喀兴林高等量子力学习题EX1矢量空间
高等量子力学习题

高等量子力学习题† 量子力学中的对称性1、 试证明:若体系在线性变换Qˆ下保持不变,则必有0]ˆ,ˆ[=Q H 。
这里H ˆ为体系的哈密顿算符,变换Qˆ不显含时间,且存在逆变换1ˆ-Q 。
进一步证明,若Q ˆ为幺正的,则体系可能有相应的守恒量存在。
2、 令坐标系xyz O -绕z 轴转θd 角,试写出几何转动算符)(θd R ze的矩阵表示。
3、 设体系的状态可用标量函数描述,现将坐标系绕空间任意轴n转θd 角,在此转动下,态函数由),,(z y x ψ变为),,(),()',','(z y x d n U z y x ψθψ =。
试导出转动算符),(θd n U的表达式,并由此说明,若体系在转动),(θd n U下保持不变,则体系的轨道角动量为守恒量。
4、 设某微观粒子的状态需要用矢量函数描述,试证明该粒子具有内禀自旋1=S 。
5、 证明宇称算符的厄米性和幺正性,并证明宇称算符为实算符。
6、 试证明幺正算符U 与复数共轭算符K 的乘积为反幺正算符。
7、 试证明自旋不为零的粒子的时间反演算符可表为K e T y S i π-=。
8、 试讨论由时间反演不变性引起的Kramers 简并。
† 角动量理论1、 角动量算符可以从两个方面来定义,一种是按矢量算符三个分量所满足的对易关系定义,另一种是按坐标系转动时,态函数的变换规律来定义,试证明这两种定义是等价的。
2、 试证明任意个相互独立的角动量算符之和仍是角动量算符。
3、 定义角动量升降算符yx J i J J ˆˆˆ±=±,试利用升降算符讨论,对给定的角量子数j ,相应的磁量子数m 的取值范围。
4、 给出角量子数1=j 情况下,角动量平方算符及角动量各分量的矩阵表示。
5、 设总角动量算符21J J J +=,1J 、2J相应的角量子数分别为1j 和2j ,试讨论总角动量量子数j 的取值情况。
6、 利用已知的C-G 系数的对称性关系,证明以下三个关系式:11332222221133111122332233221111212)1(1212)1(1212)1(32313m j m j m j m j m j m j m j m j m j m j m j m j m j m j m j C j j C j j C j j C -+----+++-=++-=++-=7、 已知在3ˆs表象中,⎪⎪⎭⎫ ⎝⎛=01102ˆ1 s ,⎪⎪⎭⎫⎝⎛-=002ˆ2i i s ,问在1ˆs 表象中2ˆs 的矩阵表示是怎样的? 8、 已知∑>>>=113322112211|||m m m j m j m j m j m j Cjm ,其中m m j j jm m j ''|''δδ>=<,1111''1111|''m m j j m j m j δδ>=<,2222''2222|''m m j j m j m j δδ>=<。
喀兴林高等量子力学E

#
练习3.4 根据完全性和封闭性的定义,分别证明:在n维空间中的一个完全矢量集{ },( 归一化但彼此不一定正交,i=1,2,3…,n),若从其中去掉一个矢量,例如去掉 ,就不再是完全集。(做题者:杨涛 审题人:吴汉成)
证明:假设在n维空间中的一个完全集 去掉一个矢量 后仍是完全集 新的矢量集 是线性无关的,即
(2)
证明:(1) 为厄米算符,则
所以
即
则 是幺正算符
(2)因为 是 的函数,则 与 可以同时对角化。在 表象中, 表现为对角矩阵,对角矩阵元 为 的本征值,则
而 的本征值
即
则
#
练习4.5(吴汉成完成,董延旭核对)
在三维空间中,有矩阵A和B:
,
(1)证明A和B均为厄米矩阵,而且[A,B]=0;
(2)分别求A和B的本征值与本征矢量;
#
练习4 .1在任何表象中,与厄米算符H对应的矩阵( )称为厄米矩阵,与幺正算符对应的矩阵( )称为幺正矩阵。证明它们分别满足下列关系:
(做题:陈捷狮,审查人:刘强。)
解:(1)
(2)利用完全性关系可得:
证毕!
