B-S期权定价模型

合集下载

BS期权定价模型课件详解精讲

BS期权定价模型课件详解精讲

f Sdz
S
f
( f S
S
f t
1 2
2 f S 2
〔2S〕2 )t
f Sz
S
为了消除z,我们可以构建一个包括一单位衍 生证券空头和 单位f 标的证券多头的组合。令
代表 该投资组合的S价值,那么:
f(6.1f5S)
S
由于股价将来波动随机过程与基于其的衍生品价格的随机波动过程是一致的,因此可以通过构建股价与其衍生品的对冲 组合消除这个随机过程。
2G x 2
b2 )dt
G x
bdz〔〕
由于 dS Sdt Sdz〔〕
根据伊藤引理,衍生证券的价格G应遵循 如下过程:
dG
( G S
S
G t
1 2
2G S 2
2S 2 )dt
(GS6.1S0d)z
六、证券价格自然对数变化过程
令 代入式〔〕,:由于 G ln S
G S
1 S
,
2G S 2
1 S2
表示将来价格变化率符合普通布朗运动,〔描绘运动偏离标注布朗运动的漂移 率和方差率项已变为常数而非与时间和目前值有关系的函数〕
从〔〕可知,在短时间后,证券价格比
率的变化值为:
S t t
S 可见,S也具有正态分布特征
S
, t, , 前三个是常数或者函数值, 最后一个是个标准正态随机变量, 整个式子是某种正态随机变量。只 不过这里符合的正态分布的均值和 方差是与时间间隔由关系的值而已。
B-S公式小结
证券变化量满足伊藤随机过程——基于该 证券的衍生品价格满足伊藤引理,建立 起衍生品价格的随机微分方程——构建该 证券与其衍生品的适当组合消除随机过 程,且该组合要满足瞬时无套利,得到 满足任何衍生品价格f关于其证券价格s和 时间t的偏微分方程。

BLACKSCHOLES期权定价模型

BLACKSCHOLES期权定价模型

BLACK-SCHOLES期权定价模型Black-Scholes期权定价模型(Black-Scholes Option Pricing Model),1997年10月10日,第二十九届诺贝尔经济学奖授予了两位美国学者,哈佛商学院教授罗伯特·默顿(RoBert Merton)和斯坦福大学教授迈伦·斯克尔斯(Myron Scholes)。

他们创立和发展的布莱克-斯克尔斯期权定价模型(Black Scholes Option Pricing Model)为包括股票、债券、货币、商品在内的新兴衍生金融市场的各种以市价价格变动定价的衍生金融工具的合理定价奠定了基础,特别是为评估组合保险成本、可转换债券定价及认股权证估值等提供了依据。

斯克尔斯与他的同事、已故数学家(Fischer Black)在70年代初合作研究出了一个期权定价的复杂公式(看涨和看跌)。

与此同时,默顿也发现了同样的公式及许多其它有关期权的有用结论。

结果,两篇论文几乎同时在不同刊物上发表。

所以,布莱克—斯克尔斯定价模型亦可称为布莱克—斯克尔斯—默顿定价模型(含红利的)。

默顿扩展了原模型的内涵,使之同样运用于许多其它形式的金融交易。

瑞士皇家科学协会(The Royal Swedish Academyof Sciencese)赞誉他们在期权定价方面的研究成果是今后25年经济科学中的最杰出贡献。

(一)B-S模型有5个重要的假设1、服从对数;(股票价格走势遵循几何布朗运动)2、在期权有效期内,无风险利率和金融资产收益变量是恒定的;3、市场无摩擦,即不存在和;4、该期权是,即在期权到期前不可实施;5、金融资产在期权有效期内无及其它所得(该假设后被放弃);6、不存在机会;7、证券交易是持续的;8、投资者能够以无风险利率借贷。

(二)荣获诺贝尔经济学奖的B-S 定价公式)()(21d N Le d SN c rT --=其中:C —期权初始合理价格L —期权S —所交易金融资产现价T —期权有效期r —连续复利计无风险利率2σ—年度化方差(波动率)N()—正态分布变量的累积概率分布函数,(标准正态分布 μ=0)在此应当说明两点: 第一,该模型中无风险利率必须是连续复利形式。

