喀兴林高等量子力学习题EX2.算符
高等量子力学习题

高等量子力学习题† 量子力学中的对称性1、 试证明:若体系在线性变换Qˆ下保持不变,则必有0]ˆ,ˆ[=Q H 。
这里H ˆ为体系的哈密顿算符,变换Qˆ不显含时间,且存在逆变换1ˆ-Q 。
进一步证明,若Q ˆ为幺正的,则体系可能有相应的守恒量存在。
2、 令坐标系xyz O -绕z 轴转θd 角,试写出几何转动算符)(θd R ze的矩阵表示。
3、 设体系的状态可用标量函数描述,现将坐标系绕空间任意轴n转θd 角,在此转动下,态函数由),,(z y x ψ变为),,(),()',','(z y x d n U z y x ψθψ =。
试导出转动算符),(θd n U的表达式,并由此说明,若体系在转动),(θd n U下保持不变,则体系的轨道角动量为守恒量。
4、 设某微观粒子的状态需要用矢量函数描述,试证明该粒子具有内禀自旋1=S 。
5、 证明宇称算符的厄米性和幺正性,并证明宇称算符为实算符。
6、 试证明幺正算符U 与复数共轭算符K 的乘积为反幺正算符。
7、 试证明自旋不为零的粒子的时间反演算符可表为K e T y S i π-=。
8、 试讨论由时间反演不变性引起的Kramers 简并。
† 角动量理论1、 角动量算符可以从两个方面来定义,一种是按矢量算符三个分量所满足的对易关系定义,另一种是按坐标系转动时,态函数的变换规律来定义,试证明这两种定义是等价的。
2、 试证明任意个相互独立的角动量算符之和仍是角动量算符。
3、 定义角动量升降算符yx J i J J ˆˆˆ±=±,试利用升降算符讨论,对给定的角量子数j ,相应的磁量子数m 的取值范围。
4、 给出角量子数1=j 情况下,角动量平方算符及角动量各分量的矩阵表示。
5、 设总角动量算符21J J J +=,1J 、2J相应的角量子数分别为1j 和2j ,试讨论总角动量量子数j 的取值情况。
6、 利用已知的C-G 系数的对称性关系,证明以下三个关系式:11332222221133111122332233221111212)1(1212)1(1212)1(32313m j m j m j m j m j m j m j m j m j m j m j m j m j m j m j C j j C j j C j j C -+----+++-=++-=++-=7、 已知在3ˆs表象中,⎪⎪⎭⎫ ⎝⎛=01102ˆ1 s ,⎪⎪⎭⎫⎝⎛-=002ˆ2i i s ,问在1ˆs 表象中2ˆs 的矩阵表示是怎样的? 8、 已知∑>>>=113322112211|||m m m j m j m j m j m j Cjm ,其中m m j j jm m j ''|''δδ>=<,1111''1111|''m m j j m j m j δδ>=<,2222''2222|''m m j j m j m j δδ>=<。
喀兴林高等量子力学EX19-22

19.1 试用公式(2.9)式验证(19.34)式。
(做题人:何贤文 审题人:班卫华) 解: 公式(2.9)为],[!1)(0B A i Bee i i AA∑∞=-= 公式(19.34)为λλλ-==='--R R Q RD D R 11)()( ∑∞=∙∙--∙-==0)(1],)[(!1Re)()(j j P iP iR P ij e RD D λλλλλ将其展开:λλλλλ-=+++++-=++++∙-+∙-=R P R R R P iR P i000}][]R P [{i000],)[(!11],)[(!01)1()0(,,原式 #练习19.2 试用两种方法求轨道角动量算符L 的平移。
(高思泽)证明:设轨道角动量算符L的平移为'L 。