练习4.2在某表象中,算符 的矩阵形式为
(1)求 的本征值及相应的本征矢量;
(2)用 的一组正交归一化本征矢量集表示这一表象的三个基失。
——————[3]
(5)由于U是幺正矩阵,所以 ,并联系[3]式得
所以对角化:
,其对角元为A的本征值,与(2)小题的结果完全一致.
,其对角元为B的本征值,与(2)小题的结果完全一致。
#
练习4.6在一个9维空间中有二矩阵 和 ;
式中空格及圆点均代表零。
喀兴林高等量子力学习题EX12-18

练习 12.1. 一维谐振子受微扰21X H ε=的问题,使有严格解的,试仿照正文中的方法,在薛定谔绘景中用近似的方法讨论这一问题,并将结果与严格解比较。
(解答人:李泽超 核对人:熊凯) 解:由题意得:受微扰的一维谐振子的哈密顿量是:()1......................................................................10H H H += ()()2.......21212212220⎪⎭⎫ ⎝⎛+=+=+=+++AA A A AA X m P m H ωωω ()()()()⎪⎪⎪⎪⎭⎫ ⎝⎛-=+=-=+=+++A A m i P A A m X iP X m m A iP X m m A 222121 ωωωωωω()()()⎪⎭⎫ ⎝⎛=+++=+==+++++ωεττωεεm AA AA A A A A A A m X H 23.........2221谐振子从0=t 时刻起其状态满足薛定谔方程:()()()4.......................................:,10H H H t H t ti +==∂∂其中ψψ0H 的含时本征矢量的展开为:()()()5...........................................21exp ∑⎪⎪⎭⎫ ⎝⎛⎪⎭⎫ ⎝⎛+-=jj t a t j i j t ωψ ()()⎪⎪⎭⎫⎝⎛⎪⎭⎫ ⎝⎛+=t m i t mt a m ωψ21exp微扰1H 的矩阵元为j H i ,具体的形式为:j AA AA A A A A i j H i +++=++++ τ利用算符A A 和+对本征矢量函数的;上升和下降的性质,得:()()()()()()6..................2121,2,,2j i j i j i i i i i i j H +-+++++-=δδδτ 采用微扰方法近似解薛定谔方程时,薛定谔方程可一化为下式: ()()()()7......................................exp 1t a j H t E E i t a t i j S jj i i ∑⎪⎭⎫⎝⎛-=∂∂将(6)式带入(7)式可得到在题意条件下的微扰方程的表达形式如下:()()()()()()()()()8..21121exp ,2,,2t a i i i i i t E E i t a t i j jj i j i j i j i i ∑+-+++++-⎪⎭⎫⎝⎛-=∂∂δδδτ经化简得:()()()()()()()()()()()()9...212exp 122exp 122t a i i t i t a i t a t i i i i t a dtdi i i i +-++-++--=⇒ωωτ将()t a i 的已知的低级的近似()()t a n i 代入方程的右边,即可以解出高一级的近似()()t a n i 1+。
客兴林高等量子力学习题EX34-36

34.134.2 按照正文中的对哈特利—福克方程(34.22)式中第二项的理解,这一项是处于k 态的电子同其余电子之间的库仑相互作用。