B-S期权定价公式的简单推导

B-S期权定价公式的简单推导

(二)B-S期权定价公式
在风险中性的条件下,欧式看涨期权到期时(T
时刻)的期望值为:E [max(ST X ,0)]
其现值为

c er (T t ) E[max(ST X ,0)]
(4.18)
对数股票价格的分布为:
ln ST
~ [ln S
(r 2 )(T

1 2S2
2
2 f S 2

rf
(4.17)
这就是著名的B-S微分分程,它适用于其价格取决于标的证 券价格S的所有衍生证券的定价。
2,风险中性定价原理
假设所有投资者都是风险中性的,那么所有现金流 量都可以通过无风险利率进行贴现求得现值。
尽管风险中性假定仅仅是为了求解B-S微分方程而 作出的人为假定,但通过这种假定所获得的结论不 仅适用于投资者风险中性情况,也适用于投资者厌 恶风险的所有情况。
其中,a和b均为常数,dz遵循标准布朗运动。
(三)伊藤过程与伊藤引理
普通布朗运动假定漂移率和方差率为常数,若把变量 x的漂移率和方差率当作变量x和时间t的函数,我们可以 从公式(4.4)得到伊藤过程(Ito Process):
dx a(x,t)dt b(x,t)dz (4.5)
其中,dz是一个标准布朗运动,a、b是变量x和t的函数, 变量x的漂移率为a,方差率为b2
根据伊藤引理,衍生证券的价格f应遵循如下过程:
df
( f S
S f
t

1 2
2 f S 2

2S 2 )dt

f S

Sdz
(4.9)
(六)证券价格自然对数变化过程

b-s定价模型操作策略 -回复

b-s定价模型操作策略 -回复

b-s定价模型操作策略-回复“bs定价模型操作策略”BS定价模型(Black-Scholes model)是金融领域最为著名和广泛使用的期权定价模型之一。

本文将通过一步一步的回答,探讨在实际操作中如何利用BS定价模型来制定策略,以获得更好的投资回报。

第一步:了解BS定价模型的基本原理与假设BS定价模型是基于对期权市场的理性假设和随机过程的建模,以确定期权的理论价格。

关键假设包括:股票价格满足几何布朗运动、市场无摩擦、利率恒定等。

在实践中,我们需要先对市场进行基本面分析和技术分析,以了解所选股票的基本情况和价格走势。

第二步:确定期权的参数BS定价模型需要输入一些关键参数来计算期权的价格。

其中包括标的资产价格(S)、执行价格(K)、到期时间(T)、无风险利率(r)和标的资产的波动率(σ)。

在实际操作中,我们需要根据市场和业务需求来选择适当的参数。

第三步:计算期权的理论价格通过以上确定的参数,利用BS定价模型公式可以计算出期权的理论价格。

该公式包括两个部分:期权对应的欧式看涨期权或看跌期权价值,以及在到期日支付的无风险利息。

根据模型计算出的期权价格,可以与市场实际价格进行对比,进一步判断期权的价值。

第四步:确定买入或卖出期权的决策通过计算得到的期权价格,我们可以对市场上的期权进行评估。

如果计算出的期权价格高于市场价格,意味着该期权被低估,可以考虑买入;反之,如果计算出的期权价格低于市场价格,意味着该期权被高估,可以考虑卖出空头合约。

这种基于BS定价模型的买卖决策可根据投资者的风险偏好和投资策略来确定。

第五步:控制风险与仓位管理在进行期权交易时,风险控制和仓位管理非常重要。

BS定价模型只是提供了一个评估期权价格的理论框架,而无法全部涵盖市场的复杂性。

因此,投资者需要根据自身的风险承受能力和投资目标来制定合理的风险控制和仓位管理策略。

这包括设置止损位、控制仓位占比、分散投资等方法。

第六步:定期回顾和调整策略市场是不断变化的,期权价格也会随着市场波动而变化。

基于B-S公式与时间序列模型对期权价格的预测

基于B-S公式与时间序列模型对期权价格的预测

基于B-S公式与时间序列模型对期权价格的预测引言期权是一种金融工具,具有在未来某个时间点购买或出售某项资产的权利。

期权的价格受多种因素影响,包括标的资产价格、行权价格、期权到期时间、无风险利率和波动率等。

对期权价格的准确预测对于投资者具有重要意义,因为它能帮助投资者进行风险管理,合理进行买卖决策。

本文将基于B-S公式和时间序列模型,探讨对期权价格进行预测的方法。

一、B-S公式对期权价格的影响B-S(Black-Scholes)期权定价模型是由费舍尔·布莱克(Fisher Black)、梅伦·斯科尔斯(Myron Scholes)和罗伯特·默顿(Robert Merton)于1973年提出的,成为了衍生品市场定价的理论基础。