方法一:位置算符R →的空间平移λ-=R R ',动量算符P 的空间平移P P =',则 P L P P R P R P R L ⨯-=⨯-⨯=⨯-=⨯=λλλ)('''方法二:PL P P R D P D D R D D P R D D L D L⨯-=⨯-⨯=⨯=⨯==----λλλλλλλλλλ)()()()()()()()(1111' #练习19.3 试由(19.33)式证明 (赵中亮))()()(ˆλψψλ -=r r D证明:由(19.33)式 λλλ+==r r Q r D )()( (1)和 111)(---=r Q r Q D(2)(1)、(2)联立可得 λλλ -==--r r Q r D )()(11两边取共轭得 λλλ-==-r r Q D r )()(1又由(19.9)式 r Q D Q D r )(ˆ)(=所以)()()(ˆ)()(ˆλψψλψλψλψλ -=-===r r D r r D r D得证。
练习19.4 证明在三维位形空间中两个矢量的点乘积是一个标量。
喀兴林高等量子力学E

#
练习3.4 根据完全性和封闭性的定义,分别证明:在n维空间中的一个完全矢量集{ },( 归一化但彼此不一定正交,i=1,2,3…,n),若从其中去掉一个矢量,例如去掉 ,就不再是完全集。(做题者:杨涛 审题人:吴汉成)
证明:假设在n维空间中的一个完全集 去掉一个矢量 后仍是完全集 新的矢量集 是线性无关的,即
(2)
证明:(1) 为厄米算符,则
所以
即
则 是幺正算符
(2)因为 是 的函数,则 与 可以同时对角化。在 表象中, 表现为对角矩阵,对角矩阵元 为 的本征值,则
而 的本征值
即
则
#
练习4.5(吴汉成完成,董延旭核对)
在三维空间中,有矩阵A和B:
,
(1)证明A和B均为厄米矩阵,而且[A,B]=0;
(2)分别求A和B的本征值与本征矢量;
#
练习4 .1在任何表象中,与厄米算符H对应的矩阵( )称为厄米矩阵,与幺正算符对应的矩阵( )称为幺正矩阵。证明它们分别满足下列关系:
(做题:陈捷狮,审查人:刘强。)
解:(1)
(2)利用完全性关系可得:
证毕!
练习4.2在某表象中,算符 的矩阵形式为
(1)求 的本征值及相应的本征矢量;
(2)用 的一组正交归一化本征矢量集表示这一表象的三个基失。
——————[3]
(5)由于U是幺正矩阵,所以 ,并联系[3]式得
所以对角化:
,其对角元为A的本征值,与(2)小题的结果完全一致.
,其对角元为B的本征值,与(2)小题的结果完全一致。
#
练习4.6在一个9维空间中有二矩阵 和 ;
式中空格及圆点均代表零。
喀兴林高等量子力学习题EX12-18

练习 12.1. 一维谐振子受微扰21X H ε=的问题,使有严格解的,试仿照正文中的方法,在薛定谔绘景中用近似的方法讨论这一问题,并将结果与严格解比较。
(解答人:李泽超 核对人:熊凯) 解:由题意得:受微扰的一维谐振子的哈密顿量是:()1......................................................................10H H H += ()()2.......21212212220⎪⎭⎫ ⎝⎛+=+=+=+++AA A A AA X m P m H ωωω ()()()()⎪⎪⎪⎪⎭⎫ ⎝⎛-=+=-=+=+++A A m i P A A m X iP X m m A iP X m m A 222121 ωωωωωω()()()⎪⎭⎫ ⎝⎛=+++=+==+++++ωεττωεεm AA AA A A A A A A m X H 23.........2221谐振子从0=t 时刻起其状态满足薛定谔方程:()()()4.......................................:,10H H H t H t ti +==∂∂其中ψψ0H 的含时本征矢量的展开为:()()()5...........................................21exp ∑⎪⎪⎭⎫ ⎝⎛⎪⎭⎫ ⎝⎛+-=jj t a t j i j t ωψ ()()⎪⎪⎭⎫⎝⎛⎪⎭⎫ ⎝⎛+=t m i t mt a m ωψ21exp微扰1H 的矩阵元为j H i ,具体的形式为:j AA AA A A A A i j H i +++=++++ τ利用算符A