既然这样,()ρ即(34.20)式对j 的取和中,就不应含有j=k 的项,但是现在(34.22)式中并未将j=k 这一项去掉,这是为什么?(邱鸿广) 解:文中哈特利-福克方程(31.14)式在位置表象中的形式为()()()()()2''2''*'''2''*'22''=-⎪⎭⎫ ⎝⎛ ⎝⎛-⎪⎭⎫ ⎝⎛ ⎝⎛+⎪⎪⎭⎫ ⎝⎛+∇-∑∑⎰∑∑⎰σϕλσϕσσϕσϕσσϕσϕσσr r r r d d V m k k k j j j j k j j k在式子中当k j =时,式子中的第二项和第三项相减就消去了。
所以(34.22)式中并未将k j =这一项去掉。
#练习34.3 在本小节位置表象的范围内,证明满足哈特利-福克方程的不同单粒子态)(σϕj 和)(ϕr k 是互相正交的。
(做题人:田军龙 审题人:丘鸿广)证明: τσϕσϕd k j )()(⎰*τd b b k j ⎰=k j b b =i b 是一套正交归一基矢量且k j ≠ ∴0==jk k j b b δ 当k j ≠∴ 0)()(=⎰*τσϕσϕd k j∴ )(σϕr j 和)(σϕr k 是互相正交的。
35.1 态函数的正交归一化条件是什么?(侯书进做。
韩丽芳审核) 解:归一化条件是()()() ll n n n n n n n n i l l n n n n n n n n n n ''''∑-=''''δδδδδψψ332211321321#35.2 (1)利用 ()() 1321321,-++ψ=ψ=l l l l l l l l n n n n n n n n n a a a N ε以及 ()()13213211+ψ+=ψl l l l l n n n n n n n n n a ε()()l l l l n n n n n n n n n N 321321ψ=ψ证明:(2)上式是否说明() l n n n n 321ψ是占有数算符l N ˆ的本征函数?如果是,说明理由:如果不是,那么lN ˆ的本征函数是什么?(侯书进做。
高等量子力学试题库

高等量子力学试题库一、简述题1. (§1.4)试以一维线性谐振子基函数所构成的空间为例,说明一般矢量空间的维数与位形空间维数的区别 2. (§2.4)试述幺正算符的性质 3. (§3.2)试述本征子空间的概念 4. (§3.3)试述厄米算符完备组的概念和建立厄米算符完备组的必要性 5. (§6.2)试述量子力学的基本原理 6. (§11)试述相互作用绘景与薛定谔绘景、海森伯绘景的区别和联系7. (§17.2)设氢原子的定态狄拉克方程为 ψψβαE r e mc P c =-+⋅)ˆ(212 ,为求氢原子哈密顿算符Hˆ 确切的本征矢量,试确定包含Hˆ在内的厄米算符完备组 8. (§19)若系统的哈密顿具有下列对称性(1)空间反演(2)空间平移(3)空间转动(4)SO(4)(5)时间平移,试分别给出这些对称性所带来的守恒量9. (§21.2)对于 Fermi 子,试讨论由时间反演引起的简并。
(提示:参阅曾书335页) 10. (§23)试述角动量耦合与3j ,6j 和9j 符号之间的关系11. (§23.7)对具有两个价电子的原子,设两电子的轨道和自旋角动量分别为21,L L 和21,S S,试在希尔伯特空间中给出两组可能的耦合基矢 12. (§34.4)试给出位置表象中的Hartree-Fock 方程并叙述其物理意义 二、证明题1. (§1.1)利用矢量空间的加法运算法则证明零矢量是唯一的2. (§1.1)利用矢量空间的数乘运算法则证明:若0=a ψ,则0=a 或0=ψ3. (§1.2)对于任意ψ和ϕ,试证:ϕψϕψ+≤+4. (§1.5)试证明:若三个右矢ψ、ϕ和χ满足χϕψ=+,则有χϕψ=+5. (§2.3)证明定理:在复矢量空间中,若算符A 对其定义域中的任意ψ满足0=ψψA ,则必有0=A6. (§2.4)证明定理:算符H 为厄米算符的充要条件是对其定义域中的所有矢量ψ满足=ψψH 实数7. (§2.4)证明:若I