B-S模型使用了随机微分方程,可以通过计算得出期权合理价格。

B-S公式中的主要变量包括标的资产价格(S)、行权价格(K)、无风险利率(r)、期权到期时间(T)和标的资产波动率(σ)。

这些变量将直接影响期权价格的变动。

标的资产价格上升会使得看涨期权的价格上涨,而看跌期权价格下跌。

无风险利率的升降将直接影响期权价格的折现率,期权到期时间的延长会增加期权的时间价值,标的资产波动率的提高也会增加期权的价格波动性。

对于使用B-S公式进行期权价格预测来说,投资者首先要对期权价格的影响因素进行深入分析和预测。

只有准确把握了这些影响因素,才能对期权价格进行合理的预测。

二、基于时间序列模型的期权价格预测B-S公式的预测是基于已知的输入参数进行的,而时间序列模型则是基于历史数据对未来期权价格进行预测的方法。

时间序列模型通常会采用统计分析的方法,通过对历史期权价格数据进行建模,得出未来价格变动的规律。

时间序列模型中用得较多的包括ARIMA模型(自回归积分移动平均模型)、GARCH模型(广义自回归条件异方差模型)等。

ARIMA模型是一种建立在时间序列上的预测模型,可以用来预测未来一段时间内的值。

第九章 B-s期权定价模型

第九章 B-s期权定价模型
2





4、无套利定价 由于式(5)中不含有Δz,该组合的价值在 一个小时间间隔Δt后必定没有风险。 因此该组合在 Δt 中的瞬时收益率一定等 于Δt中的无风险收益率。 否则的话,套利者就可以通过套利获得 无风险收益率。 因此,在没有套利机会的条件下: ΔΠ=rΠΔt……(6) 把式(3)和(5)代入(6)得:

值。
考虑到在风险中性条件下,ST实际上是S按无风险利率 增长在T时刻) ST
因此SN(d1) 可以变换为:
SN(d1)=e-r(T-t) STN(d1) 期权定价公式可以相应表示为:


c ST er (T t ) N (d1 ) Xer (T t ) N (d2 )
T t 2 ln(F / X ) ( / 2)(T t ) d2 d1 T t T t


例1 假设当前英镑的即期汇率为 $1.5000,美国的无风 险连续复利年利率为7%,英国的无风险连续复利年 利率为 10%,英镑汇率遵循几何布朗运动,其波动 率为 10%,求 6 个月期协议价格为 $1.5000 的英镑 欧式看涨期权价格。
f f S (3) s 在t时间后, 该投资组合的价值变化 为:
f f S (4) s 将式(1)和(2)代入(4),可得 :
f 1 f 2 2 S t ( 5 ) t 2 S 2
欧式看跌期权定价
在标的资产无收益情况下,由于 C=c,因 此式 (10) 也给出了无收益资产美式看涨期 权的价值。 根据欧式看涨期权和看跌期权之间存在平 价关系,可以得到无收益资产欧式看跌期 权的定价公式: p=Xe-r(T-t) N(—d2)—SN(—d1) (11)

B-S定价模型

B-S定价模型
任何一个模都是基于一定的市场假设的,Black-Scholes模型模型的基本假设有以下几点:
(1)无风险利率r是已知的,为一个常数,不随时间的变化而改变
(2)标的证券为股票,正股价格S的变化符合随机漫步,但这种随机漫步能够使股票的回报率成对数正态分布。
(3)标的股票不分红
(4)期权为欧式期权,即到期日才能行权
B-S模型
期权定价模型。
B-S是两位经济学家BLACK、SCHOLES名字的缩写,为了纪念他们发现该模型而用他们的名字命名.
在二叉树的期权定价模型中,如果标的证券期末价格的可能性无限增多时,其价格的树状结构将无限延伸,从每个结点变化到下一个结点(上涨或下跌)的时间将不断缩短,如果价格随着时间周期的缩短,其调整的幅度也逐渐缩小的话,在极限的情况下,二叉树模型对欧式权证的定价就演变为关于权证定价理论的经典模型:B-S模型.
第一个角度根据定价原理,该模型可以看作两部分, 和 ,正好理解为一个投资组合的两个组成部分,即N(d1)份正股和XeN(d2)元的无息贷款的组合。也就是说,在权证未到期前的任何时刻,一份认购权证的价值与N(d1)份正股和XeN(d2)元的无息贷款的组合价值相同。
第二个角度是从权证的到期收益来理解模型,权证的价值由其到期日能够给持有者带来的收益决定。但是到期时正股价格不确定,因此权证的收益也难以确定。假设到期时正股价格为S,则到期时认购权证的价格为S-X。那么在到期前的任一时刻t,要想知道认购权证的价格,我们就需要推算认购权证到期时正股价为S的概率,同时将行权价格按一定的贴现率折算为时刻t的现值。因此,认购权证的定价模型可以理解为在任一时刻t,认购权证到期时正股价格为S的概率为N(d1), 为行权价格在时刻t的现值,N(d2)为概率。因此,在任一时刻t,认购权证给投资者带来的收益即为 。