A 和+对本征矢量函数的;上升和下降的性质,得:()()()()()()6..................2121,2,,2j i j i j i i i i i i j H +-+++++-=δδδτ 采用微扰方法近似解薛定谔方程时,薛定谔方程可一化为下式: ()()()()7......................................exp 1t a j H t E E i t a t i j S jj i i ∑⎪⎭⎫⎝⎛-=∂∂将(6)式带入(7)式可得到在题意条件下的微扰方程的表达形式如下:()()()()()()()()()8..21121exp ,2,,2t a i i i i i t E E i t a t i j jj i j i j i j i i ∑+-+++++-⎪⎭⎫⎝⎛-=∂∂δδδτ经化简得:()()()()()()()()()()()()9...212exp 122exp 122t a i i t i t a i t a t i i i i t a dtdi i i i +-++-++--=⇒ωωτ将()t a i 的已知的低级的近似()()t a n i 代入方程的右边,即可以解出高一级的近似()()t a n i 1+。
高等量子力学-习题及答案 ch01

第一章量子力学基本概念和一般理论
一、量子态矢量的定义是什么。
描述微观粒子状态的态矢量ψ等符号代表一个复矢量,而y+是y的厄密共轭矢量或称“对偶矢量"。
用狄拉克符号记为|ψ>,表示波函数ψ的右矢;<ψ|表示左矢。
右矢和左矢是互相独立的,但存在如下关系:。
二、请简述线性算符的运算规则和性质。
(6)若由方程能够唯一地解出|ψ>,则可定义算符A的逆算符
,于是A'满足
(7)若,则U称为幺正算符。
(8),表示算符A的函数。
三、幺正变换的基本性质有哪些。
幺正变换具有许多非常有意义的性质。
(1)幺正变换下两个态矢量的内积不变。
(2)幺正变换下算符方程的形式不变。
(3)幺正变换下力学量算符对应的平均值保持不变。
(4)幺正变换下算符的行列式不变。
(5)幺正变换下算符的本征值谱不变。
(6)幺正变换下算符的迹不变。
(7)利用上述性质(6)可以给出指数算符函数的一一个有用公式。
(8)可以证明,若算符R是厄米算符,即R=R+,则由它所生成的算符
四、时间演化算符U(t,t0)的基本性质有哪些。
1.初始条件
2.幺正性
3.因子化特性
4.时间反演特性
5.薛定谔绘景中的动力学方程
五、矢量空间中的如下运算规则有哪些。
六、什么叫密度矩阵?
如果采用一个具体表象,例如,F表象(分立情形,),则与量子态|ψ>相应的密度算符可表示成如下矩阵形式,称为密度矩阵。
七、请列举混合态密度算符的性质。
高等量子力学习题1

个人收集整理-ZQ1 / 1 k ijk j i S i S S ε=],[2322212S S S S ++=>>=+0|)(!1|n b n n ⎰=++-x x x x e e d ****2φφφφπφ高等量子力学第一章习题:两个态矢量>和->形成完全集.在它们所构成地空间中定义如下三个算符:试证明它们满足如下对易和反对易关系: ij j i S S δ2},{2 =+ 并求出两个态矢量 >和->之间地翻转变换算符及算符 地表达式二能级系统地哈密顿算符一般可表达为:=>< >< >< ><其中>和>分别表示二能级地状态,形成正交归一集.问:地厄密性对系数有何限制?求该系统地能量本征值及相应地本征态矢量(表示为>和>地线性叠加).文档收集自网络,仅用于个人学习已知一线性谐振子在其哈密顿表象中地本征态矢量为其中,基态>满足>,并且和与其坐标和动量算符地关系为试求态矢量>转换到坐标表象表达式<>.设某系统地哈密顿算符为: ()()() () -其中() , , 为任意时间地函数, , , -为()群地生成元,其满足下述对易关系: [ , -]- , [ , ±]±±文档收集自网络,仅用于个人学习试证明该系统地时间演化算符可表示为:()[()][()][()-] , 并导出确定()地方程..