U U =+,则对任意ψ和ϕ,U 满足ϕψϕψ=U U ,进而证明,幺正变换不改变矢量的模8. (§2.4)设U 是幺正算符,试证明:在矢量空间中,若{}iν是一组基矢,则{iU ν也是一组基矢9. (§2.5)证明投影算符是厄米算符,并由全空间的投影算符证明基矢的完全性关系 10. (§3.1)证明:复空间中厄米算符的本征值都是实数11. (§3.1)证明:厄米算符属于不同本征值的两个本征矢量互相正交12. (§3.1)证明:若B A ,两算符相似,则二者有相同的本征值谱,且每一本征值都有相同的简并度 13. (§6.6)设i a 是算符A 属于本征值i a 的本征函数,即满足i i i a a a A =,且定义物理量在状态ψ中的平均值为ψψA A =。
高等量子力学习题1

个人收集整理-ZQ1 / 1 k ijk j i S i S S ε=],[2322212S S S S ++=>>=+0|)(!1|n b n n ⎰=++-x x x x e e d ****2φφφφπφ高等量子力学第一章习题:两个态矢量>和->形成完全集.在它们所构成地空间中定义如下三个算符:试证明它们满足如下对易和反对易关系: ij j i S S δ2},{2 =+ 并求出两个态矢量 >和->之间地翻转变换算符及算符 地表达式二能级系统地哈密顿算符一般可表达为:=>< >< >< ><其中>和>分别表示二能级地状态,形成正交归一集.问:地厄密性对系数有何限制?求该系统地能量本征值及相应地本征态矢量(表示为>和>地线性叠加).文档收集自网络,仅用于个人学习已知一线性谐振子在其哈密顿表象中地本征态矢量为其中,基态>满足>,并且和与其坐标和动量算符地关系为试求态矢量>转换到坐标表象表达式<>.设某系统地哈密顿算符为: ()()() () -其中() , , 为任意时间地函数, , , -为()群地生成元,其满足下述对易关系: [ , -]- , [ , ±]±±文档收集自网络,仅用于个人学习试证明该系统地时间演化算符可表示为:()[()][()][()-] , 并导出确定()地方程..文档收集自网络,仅用于个人学习 已知算符和地对易关系为[ , ],在 对角表象地本征态矢量为且基态满足>, 引入算符地本征态>> 试求归一化态矢量>在 对角表象地表示式,由基矢量组>构成地表象称作为相干态表象,试求态矢量>在相干态表象地波函数文档收集自网络,仅用于个人学习题地已知条件与题相同,并可利用题地结果,试证明:()相干态表象地基矢量不具有正交性,并说明其原因.() 相干态表象地基矢组是完备地,完备性条件由下式给出式中,积分元由 给出,证明过程中可以利用地公式有:()不存在算符地本征右矢量. )(||||21+><-+-><+= S )(||||23-><--+><+= S )(||||22-><+-+><-= i S ; >>=+0|)(!1|n b n n )(2b b x +=+μω)(2b b i p -=+μω⎰=><1||2z z zd π。
高等量子力学习题

高等量子力学习题高等量子力学习题量子力学中的对称性1、试证明:若体系在线性变换Q下保持不变,则必有0]?,?[=Q H 。
这里H ?为体系的哈密顿算符,变换Q不显含时间,且存在逆变换1?-Q 。
进一步证明,若Q ?为幺正的,则体系可能有相应的守恒量存在。
2、令坐标系xyz O -绕z 轴转θd 角,试写出几何转动算符)(θd R ze的矩阵表示。
3、设体系的状态可用标量函数描述,现将坐标系绕空间任意轴n转θd 角,在此转动下,态函数由),,(z y x ψ变为),,(),()',','(z y x d n U z y x ψθψ =。
试导出转动算符),(θd n U的表达式,并由此说明,若体系在转动),(θd n U下保持不变,则体系的轨道角动量为守恒量。
