,使得其顶点会碰到弦端点中的一点。
可观察到,若另一个弦端点在弦会穿过三角形的一边的弧上,则弦的长度会比三角形的边较长。
而弧的长度是圆周的三分之一,因此随机的弦会比三角形的边较长的几率亦为三分之一。
图1 随机的弦,方法1;红=比三角形的边较长,蓝=比三角形的边较短2.“随机半径”方法:选择一个圆的半径和半径上的一点,再画出通过此点并垂直半径的弦。
为了计算问题的几率,可以想像三角形会旋转,使得其一边会垂直于半径。
可观察到,若选择的点比三角形和半径相交的点要接近圆的中心,则弦的长度会比三角形的边较长。
三角形的边会平分半径,因此随机的弦会比三角形的边较长的几率亦为二分之一。
图2 随机的弦方法23.“随机中点”方法:选择圆内的任意一点,并画出以此点为中点的弦。
可观察到,若选择的点落在半径只有大圆的半径的二分之一的同心圆之内,则弦的长度会比三角形的边较长。
小圆的面积是大圆的四分之一,因此随机的弦会比三角形的边较长的几率亦为四分之一。
图3 随机的弦方法3上述方法可以如下图示。
每一个弦都可以被其中点唯一决定。
上述三种方法会给出不同中点的分布。
方法1和方法2会给出两种不同不均匀的分布,而方法3则会给出一个均匀的方法。
但另一方面,若直接看弦的分布,方法2的弦会看起来比较均匀,而方法1和方法3的弦则较不均匀。
贝特朗悖论(几何概型).doc

一个几何概型试题的题源探究《中学教研》2010年第09期 第38页 《福建中学数学》2010年第05期 第23页1 题目点A 为周长等于3的圆周上的一个定点,若在该圆周上随机取一点B ,则劣弧AB 的长度小于1的概率为 .(2009年福建省数学高考文科试题)解:如图1,另一端点B 只能在优弧上运动,因此所求概率为1223B B P ==优弧长圆周长.2 题源2.1 源于历史名题初看此题以为是数学史上得一个经典的悖论——贝特朗悖论,其实这是一个根据贝特朗悖论改编的题目.贝特朗悖论:“在半径为1的圆周上任取两点,连成一条弦,问弦长超过其内接正三角形的边长的概率是多少?”从不同方向考虑这道试题,可得不同结果:解法1 如图2,满足条件得弦为AP .不失一般性,先固定其中一点A 于圆周上,则另一端点P 只能在弧BC 上运动,因此所求概率1=3BC P =圆周长.2BB1BBB BB B 图1AC图2AB PPPP解法2 如图3,应用对称性.可预先固定直径AB ,点,C D 为AB 的四等分点.作垂直于直径AB的弦,若弦长要大于内接正三角形边长,则半弦长>12≤,即弦的中点须在线段CD 上运动(弦中点与弦一一对应),故所求概率为12CD P AB ==.解法3 如图4所示,弦长要大于内接正三角形边长,则半弦长2>,于是弦心距12≤,即弦中点必须在以O 为圆心、半径为12的圆内或圆上,故所求概率21()124P ππ==. 这导致同一事件有不同概率,因此为悖论.同一问题有3中不同的答案,原因在于取弦时采取不同的等可能性假设!解法1假设端点在圆周上是均匀分布的;解法2假设弦中点在直径上是均匀分布的;解法3是假设弦的中点在圆内是均匀分布的.这3种解答是针对3种不同的随机试验,对于各自的随机试验而言,它们都是正确的.因此,在试验术语“随机”、“等可能”、“均匀分布”等时,应明确指明其含义,这又因试验而异.几何概率是19世纪末新发展起来的一门学科,使很多概率问题的解决变得简单而不用运用微积分的知识。
贝特朗概率悖论的解释-学习文档

贝特朗概率悖论的解释贝特朗概率悖论是一个著名的悖论题,与其他的集合悖论不一样,这个悖论只是我们看起来“错”而已,也并没有像集合悖论一样带来一次数学危机,正确审视它,就是让我们对“几何概型”这一概念更加地深入了解而已。