文档收集自网络,仅用于个人学习 已知算符和地对易关系为[ , ],在 对角表象地本征态矢量为且基态满足>, 引入算符地本征态>> 试求归一化态矢量>在 对角表象地表示式,由基矢量组>构成地表象称作为相干态表象,试求态矢量>在相干态表象地波函数文档收集自网络,仅用于个人学习题地已知条件与题相同,并可利用题地结果,试证明:()相干态表象地基矢量不具有正交性,并说明其原因.() 相干态表象地基矢组是完备地,完备性条件由下式给出式中,积分元由 给出,证明过程中可以利用地公式有:()不存在算符地本征右矢量. )(||||21+><-+-><+= S )(||||23-><--+><+= S )(||||22-><+-+><-= i S ; >>=+0|)(!1|n b n n )(2b b x +=+μω)(2b b i p -=+μω⎰=><1||2z z zd π。
喀兴林高等量子力学EX1andEX2

练习 1.1 试只用条件(1)~(8)证明2ψψψ+=,0ψ=O 和1ψψ-=-()。
(完成人:梁立欢 审核人:高思泽) 证明:由条件(5)、(7)得11112ψψψψψψ+=+=+=() 只需证明O =0ψ和ψψ-=-)1(这两式互相等价 根据条件(7)00)00(0ψψψψ+=+= 现在等式两边加上)0(ψ-,得)0()00()0(0ψψψψψ-++=-+ 根据条件(4), 上式左O =-+=)0(0ψψ 根据条件(4)、(2)上式右00)00(0ψψψψψ=O +=-+= O =∴0ψ由O =0ψ,根据条件(4)、(7)得ψψψψψψ-=O =-+=-=)1()11(0 ψψ-=-⇒)1( #练习 1.2 证明在内积空间中若()()ϕψϕψ,,21=对任意ϕ成立,则必有21ψψ=。
(完成人:谷巍 审核人:肖钰斐)证明 由题意可知,在内积空间中若()()ϕψϕψ,,21=对任意ϕ成立,则有(1ψ,)ϕ-(2ψ,)ϕ=0 (1)于是有()0,21=-ϕψψ (2)由于在内积空间中()()ϕψϕψ,,21=对任意ϕ成立,则可取21ψψϕ-=,则有()2121,ψψψψ--=0 成立 (3) 根据数乘的条件(12)可知,则必有21=-ψψ(4) 即21ψψ=故命题成立,即必有21ψψ=. #练习1.3 矢量空间运算的12个条件是不是独立的?有没有一条或两条是其余各条的逻辑推论?如有,试证明之。
(完成人:赵中亮 审核人:张伟) 解:矢量空间运算的12个条件是独立的。
#练习 1.4 (1)在第二个例子中若将加法的规定改为:和矢量的长度为二矢量长度之和,方向为二矢量所夹角()︒〈180的分角线方向,空间是否仍为内积空间? (2)在第二个例子中若将二矢量和内积的定义改为θ或θ,空间是否仍为内积空间? (3)在第三个例子的空间中,若将内积的定义改为 ()4*43*32*21*1432,m l m l m l m l m l +++=空间是否仍为内积空间?(4)在第四个例子的函数空间中,若将内积的定义改为()()⎰⎰==baba dxx x g x f x g x f xdx x g x f x g x f 2**)()()(),()()()(),(或空间是否仍为内积空间?(完成人:张伟 审核人:赵中亮)解:(1)在第二个例子中若将加法的规定改变之后,空间不是内积空间。
喀兴林高等量子力学习题EX28-31

练习28.1 证明: (杜花伟)()[]()t G t G -=-++0 证明: 根据公式(28.4)()()()00H t t ie t t i t t G '--±'±='-θ可知()()00tH ie t it G-+-=θ()()()00H t i e t i t G ---+=-θ则()[]()()000tH i tH i e t ie t i t G θθ=⎥⎦⎤⎢⎣⎡-=+-++()()()t G e t iH t i-==---00θ #28.2证明下列二式成立:(刘强)()()()()⎰∞∞-±±±±--+-=-''dt 't t VG ''t t G 't t G 't t G 00()()()()⎰∞∞-±±±±--+-=-''dt 't ''t VG ''t t G 't t G 't t G 00证明:因为:()()()⎰∞+∞---±±π=-dE e E G 21't t G 't t E i()()()⎰∞+∞---±±π=-dE e E G 21't t G 't t E i00又因为:()()()()E VG E G E G E G 00±±±±+=即有()()()()()()[]()()()()()()()()()()()()()''dt t ''t VG ''t t G 't t G dE e E VG E G 21't t G dE e E VG E G 21dE e E G 21dE e E VG E G E G 21dE e E G 21't t G '00't t E i00't t E i 0't t E i 0't t E i00't t E i00--+-=π+-=π+π=+π=π=-±∞+∞-±±∞+∞---±±±∞+∞---±±∞+∞---±∞+∞---±±±∞+∞---±±⎰⎰⎰⎰⎰⎰又因为()()()()()()()E VG E G E G E VG E G E G E G 0000±±±±±±±+=+=同理可证得()()()()''dt t ''t VG ''t t G 't t G 't t G '00--+-=-±+∞∞-±±±⎰综上所述()()()()()()()()''dt t ''t VG ''t t G 't t G 't t G ''dt t ''t VG ''t t G 't t G 't t G '0'00--+-=---+-=-±∞+∞-±±±±+∞∞-±±±⎰⎰两式成立。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
EX2.算符2.1证明下列常用公式 (玉辉解答 项鹏核对 ) (1)C B A C A B BC A ],[],[],[+= 证明:CB AC A B C BA AB CA AC B BAC ABC BCA BAC BCAABC BC A ],[],[][][],[+=-+-=-+-=-= (2)B C A C B A C AB ],[],[],[+= 证明:BC A C B A B CA AC CB BC A CAB ACB ACB ABC CABABC C AB ],[],[][][],[+=-+-=-+-=-=2.2 若算符B 与],[B A 对易,证明: (玉辉解答 项鹏核对 )],[],[1B A nB B A n n -=证明:],[],[],[],[111---+=⋅=n n n n B A B B B A B B A B A 将n 换成(n-1),就有],[],[],[221---+=n n n B A B B B A B A],[],[2],[],[],[],[2212211-----+=++=⇒n n n n n n B A B B B A B A B B B A B B A B A重复这种递推过程(n-1)次,即得],[],[],)[1(],[],)[1(],[111)1(11B A nB B A B B B A n B A B B B A n B A n n n n n n n n -------=+-=+-=#练习2.3 证明: (输入人:杜花伟 核对人:王俊美) (1)若A 有逆,a ≠0,则aA 也有逆,且111)(--=A aaA ; (2)若A,B 都有逆,则AB 也有逆,且111)(---=A B AB ; (3)})(1{)(111---+-=+B A B A B A ;(4)⋅⋅⋅+++=--------11121111)(BA BA A BA A A B A λλλ.