七年级变量之间的关系-专题复习
变量之间的关系(带答案)

变量之间的关系(带答案)变量之间的关系、表达⽅法复习知识要点表⽰变量的三种⽅法:列表法、解析法(关系式法)、图象法◆要点1 变量、⾃变量、因变量(1) 在⼀变化的过程中,可以取不同数值的量叫做变量,数值保持不变的量叫做常量,常量和变量往往是相对的,相对于某个变化过程。
(2) 在⼀变化的过程中,主动发⽣变化的量,称为⾃变量,⽽因变量是随着⾃变量的变化⽽发⽣变化的量。
例如⼩明出去旅⾏,路程S、速度V、时间T三个量中,速度V⼀定,路程S则随着时间T的变化⽽变化。
则T为⾃变量,路程为因变量。
◆要点2 列表法与变量之间的关系(1) 列表法是表⽰变量之间关系的⽅法之⼀,可表⽰因变量随⾃变量的变化⽽变化的情况。
(2) 从表格中获取信息,找出其中谁是⾃变量,谁是因变量。
找⾃变量和因变量时,主动发⽣变化的是⾃变量,因变量随⾃变量的增⼤⽽增⼤或减⼩◆要点3 ⽤关系式表⽰变量之间的关系(1) ⽤来表⽰⾃变量与因变量之间关系的数学式⼦,叫做关系式,是表⽰变量之间关系的⽅法之⼀。
(2) 写变化式⼦,实际上根据题意,找到等量关系,列⽅程,但关系式的写法⼜不同于⽅程,必须将因变量单独写在等号的左边。
即实质是⽤含⾃变量的代数式表⽰因变量。
(3) 利⽤关系式求因变量的值,①已知⾃变量与因变量的关系式,欲求因变量的值,实质就是求代数式的值;②对于每⼀个确定的⾃变量的值,因变量都有⼀个确定的与之对应的值。
◆要点4 ⽤图象法表⽰变量的关系(1) 图象是刻画变量之间关系的⼜⼀重要⽅式,特点是⾮常直观。
(2) 通常⽤横轴(⽔平⽅向的数轴)上的点表⽰⾃变量,⽤纵轴(竖直⽅向的数轴)上的点表⽰因变量。
(3) 从图象中可以获取很多信息,关键是找准图象上的点对应的横轴和纵轴上的位置,才能准确获取信息。
如利⽤图象求两个变量的对应值,由图象得关系式,进⾏简单计算,从图象上变量的变化规律进⾏预测,判断所給图象是否满⾜实际情景,所给变量之间的关系等。
(4) 对⽐看:速度—时间、路程—时间两图象★若图象表⽰的是速度与时间之间的关系,随时间的增加即从左向右,“上升的线段”①表⽰速度在增加;“⽔平线段”②表⽰速度不变,也就是做匀速运动,“下降的线段”③表⽰速度在减少。
新北师大版七年级数学下册第三章《变量之间的关系》单元复习题含答案解析 (25)

一、选择题(共10题)1.随着时代的进步,人们对PM2.5(空气中直径小于或等于2.5微米的颗粒)的关注日益密切.某市一天中PM2.5的值y1(ug/m3)随时间t(h)的变化如图所示,设y2表示0时到t时PM2.5的值的极差(即0时到t时PM2.5的最大值与最小值的差),则y2与t的函数关系大致是( )A.B.C.D.2.下列关系中,y不是x的函数的是( )A.y=∣x∣B.y=x C.y=−x D.y=±x3.王强从家门口骑摩托车去单位上班,先走平路到达点A,再走上坡路到点B,最后走下坡路到达单位,所用的时间与路程的关系如图所示,下班后,如果他沿原路返回,且走平路、上坡路、下坡路的速度分别保持和去上班时一致,那么他从单位到家门口需要的时间是( )A.8分钟B.10分钟C.12分钟D.18分钟4.甲、乙两人约好步行沿同一路线同一方向在某景点集合,已知甲乙二人相距660米,二人同时出发,走了24分钟时,由于乙距离景点近,先到达等候甲,甲共走了30分钟也到达了景点与乙相遇.