期权定价的连续模型之B-S公式

期权定价的连续模型之B-S公式

如何使概率问题转化为实变量的函数形式 ?
如何入手将概率问题转化为实变量的函数形式 ?
我们研究的对象是随机事件的概率 我们研究的对象是 随机变量的取值或取值范围 的概率 P( X = x ), P( X x ), P( X > x ), P ( x1 X x2 ),…
能否选用一个事件将所有事件都表达出来?
用随机变量的取值或取值范围来表示随机事件
例如,从某一学校随机选一学生,测量他的 身高. 我们可以把可能的身高看作随机变量 X , 然后我们可以提出关于X 的各种问题. 如 P(X > 1.7 )=? P(X ≤1.5 )= ? P(1.5<X<1.7) =?
一旦我们实际选定了一个学生并量了其身高 之后,我们就得到 X 的一个具体的值,记作 x . 这时要么 x≥1.7, 要么 x <1.7, 再求 P(x ≥1.7)就没有意义了.
这种选择并 不是唯一的
P( X x)
P( A ) X() P( X x )
本质是什么?
函数
变量 ?
由此引进了分布函数的概念:
随机变量的分布函数
1. 定义
F ( x) P( X x)
分布函数是一个普通的函数, , 我们就可以用分析的 设 X 是随机变量,称 通过它 特殊形式事件的概率 ( x )工具来研究随机变量的取值规律
期权定价的连续模型之B-S公式

期权定价理论的发展 几何布朗运动 Black-Scholes定价公式 其他有关知识
概率知识:§1 随机变量
(1) 掷一颗骰子, 出现的点数 X 1,2,……,6. (2) n个产品中的不合格品个数 Y 0,1,2,……,n (3) 某商场一天内来的顾客数 Z 0,1,2,……
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

Black-Scholes期权定价模型(重定向自Black—Scholes公式)Black-Scholes期权定价模型(Black-Scholes Option Pricing Model),布莱克-肖尔斯期权定价模型Black-Scholes 期权定价模型概述1997年10月10日,第二十九届诺贝尔经济学奖授予了两位美国学者,哈佛商学院教授罗伯特·默顿(RoBert Merton)和斯坦福大学教授迈伦·斯克尔斯(Myron Scholes)。

他们创立和发展的布莱克——斯克尔斯期权定价模型(Black Scholes Option Pricing Model)为包括股票、债券、货币、商品在内的新兴衍生金融市场的各种以市价价格变动定价的衍生金融工具的合理定价奠定了基础。

斯克尔斯与他的同事、已故数学家费雪·布莱克(Fischer Black)在70年代初合作研究出了一个期权定价的复杂公式。

与此同时,默顿也发现了同样的公式及许多其它有关期权的有用结论。

结果,两篇论文几乎同时在不同刊物上发表。

所以,布莱克—斯克尔斯定价模型亦可称为布莱克—斯克尔斯—默顿定价模型。

默顿扩展了原模型的内涵,使之同样运用于许多其它形式的金融交易。

瑞典皇家科学协会(The Royal Swedish Academyof Sciencese)赞誉他们在期权定价方面的研究成果是今后25年经济科学中的最杰出贡献。

[编辑]B-S期权定价模型(以下简称B-S模型)及其假设条件[编辑](一)B-S模型有7个重要的假设1、股票价格行为服从对数正态分布模式;2、在期权有效期内,无风险利率和金融资产收益变量是恒定的;3、市场无摩擦,即不存在税收和交易成本,所有证券完全可分割;4、金融资产在期权有效期内无红利及其它所得(该假设后被放弃);5、该期权是欧式期权,即在期权到期前不可实施。