4、设某微观粒子的状态需要用矢量函数描述,试证明该粒子具有内禀自旋1=S 。
5、证明宇称算符的厄米性和幺正性,并证明宇称算符为实算符。
6、试证明幺正算符U 与复数共轭算符K 的乘积为反幺正算符。
7、试证明自旋不为零的粒子的时间反演算符可表为K e T y S i π-=。
8、试讨论由时间反演不变性引起的Kramers 简并。
角动量理论1、角动量算符可以从两个方面来定义,一种是按矢量算符三个分量所满足的对易关系定义,另一种是按坐标系转动时,态函数的变换规律来定义,试证明这两种定义是等价的。
2、试证明任意个相互独立的角动量算符之和仍是角动量算符。
3、定义角动量升降算符yx J i J J ±=±,试利用升降算符讨论,对给定的角量子数j ,相应的磁量子数m 的取值范围。
4、给出角量子数1=j 情况下,角动量平方算符及角动量各分量的矩阵表示。
5、设总角动量算符21J J J +=,1J 、2J相应的角量子数分别为1j 和2j ,试讨论总角动量量子数j 的取值情况。
6、利用已知的C-G 系数的对称性关系,证明以下三个关系式:11332222221133111122332233221111212)1(1212)1(1212)1(32313m j m j m j m j m j m j m j m j m j m j m j m j m j m j m j C j j C j j C j j C -+----+++-=++-=++-=7、已知在3?s表象中,=01102?1 s ,-=002?2i i s ,问在1?s 表象中2?s 的矩阵表示是怎样的?8、已知∑>>>=113322112211|||m m m j m j m j m j m j Cjm ,其中m m j j jm m j ''|''δδ>=<,1111''1111|''m m j j m j m j δδ>=<,2222''2222|''m m j j m j m j δδ>=<。
量子力学教程课后习题答案(doc)

量子力学习题及解答第一章 量子理论基础1.1 由黑体辐射公式导出维恩位移定律:能量密度极大值所对应的波长m λ与温度T 成反比,即m λ T=b (常量); 并近似计算b 的数值,准确到二位有效数字。
解 根据普朗克的黑体辐射公式dv echv d kThv v v 11833-⋅=πρ, (1) 以及 c v =λ, (2)λρρd dv v v -=, (3)有,118)()(5-⋅=⋅=⎪⎭⎫ ⎝⎛-=-=kThc v v ehc cd c d d dvλλλπλλρλλλρλρρ这里的λρ的物理意义是黑体内波长介于λ与λ+d λ之间的辐射能量密度。
本题关注的是λ取何值时,λρ取得极大值,因此,就得要求λρ 对λ的一阶导数为零,由此可求得相应的λ的值,记作m λ。
但要注意的是,还需要验证λρ对λ的二阶导数在m λ处的取值是否小于零,如果小于零,那么前面求得的m λ就是要求的,具体如下:01151186'=⎪⎪⎪⎭⎫ ⎝⎛-⋅+--⋅=-kThc kThce kT hc ehcλλλλλπρ ⇒ 0115=-⋅+--kThc ekThcλλ⇒ kThcekThcλλ=--)1(5 如果令x=kThc λ ,则上述方程为x e x =--)1(5这是一个超越方程。
首先,易知此方程有解:x=0,但经过验证,此解是平庸的;另外的一个解可以通过逐步近似法或者数值计算法获得:x=4.97,经过验证,此解正是所要求的,这样则有xkhc T m =λ把x 以及三个物理常量代入到上式便知K m T m ⋅⨯=-3109.2λ这便是维恩位移定律。
据此,我们知识物体温度升高的话,辐射的能量分布的峰值向较短波长方面移动,这样便会根据热物体(如遥远星体)的发光颜色来判定温度的高低。
1.2 在0K 附近,钠的价电子能量约为3eV ,求其德布罗意波长。