在整个行走过程中,甲、乙两人均保持各自的速度匀速行走,甲、乙两人相距的路程y (米)与甲出发的时间x(分钟)之间的关系如图所示,下列说法错误的是( )A.甲的速度是70米/分B.乙的速度是60米/分C.甲距离景点2100米D.乙距离景点420米5.已知菱形的面积为10,对角线的长分别为x和y,则y关于x的函数图象是( )A.B.C.D.6.某兴趣小组做试验,如图,将一个装满水的啤酒瓶倒置,并设法使瓶里的水从瓶中匀速流出,那么该倒置的啤酒瓶内水面高度ℎ与水流出的时间t之间的函数图象大致是( )A.B.C.D.7.嘉嘉买了6支笔花了9元钱,琪琪买了同样售价的x支笔,还买了单价为5元的三角尺两幅,用y(元)表示琪琪花的总钱数,那么y与x之间的关系式应该是( )A.y=1.5x+10B.y=5x+10C.y=1.5x+5D.y=5x+58.如图,三个大小相同的正方形拼成六边形ABCDEF,一动点P从点A出发沿着A→B→C→D→E方向匀速运动,最后到达点E.运动过程中△PEF的面积(S)随时间(t)变化的图象大致是( )A.B.C.D.9.小明家、公交车站、学校在一条笔直的公路旁(小明家、学校到这条公路的距离忽略不计).一天,小明从家出发去上学,沿这条公路步行到公交车站恰好乘上一辆公交车,公交车沿这条公路匀速行驶,小明下车时发现还有4min上课,于是他沿这条公路跑步赶到学校(上、下车时间忽略不计),小明与家的距离s(单位:m)与他所用时间t(单位:min)之间的函数关系如图所示,已知小明从家出发7min时与家的距离为1200m,从上公交车到他到达学校共用10min,下列说法:①小明从家出发5min时乘上公交车;②公交车的速度为400m/min;③小明下公交车后跑向学校的速度为100m/min;④小明上课没有迟到.其中正确的个数是( )A.1B.2C.3D.410.2020年初以来,红星消毒液公司生产的消毒液在库存量为m吨的情况下,日销售量与产量持平,自1月底抗击“新冠病毒”以来,消毒液需求量猛增,该厂在生产能力不变的情况下,消毒液一度脱销.下面表示2020年初至脱销期间,该厂库存量y(吨)与时间t(天)之间函数关系的大致图象是( )A.B.C.D.二、填空题(共7题)11.已知甲、乙两地相距20千米,汽车从甲地匀速行驶到乙地,则汽车行驶时间t(单位:小时)关于行驶速度v(单位:千米/小时)的函数关系式是.12.某长途汽车站对旅客携带行李收费的收费方式作了如下说明:行李重量40千克以内(含40千克),不收费;超过40千克时,每超过1千克,收费2元.行李费y(元)与行李重量x(千克)之间的函数关系式为.13.学校与图书馆在同一条笔直道路上,甲从学校去图书馆,乙从图书馆回学校,甲、乙两人都匀速步行且同时出发,乙先到达目的地.两人之间的距离y(米)与时间t(分钟)之间的函数关系如图所示.乙回到学校用了分钟.14.实验室里有一个水平放置的长方体容器,从内部量得它的高是15cm,底面的长是30cm,宽是20cm,容器内的水深为x cm.现往容器内放入如图的长方体实心铁块(铁块一面平放在容器底面),过顶点A的三条棱的长分别是10cm,10cm,y cm(y≤15),当铁块的顶部高出水面2cm时,x,y满足的关系式是.15.甲、乙两人在直线跑道上同起点、同终点,同方向匀速跑步500m,先到终点的人原地休息,已知甲先出发2s,在跑步过程中,甲、乙两人的距离y(m)与乙出发的时间t(s)之间的关系如图,给出以下结论;① a=8;② b=92;③ c=123.