6、不存在无风险套利机会;7、证券交易是持续的;8、投资者能够以无风险利率借贷。

[编辑](二)荣获诺贝尔经济学奖的B-S定价公式[1]C = S * N(d1) − Le− rT N(d2)其中:C—期权初始合理价格L—期权交割价格S—所交易金融资产现价T—期权有效期r—连续复利计无风险利率Hσ2—年度化方差N()—正态分布变量的累积概率分布函数,在此应当说明两点:第一,该模型中无风险利率必须是连续复利形式。

一个简单的或不连续的无风险利率(设为r0)一般是一年复利一次,而r要求利率连续复利。

r0必须转化为r方能代入上式计算。

两者换算关系为:r = ln(1 + r0)或r0=Er-1。

例如r0=0.06,则r=ln(1+0.06)=0.0583,即100以5.83%的连续复利投资第二年将获106,该结果与直接用r0=0.06计算的答案一致。

第二,期权有效期T的相对数表示,即期权有效天数与一年365天的比值。

如果期权有效期为100天,则。

[编辑]B-S定价模型的推导与运用[1](一)B-S模型的推导B-S模型的推导是由看涨期权入手的,对于一项看涨期权,其到期的期值是:E[G] = E[max(St− L,O)]其中,E[G]—看涨期权到期期望值St—到期所交易金融资产的市场价值L—期权交割(实施)价到期有两种可能情况:1、如果St > L,则期权实施以进帐(In-the-money)生效,且max(S t− L,O) = S t− L2、如果St < L,则期权所有人放弃购买权力,期权以出帐(Out-of-the-money)失效,且有:max(St− L,O) = 0从而:其中:P:(St > L)的概率E[S t | S t > L]:既定(S t > L)下S t的期望值将E[G]按有效期无风险连续复利rT贴现,得期权初始合理价格:C = Pe− rT(E[S t | S t > L] − L)这样期权定价转化为确定P和E[S t | S t > L]。

首先,对收益进行定义。

与利率一致,收益为金融资产期权交割日市场价格(St)与现价(S)比值的对数值,即收益= lnSt / S = ln(S t / L)。

由假设1收益服从对数正态分布,即ln(S t / L)~,所以E[lN(St / S] = μt,S t / S~可以证明,相对价格期望值大于eμt,为:E[S t / S] = eμt + σ2T2 = e rT从而,μt = T(r− σ2),且有σt= σT其次,求(St > L)的概率P,也即求收益大于(LS)的概率。

已知正态分布有性质:Pr06[ξ > x] = 1 − N(x− μσ)其中:ζ:正态分布随机变量x:关键值μ-ζ的期望值σ-ζ的标准差所以:P = Pr06[St > 1] = Pr06[lnS t / s] > lnLS = :LN− lnLS− (r− σ2)TσTnc4由对称性:1 − N(d) = N( − d)P = NlnSL + (r− σ2)TσTarS。

第三,求既定St > L下S t的期望值。

因为E[S t | S t > L]处于正态分布的L到∞范围,所以,E[St | S t] > = Se rT N(d1)N(d2)其中:最后,将P、E[St | S t] > L]代入(C = Pe− rT(E[S t | S t > L] − L))式整理得B-S定价模型:C = SN(d1) − Le− rT N(d2)(二)看跌期权定价公式的推导B-S模型是看涨期权的定价公式,根据售出—购进平价理论(Put-callparity)可以推导出有效期权的定价模型,由售出—购进平价理论,购买某股票和该股票看跌期权的组合与购买该股票同等条件下的看涨期权和以期权交割价为面值的无风险折扣发行债券具有同等价值,以公式表示为:S + Pe(S,T,L) = C e(S,T,L) + L(1 + r) − T移项得:Pe(S,T,L) = C e(S,T,L) + L(1 + r) − T− S,将B-S模型代入整理得:此即为看跌期权初始价格定价模型。

(三)B-S模型应用实例假设市场上某股票现价S为164,无风险连续复利利率γ是0.0521,市场方差σ2为0.0841,那么实施价格L是165,有效期T为0.0959的期权初始合理价格计算步骤如下:①求d1:=0.0328②求d2:③查标准正态分布函数表,得:N(0.03)=0.5120N(-0.06)=0.4761④求C:C=164×0.5120-165×e-0.0521×0.0959×0.4761=5.803因此理论上该期权的合理价格是5.803。