我就不废话,我们直接来看什么是贝特朗概率悖论,百度上有很多,随便一搜就到处都是题目是这样子滴:在圆中做弦MN,求使MN的长大于圆内接正三角形边长的概率。
这道题若从不同的角度看,就有几种不同的答案,百度百科里有,我就不想在这里多费口舌,希望各位先到那里去看看具体的答案,我把图片下来,大家可以自己看:百度百科词条解释虽然这多种解法各有各得说法,似乎每一个都对,但是悖论毕竟是悖论,他终究是错的。
概率问题一个基本的原则就是,不管从哪个角度看,答案只能有一个,否则一件事情的概率都不一致,这问题要么就是本身就有问题,要么就是条件不够。
而对于贝特朗概率悖论所涉及到的问题,正是如此,因为其条件不够。
首先我们看第一种“解法”。
解法1的思路是,在于AB平行的弦中,只有与PQ交点落在MN上的,弦长才大于根号3。
弦与PQ的交点肯定就是落在PQ上的,而NM=1/2PQ,所以此时概率为1/2.这个解法其实有一个重要前提,那就是弦与PQ的交点在PQ 上是均匀分布的。
正正是题目中所缺乏的条件,因为圆中任意的弦,这到底怎么个做法?是像这种解法所说的,使其与PQ交点在PQ上均匀分布么?还是使弦与圆周的交点是任意分布?如果满足后者,就不可能满足前者,满足前者,就不可能满足后者。
一个比较明显的说法就是:做几条平行弦,使其在PQ上均匀分布,也就是相互之间的距离相等,我们可以看见,这些弦之间的弧长并不相等,也就是说,在PQ上均匀分布,一定不会在圆周上均匀分布。
原题中没有给出这样的条件,解法1加了这么一个条件,显然就有不一样的结果了。
再看解法2.解法2的思路是,链接OA,在OA两边做弦AM和AN,使其和AO的夹角为30°。
贝特朗悖论

19世纪末,概率论的广泛应用提出了对概率论的基础概念与原理进行解释的需要.另外,科学家发现的一些概率悖论提示了古典概率论的基本理论所存在的矛盾,其中最著名的是贝特朗悖论.悖论提出后,在数学界引起了很大震动,促使数学家理性反思概率论的基础理论.1932年,这个问题才由前苏联的数学家柯尔莫哥洛夫解决,他在其经典的著作《概率论基础》中建立了在测度论的基础上的概率论公理系统,从而把概率论建立在完全严格的数学基础之上,那么什么是贝特朗悖论呢?下面我将简要向同学们介绍一下.贝特朗悖论是法国数学家贝特朗提出的关于几何概型的悖论.1889年贝特朗在著作《概率计算》中提出:在圆内作任一弦,求其长超过圆内接正三角形边长的概率.现按几何概型的计算方法,可毫无计算错误地求得三种不同的结果,从而使几何概型陷入逻辑矛盾之中.(1) 如图1,弦l BC ∥,由ABC △是正三角形知,2R OD OD '==,OE d =,有PQ BC >,2R d <. 由E点在圆O直径上的等可能性,因此所求概率为21222RP R ⨯==. (2)如图2,弦l 的弦切角为α,由ABC △是正三角形知,60MAB ∠=°,120MAC ∠=°,有AP AB >,60120α<<°°.由于弦l 在圆内的等可能性,因此所求概率为1206011803P -==°°°. (3)如图3,弦l 的弦心距OE 为d ,ABC △的内切圆半径为,由于弦l 在大圆内和交点E在小圆内的等可能性,因此所求概率为 22π12π4R P R ⎛⎫ ⎪⎝⎭==. 出现以上三种不同结果的根本原因不是别的,就是本题进行了无穷多个等可能性随机试验,而“等可能”概念缺乏一个明确的客观标准.这一悖论揭示了几何概率在19世纪刚兴盛时期存在着其逻辑基础的脆弱性,也反映出古典概率有着相当的局限.这也推动了20世纪概率论合理化工作的早日到来. 当然这也提醒我们在解决几何概型问题时,必须找准观察角度、明确随机选择的意义、判断好基本事件的等可能性.。