(λ为复数); 证明:(1)若A 有逆,a ≠0,满足1,111==--aa AA ,则 11111==----AA aa A aAa 所以aA 有逆,且111)(--=A aaA . (2) 若A,B 都有逆,满足1,111==--BB AA ,则 1111==---AA A ABB 所以AB 有逆,且111)(---=A B AB . (3)})(1{})())({(}))({(})({)()(111111111111------------+-=+-++=+-+=+=+=+B A B A B A B B A B A A B A B B A A B A A A B A A A B A(4) 由于1)1(--χ(x 极小,即x →0时)展为级数: ⋅⋅⋅++++=--3211)1(χχχχ故(⋅⋅⋅+++=⋅⋅⋅+++=-=-=----------------111211*********11)1()1()]1([)(BA BA A BA A A BA BA BA A BA A BA A B A λλλλλλλ#2.4 若线性算符A 有逆,{|μ>}(i=1,2,3,…,n )是A 的有限维的定义域的中的一组完全集。
证明在A 的值域中{A|μ>}也是一组完全集,从而证明值域的维数与定义域相同。
证明:已知A 为可逆算符得 111==--A A AA{|μ>}(i=1,2,3,…,n ) 是A 的有限维的定义域中的一组完全集 >μ>=|Ψ|A 定义域 |μ>为n 维的假设值域|Ψ>不是一组完全集,那么值域中的每一个|Ψ>在定义域中有且只有一个|μ>所以的|Ψ>为数肯定小于n 。
又因为A 算符是可逆的,所以得 >μ>=|Ψ|A -1 定义域|Ψ>维数小于n 的那么不论|μ>是否为完全集都应该小于或等于n 维的。
这样的话|μ>的维数与题目相矛盾 由此得之A 的值域中{A|μ>}也是一组完全集,而值域的维数与定义域相同。
练习 2.5 有逆算符A 的定义域是有限维的,若已知1=AB ,证明 1=BA 。
证明:(何建贤解答 项朋核对)已知A 是可逆算符,所以11=-AA 和11=-A A 又因为1=AB ,即1-=AA AB 两边同时右乘得 A AA ABA 1-= 两边同时左乘1-A 得 A AA A ABA A 111---= 所以得:1=AB #练习2.6 证明任何线性算符作用于零矢量ο上,必得零矢量。
证明:(高召习解答 孟祥海核对)设A 为任意线性算符,由线性算符的性质得:αϕαϕ)|A ()A(|>=>令0=α,由于>=>ϕααϕ||, 0|0>=ϕ 所以 )|(0|A >>=ϕA 令>>=φϕ||A ,所以0|00|0|>==>>=φφA#练习 2.7 (2.7)式与(2.8)式还各有一个用()[]i A B ,型多重对易式表示的式子,试把它们求出来。
(高召习解答 孟祥海核对)解:(1)由于]],,[[],[],[],[],[)2()1()0(A A B A B A B A B B A B ===显然,对于],[)1(A B 型多重对易式有],[]],,[[)1()(+=i i A B A A B ],[],[],[)1()1()1(+=-i A B A B A A A B即],[],[],[)1()1()1(A B A A B A A B i -+=+ (2)由于],[],[)()(i i A B B A -= (1)且1)(11)(1],[!)!(!],[-=-=∑∑-=⎪⎪⎭⎫ ⎝⎛=n i ni n i ni nA B A i i n n A B A i n B A (2) 把(1)代入(2)得1)(11)(1],[!)!(!],[-=-=∑∑--=⎪⎪⎭⎫ ⎝⎛-=n i n i n i ni nA AB i i n n A A B i n B A #练习2.8 试用数学归纳法证明:(玉辉解答 项鹏核对)111],[],[-=-∑=i ni n nB B A B B A证明:用数学归纳法,当n=1时原式成为 ],[],[B A B A =原式显然成立;现设原式对n 成立,推出它对n+1也成立:1111)1(1)1()1()1(111)1(1111],[],[],[],[],[],[],[],[],[-+=-+-++-+-=-+-=-+∑∑∑=+=+=+=⋅=i n i n n n n i ni n ni ni n nn n n B B A B B B A B B B A B B B A B B A B B B B A B A B B B A B A这就证明了原式对n+1也成立,所以111],[],[-=-∑=i ni n nB B A B B A# 2.92.10 若算符A 有逆,证明A 的伴算符也有逆,而且 ()()+--+=11A A证明:取一任意ϕ()ϕϕϕϕB A B A ++===1可见对于任意ϕ,确有ψ存在,这个ψ就是ϕB 。