解 根据德布罗意波粒二象性的关系,可知E=h v ,λhP =如果所考虑的粒子是非相对论性的电子(2c E e μ<<动),那么ep E μ22= 如果我们考察的是相对性的光子,那么E=pc注意到本题所考虑的钠的价电子的动能仅为3eV ,远远小于电子的质量与光速平方的乘积,即eV 61051.0⨯,因此利用非相对论性的电子的能量——动量关系式,这样,便有ph=λ nmm m E c hc E h e e 71.01071.031051.021024.1229662=⨯=⨯⨯⨯⨯===--μμ在这里,利用了m eV hc ⋅⨯=-61024.1以及eV c e 621051.0⨯=μ最后,对Ec hc e 22μλ=作一点讨论,从上式可以看出,当粒子的质量越大时,这个粒子的波长就越短,因而这个粒子的波动性较弱,而粒子性较强;同样的,当粒子的动能越大时,这个粒子的波长就越短,因而这个粒子的波动性较弱,而粒子性较强,由于宏观世界的物体质量普遍很大,因而波动性极弱,显现出来的都是粒子性,这种波粒二象性,从某种子意义来说,只有在微观世界才能显现。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
EX1.矢量空间练习 1.1 试只用条件(1)~(8)证明2ψψψ+=,0ψ=O 和1ψψ-=-()。
(完成人:梁立欢 审核人:高思泽)证明:由条件(5)、(7)得只需证明O =0ψ和ψψ-=-)1(这两式互相等价根据条件(7)现在等式两边加上)0(ψ-,得根据条件(4),上式左O =-+=)0(0ψψ根据条件(4)、(2)上式右00)00(0ψψψψψ=O +=-+=由O =0ψ,根据条件(4)、(7)得#练习 1.2 证明在内积空间中若()()ϕψϕψ,,21=对任意ϕ成立,则必有21ψψ=。
(完成人:谷巍 审核人:肖钰斐)证明 由题意可知,在内积空间中若()()ϕψϕψ,,21=对任意ϕ成立,则有 (1ψ,)ϕ-(2ψ,)ϕ=0 (1) 于是有()0,21=-ϕψψ (2) 由于在内积空间中()()ϕψϕψ,,21=对任意ϕ成立,则可取21ψψϕ-=,则有 ()2121,ψψψψ--=0 成立 (3) 根据数乘的条件(12)可知,则必有21=-ψψ(4)即21ψψ=故命题成立,即必有21ψψ=.#练习1.3 矢量空间运算的12个条件是不是独立的?有没有一条或两条是其余各条的逻辑推论?如有,试证明之。
(完成人:赵中亮 审核人:张伟)解:矢量空间运算的12个条件是独立的。
#练习 1.4 (1)在第二个例子中若将加法的规定改为:和矢量的长度为二矢量长度之和,方向为二矢量所夹角()︒〈180的分角线方向,空间是否仍为内积空间?(2)在第二个例子中若将二矢量和内积的定义改为θ⋅或θ,空间是否仍为内积空间? (3)在第三个例子的空间中,若将内积的定义改为空间是否仍为内积空间?(4)在第四个例子的函数空间中,若将内积的定义改为空间是否仍为内积空间?(完成人:张伟 审核人:赵中亮)解:(1)在第二个例子中若将加法的规定改变之后,空间不是内积空间。
因为将规定改之后对于任意的矢量不一定存在逆元,如一个不为零的矢量设为A ,则任意矢量和它相加后,得到的矢量的长度不为零,所以一定不能得到零矢量,即找不到逆元。
所以空间不是内积空间。
(2)在第二个例子中若将内积的定义改之后,空间不是一个内积空间。
证明如下:+≠+,即有(),=+C B A θ+θθ⋅+≠=()()C A B A ,,+所以内积的定义改变之后不是内积空间。
(3)在第三个例子中若将内积的定义改之后,空间仍然是一个内积空间。