贝特朗悖论与概率论的公理化

贝特朗悖论与概率论的公理化
贝特朗悖论和概率论在数学方面可以说是共同的、交叉的学科,它们有着共同的公理化过程,可以用于描述相近的客观现象。
一、贝特朗悖论
1、首先,必须对Decision Problem进行分析和定义,包括测定可用来解决决策问题的异质变量,以及针对每一异质变量所要考虑的多个取值情况;
2、其次,识别出实际决策中相关概率变化,将决策问题定义成一组事件发生概率的期望值;
3、然后,计算可能的决策方案,通过对每一方案的风险可视化,明确方案的最优化;
4、最后,完成贝特朗悖论的公理化,可以用于描述决策过程中负担的收益和可能的后果。
二、概率论
1、首先,通过对诸如抛硬币的实验的实验分析,可以确定给定实验的概率,并使用数学表示法来估计实验的概率;
2、其次,基于概率或概率分布,可以确定随机变量和确定性变量之间存在的关系;
3、然后,利用数学表达式建模和求解,能够识别出和计算出解决问题所需要的最优解,或者最有价值的解;
4、最后,完成概率论的公理化,可以用于预测要解决问题的范围、成功机率和结果的可能性。
贝特朗悖论和概率论的公理化是进行决策分析的重要基础,因此,在利用它们来解决实际决策问题时,需要充分考虑其以上提到的方面,以满足确定最优选择的要求。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
贝特朗悖论
在第一次世界大战时,意大利军队里流行着一种反常的现象:意大利士兵受伤后不去医院治疗,而是要求服用大量的止痛片。
这使人费解,军方将领也莫衷一是。
英国海军少将贝特朗认为,这种看似矛盾的现象有它合理的一面。
因为他发现,如果不进行必要的止痛治疗,很多士兵都会在作战中牺牲。
从20世纪开始,对于贝特朗悖论产生了各种不同的观点和解释。
1909年,爱尔兰数学家波利亚最先提出,士兵因为怕被俘,宁愿死于敌手,也不愿治疗疾病。
这被称为“假死说”。
但是,美国医生杜南和拉斯马丁,为寻找原因,深入研究,终于揭开了这个奥秘:原来,当士兵受伤后,生命特征就已经消失了。
如果去治疗,那么生命活动仅存于人体的某些器官,就不能在行军或作战中发挥积极作用了。
为此,医生们便采取了“假死说”的治疗方法,让士兵不用去接受手术等治疗,可以保存下更多的体力。
1910年,德国医生冯·贝克曼德尔首先向公众宣布了这个奥秘。
这种假死说在医学上被称为“灵魂出壳说”。
这个学说的前提是,人受伤以后,其实就是“灵魂”离开身体。
这种灵魂虽然没有肉体,却仍然具有思维,并且对自己的行为负责任。
由于灵魂与肉体不在一起,当伤愈之后,对自己所造成的伤害,则难以恢复。
为此,在重伤初愈后,我们必须对伤口进行必要的处理。
1912年,英国医生洛伍德正式向公众宣布了这个奥秘,他称之为“拟态说”。
他认为,人体内每一个器官、每一根神经都相当于一
个独立的人,每一个器官都有一个生命,即具有特殊性质的“灵魂”。
因此,身体各部位不应该互换,医生只能对受伤的器官进行抢救,而不能移动“灵魂”。
1916年,法国外科医生皮纳尔提出,人体有两种系统在控制人体的正常功能。
一种是靠内部神经来指挥的。
另一种则是依靠来自外界刺激来指挥的。
这两种系统既独立又相互联系,同时也相互转化。
他把这种相互转化叫做“拟态”。
他把人体分成两个不同的部分,即“身体”和“灵魂”。
灵魂处于一种休息状态,通过“拟态”来适应环境,接受指令。
而当灵魂接到指令后,它便苏醒过来,恢复健康。
1920年,加拿大医生安德森正式向公众宣布了这个奥秘,他称之为“内省说”。
他认为,人体受伤以后,人体就变得不能对其本身进行判断了,而必须把决策权交给“灵魂”,由它对自己的情况进行评价。