若21ψψ++=A A ,用C 作用在此式两边 21ψψ++=CA CA 但此式就是21ψψ=,所以()1-+A 存在,因此A 的伴算符也有逆。
又因A 有逆,即11=-AA则()*++--==ϕψψϕψϕA A AA 11由于*=ϕψψϕ则()11=++-A A 又因+A 有逆,所以()()+--+=11A A#2.11 伴算符的定义式(2.24)或ψϕψϕ+=B B 可否改成对任意ψ有:ψψψψ+=B B ?(许中平 核对:田军龙)证明:取一任意ψ,都有()()ψψψψB B =式中的B 是右矢空间的算符,此式右边的()ψψB 的右矢ψ与左矢B ψ的积,单用右矢空间的话说,就是右矢ψ与右矢ψ+B 的积,在单一空间中,此式正是伴算符+B 的定义式,写成单一空间的形式就是: ()()ψψψψ,,+=B B因此,ψϕψϕ+=B B 可改成对任意ψ有:ψψψψ+=B B #练习 2.12本节提到的由0A ψψ=断定0A =的定理对于实空间(即数乘中的数是实数)是不成立的。
试在三维位行空间(积定义为标量积y x ⋅)中举出一个反例,证明此定理对实空间不成立。
(邱鸿广解答 田军龙审核)证明:在实空间中只要算符A 为一个把矢量逆时针旋转90度的变换矩阵。
则当它作用到任何一个位行空间矢量ψ上后再与原来的矢量ψ点积都为零。
但A 不为零。
所以不成立。
例: ⎪⎪⎪⎭⎫⎝⎛-=100001010A#2.13 证明:若A,B 是厄米算符,则当且仅当A,B 对易时,算符AB 才是厄米算符。
(泽超解答 董廷旭核对)证明: 充分性:A,B 对易,则AB BA =; A , B 为厄米算符,则++==B B A A , 现任取一ψ,则:***++===ψψψψψψψψAB BA A B AB即:ψψAB 是实数。
即:AB 是厄米算符。
必要性:A ,B 为厄米算符,则++==B B A A ,;AB 为厄米算符:则()+++==A B AB AB .现任取一ψ,则:()***+===ψψψψψψψψAB BA AB AB⇒ 0=-BA AB 即:算符A 与B 对易。
#2.14 证明,有逆的等距算符是幺正算符。
(泽超解答 董廷旭核对) 证明: 设算符A 是等距算符,则:1=+A A ……………………………(1) 由题意知算符A 有逆,则:11=-A A ………………………………...(2) 用1-A 右乘式(1)得:1-+=A A ……………………………………………………………(3) 由(3)式得A 为幺正算符。
#练习2.15 设H 是厄米算符,U 是幺正算符,A 是任意算符,问下列算符是厄米的还是幺正的? (孟祥海解答 高召习核对) (1)1-UHU , (2)HA A +, (3)iH e , (4)iH iH +-11, (5)11+-U U i 证明:(1)先证: 1-UHU 是否为厄米算符, 对任意矢量|ϕ>有:*1*1||||||||||>>=<=<>>=<>=<<-+++++-ϕϕϕϕϕϕϕϕϕϕUHU UHU U H U U H U UHU 即得证。
再证:1-UHU 是否为幺正算符, 由上可知,+++=UHU UHU )( 则++++=UHHU UHU UHU )(只有当1-=H H 时上式才为1,即只有当1-=H H 时1-UHU 为幺正算符。
(2)厄米性的证明:**||||||||>=<>>=<>=<<++ϕϕϕϕϕϕϕϕHA A A H A A H A HA A即得证。