证明如下:i()()m l m l m l m l m l l m l m l m l m l m ,432)432(,4*43*32*21*1*4*43*32*21*1*=+++=+++= ii .iii .iv.()0||4||3||2||,24232221≥+++=l l l l l l ,对任意l 成立若()0,0,0,4321======l l l l l l l 即则必有综上所述,新定义的内积规则符合条件(9)—条件(12),所以仍为内积空间(4)在第四个例子的函数空间中,若将内积的定义改为()⎰=b a xdx x g x f x g x f )()()(),(*后,空间不是内积空间。
因为()⎰⎰==b a b a xdx x f xdx x f x f x f x f 2*)()()()(),(,积分号内的函数是一个奇函数,它不能保证对于任意的()x f 积分出来后都大于零,即不符合条件(12),所以不是内积空间。
在第四个例子的函数空间中,若将内积的定义改为()⎰=b adx x x g x f x g x f 2*)()()(),(后,空间是内积空间。
证明如下: i ()()**2*2*)(),()()()()()(),(x f x g dx x x f x g dx x x g x f x g x f b a b a =⎪⎭⎫ ⎝⎛==⎰⎰ii ()()()()()x h x f x g x f dx x x h x f dx x x g x f x h x g x f b ab a ),()(),()()()()()(),(2*2*+=+=+⎰⎰ iii ()())(),()()()()()(),(2*2*x g x f a dx x x g x f a dx ax x g x f a x g x f ba b a ===⎰⎰iv ()成立对任意ψ,0)()(),(22≥=⎰ba dx x x f x f x f 若()0)()(),(22==⎰ba dx x x f x f x f ,则必有()0=x f 综上所述,新定义的内积规则符合条件(9)—条件(12),所以仍为内积空间。
#练习 1.5若a 为复数,证明若a ψϕ=时,Schwartz 不等式中的等号成立。
(完成人:肖钰斐 审核人:谷巍)证明:当若a ψϕ=时,分别带入Schwartz 不等式的左边和右边。
左边=()2,ψψψa a = 右边=2ψψψa a =⋅左边=右边,说明当a ψϕ=时,Schwartz 不等式中的等号成立。
#练习1.6 证明当且仅当 ||||a a ϕψϕψ-=+ 对一切数a 成立时,ψ与ϕ正交。
并在三维位形空间讨论这一命题的几何意义。
(完成人:赵中亮 审核人:张伟)证明:解:当||||a a ϕψϕψ-=+对一切数a 成立时,有即 ),(),(a a a a ϕψϕψϕψϕψ--=++得 ),(),(),(),(),(),(),(),(a a a a a a a a ϕϕψϕϕψψψϕϕψϕϕψψψ+--=+++ 即 ),(),(ψϕϕψa a -=因为a 可以取一切数,所以当a 取纯虚数时,即*-=a a得 *=),(),(ϕψϕψ由此得),(ϕψ只能是实数当a 取非零实数时,即*=a a只有0),(=ϕψ时,即ψ与ϕ正交时才成立所以 当 ||||a a ϕψϕψ-=+ 对一切数a 成立时,ψ与ϕ正交。
当ψ与ϕ正交时,0),(=ϕψ则 0),(),(==*ϕψϕψ取a 为任意数则 0),(),(=-=**ϕψϕψa a得 ||||a a ϕψϕψ-=+即 ||||a a ϕψϕψ-=+ 对一切数a 成立综上,当且仅当 ||||a a ϕψϕψ-=+ 对一切数a 成立时,ψ与ϕ正交。
在三维位形空间中,这一命题的几何意义是:对角线相等的平行四边形是矩形。
#练习1.7 证明:当且仅当ψϕαψ≥-对一切数α成立时,ψ与ϕ正交。
(完成人:班卫华 审核人:何贤文) 证明:因为ψϕαψ≥-,两边平方得则构成以α为变量的二次函数,要使对一切α成立,判别式恒小于等于零,即只需即得 所以当ψϕαψ≥-对一切数α成立时,ψ与ϕ正交。