如果该期权市场实际价格是5.75,那么这意味着该期权有所低估。

在没有交易成本的条件下,购买该看涨期权有利可图。

[编辑]B-S模型的发展、股票分红B-S模型只解决了不分红股票的期权定价问题,默顿发展了B-S模型,使其亦运用于支付红利的股票期权。

(一)存在已知的不连续红利假设某股票在期权有效期内某时间t(即除息日)支付已知红利Dt,只需将该红利现值从股票现价S中除去,将调整后的股票价值S′代入B-S模型中即可:S' = S− Dt e − rT。

如果在有效期内存在其它所得,依该法一一减去。

从而将B-S模型变型得新公式:(二)存在连续红利支付是指某股票以一已知分红率(设为δ)支付不间断连续红利,假如某公司股票年分红率δ为0.04,该股票现值为164,从而该年可望得红利164×004= 6.56。

值得注意的是,该红利并非分4季支付每季164;事实上,它是随美元的极小单位连续不断的再投资而自然增长的,一年累积成为6.56。

因为股价在全年是不断波动的,实际红利也是变化的,但分红率是固定的。

因此,该模型并不要求红利已知或固定,它只要求红利按股票价格的支付比例固定。

在此红利现值为:S(1-E-δT),所以S′=S•E-δT,以S′代S,得存在连续红利支付的期权定价公式:C=S•E-δT•N(D1)-L•E-γT•N(D2)[编辑]B-S模型的影响自B-S模型1973年首次在政治经济杂志(Journalofpo Litical Economy)发表之后,芝加哥期权交易所的交易商们马上意识到它的重要性,很快将B-S模型程序化输入计算机应用于刚刚营业的芝加哥期权交易所。

该公式的应用随着计算机、通讯技术的进步而扩展。

到今天,该模型以及它的一些变形已被期权交易商、投资银行、金融管理者、保险人等广泛使用。

衍生工具的扩展使国际金融市场更富有效率,但也促使全球市场更加易变。

新的技术和新的金融工具的创造加强了市场与市场参与者的相互依赖,不仅限于一国之内还涉及他国甚至多国。

结果是一个市场或一个国家的波动或金融危机极有可能迅速的传导到其它国家乃至整个世界经济之中。

我国金融体制不健全、资本市场不完善,但是随着改革的深入和向国际化靠拢,资本市场将不断发展,汇兑制度日渐完善,企业也将拥有更多的自主权从而面临更大的风险。

因此,对规避风险的金融衍生市场的培育是必需的,对衍生市场进行探索也是必要的,我们才刚刚起步。

[编辑]对B-S模型的检验、批评与发展B-S模型问世以来,受到普遍的关注与好评,有的学者还对其准确性开展了深入的检验。

但同时,不少经济学家对模型中存在的问题亦发表了不同的看法,并从完善与发展B-S模型的角度出发,对之进行了扩展。

1977年美国学者伽莱(galai)利用芝加哥期权交易所上市的股票权的数据,首次对布-肖模型进行了检验。

此后,不少学者在这一领域内作了有益的探索。

其中比较有影响的代表人物有特里皮(trippi)、奇拉斯(chiras)、曼纳斯特(manuster)、麦克贝斯(macbeth)及默维勒(merville)等。

综合起来,这些检验得到了如下一些具有普遍性的看法:1.模型对平值期权的估价令人满意,特别是对剩余有效期限超过两月,且不支付红利者效果尤佳。

2.对于高度增值或减值的期权,模型的估价有较大偏差,会高估减值期权而低估增值期权。

3.对临近到期日的期权的估价存在较大误差。

4.离散度过高或过低的情况下,会低估低离散度的买入期权,高估高离散度的买方期权。

但总体而言,布-肖模型仍是相当准确的,是具有较强实用价值的定价模型。

对布-肖模型的检验着眼于从实际统计数据进行分析,对其表现进行评估。

而另外的一些研究则从理论分析入手,提出了布-肖模型存在的问题,这集中体现于对模型假设前提合理性的讨论上。

不少学者认为,该模型的假设前提过严,影响了其可靠性,具体表现在以下几方面:首先,对股价分布的假设。

相关文档
最新文档