练习1.8在四维列矩阵空间中,给定四个不正交也不全归一的矢量:它们构成一个完全集,试用Schmidt 方法求出一组基矢。
(完成人:肖钰斐 审核人:谷巍)解:由Schmidt 方法,所求基矢:#练习1.9 在上题中,改变四个λ的次序,取重新用Schmidt 方法求出一组基矢。
(完成人:何贤文 审核人:班卫华)解:由空间中不满足正交归一条件的完全集{4321,,,λλλλ},求这个空间的一组基矢{4321,,,νννν}.(1)首先取1ν为归一化的1λ:(2)取12122a νλν-=',选择常数12a 使'2ν与1ν正交,即得112=a , ⎪⎪⎪⎪⎪⎭⎫ ⎝⎛='11102ν 取2ν为归一化的'2ν:(3)取23213133a a ννλν--=',选择常数13a 和23a 使'3ν与21,νν正交,即归一化的3ν为(4)取34324214144a a a νννλν---=',选择常数342414,,a a a 使'4ν与已选定的321,,ννν正交,即归一化的4ν为则找到一组基矢为 {4321,,,νννν}.#练习 1.10 在三维位形空间中,i ,j ,k 是在互相垂直的x ,y ,z 三个轴上的单位矢量。
取三个归一化的矢量: (高思泽)在内积就是点乘积的定义下它们并不正交。
现在改变正交的定义:定义这三个矢量1λ ,2λ ,3λ 互相正交。
1. 证明:定义一个归一化的完全集里面的矢量彼此互相正交,等于定有一种内积规则。
2. 求出这个新的内积规则,即将任意两个矢量1111z k y j x i r ++=,2222z k y j x i r ++=的内积表为111,,z y x 和222,,z y x 的函数。
3. 验证所求的内积规则符合条件(9)~(12)。
4. 用 =), (ij j i δλλ 验证所求出的内积规则。
1证明:在一个归一化的完全集里面的矢量集合里,任意的两个矢量正交,根据矢量的正交 性定义,两个矢量ψ和φ的内积为零,即()0,=ϕψ。
2解: 由i ,j ,k 与1λ ,2λ ,3λ 的关系,可得到如下变换:由上面的关系得:由此,定义1λ→,2λ→,3λ→互相正交,有矢量的正交性,得由此可得3 证明:0||4|)(|2|)(|),(222≥+-++-=z z y z y x r r 当0),(=r r 时,只有x,y,z 都同时等于0才能满足,即0 =r 。
综上所述,所求的内积规则符合条件(9)~(12)。
4,见(2)#练习1.11 在n 维空间中,已知}{i λ,i=1,2,3.....,n 是一组完全集(不一定正交),现在有n 个矢量}{i ψ,i=1,2,3.....,n (也不一定正交),定义D= ),(),(),(),(),(),(),(),(),(212221212111n n n n n n ψλψλψλψλψλψλψλψλψλ证明}{i ψ线性相关的必要和充分条件维D=0。
(完成人:何贤文 审核人:班卫华)解:对于矢量空间的n 个矢量的集合}{i ψ,有01=∑=i ni i D ψ,此式是关于n个矢量的集合}{i ψ的齐次方程组⎪⎪⎩⎪⎪⎨⎧=++=+++=+++0),(),(),(0),(),(),(0),(),(),(221122221121221111n n n n n n n n n ψψλψψλψψλψψλψψλψψλψψλψψλψψλ(1)若}{i ψ线性相关,则满足01=∑=i ni i D ψ至少有一组非零解,则要求:即D=0若D=0,则方程(1)必有非零解,即满足有一组不为零的复数使得 故}{i ψ线性相关。
#练习 1.12 一个矢量空间有两个不同的子空间S 1 和S 2,证明除去以下两种情况外,包括S 1的全部元和S 2的全部元的那个集合并不是子空间:(1 S 1是S 2的子空间或S 2是S 1的子空间;(2 S 1和S 2其中之一只含有零矢量一个元。