其中正确的是.16.圆周长C与圆的半径r之间的关系为C=2πr,其中变量是,常量是.17.周末小明匀速步行从家赶往学校参加植树活动,出发30分钟后,发现忘带植树工具,于是马上掉头往回走,速度比之前每小时提高了1千米(仍保持匀速步行),同时小明打电话给爸爸,请爸爸帮他把植树工具送过来,从小明开始打电话到爸爸出门一共用了4分钟,爸爸的速度与小明提速后的速度相同.两人相遇后,小明接过工具立即赶往学校,爸爸则转身回家,两人速度均保持不变,爸爸在回家途中用了10分钟吃早餐,当爸爸到家时小明刚好到达学校,两人相距的路程y(千米)与小明从家出发的时间x(分钟)之间的函数关系如图所示,则小明从家到学校途中步行的总路程是千米.三、解答题(共8题)18.如图,矩形ABCD的边AB=6cm,BC=8cm,在BC上取一点P,在CD边上取一点Q,使∠APQ成直线,设PB=x cm,CQ=y cm,试以x为自变量,写出y关于x的函数关系式.19.一农民带上若干千克自产的土豆进城出售,为了方便,他带了一些零钱备用,按市场价售出一些后,又降价出售,售出的土豆千克数与他手中持有的钱数(含备用零钱)的关系如图所示,结合图象回答下列问题.(1) 农民自带的零钱是多少?(2) 若降价前y,x满足y=kx+b,试求y与x之间的关系式.(3) 由表达式你能看出降价前每千克的土豆价格是多少吗?20.如图是甲、乙两人同一地点出发后,路程随时间变化的图象.(1) 此变化过程中,是自变量,是因变量.(2) 甲的速度是千米/时,乙的速度是千米/时.(3) 路程为150千米,甲行驶了小时,乙行驶了小时.(4) 分别写出甲乙两人行驶的路程S(千米)与行驶的时间t(小时)的关系式(不要求写出自变量的取值范围)S甲=S乙=.21.如图是某型号新能源纯电动汽车充满电后,蓄电池剩余电量y(千瓦时)关于已行驶路程x(千米)的函数图象.(1) 根据图象,直接写出蓄电池剩余电量为35千瓦时汽车已行驶的路程.当0≤x≤150时,求1千瓦时的电量汽车能行驶的路程.(2) 当150≤x≤200时,求y关于x的函数表达式,并计算当汽车已行驶180千米时,蓄电池的剩余电量.22.如图,Q是AB⏜与弦AB所围成图形的外部的一定点,P是弦AB上的一动点,连接PQ交AB⏜于点C.已知AB=6cm,设P,A两点间的距离为x cm,P,C两点间的距离为y1cm,Q,C两点间的距离为y2cm.小石根据学习函数的经验,分别对函数y1,y2随自变量x的变化而变化的规律进行了探究,下面是小石的探究过程,请补充完整:(1) 按照下表中自变量x的值进行取点、画图、测量,分别得到了y1,y2与x的几组对应值:x/cm012345 5.406y1/cm 4.63 3.89 2.61 2.15 1.79 1.630.95y2/cm 1.20 1.11 1.040.99 1.02 1.21 1.40 2.21(2) 在同一平面直角坐标系xOy中,描出补全后的表中各组数值所对应的点(x,y1),(x,y2),并画出函数y1,y2的图象;(3) 结合函数图象,解决问题:当C为PQ的中点时,PA的长度约为cm.23.如图1,四边形ABCD为矩形,曲线L经过点D.点Q是四边形ABCD内一定点,点P是线段AB上一动点,作PM⊥AB交曲线L于点M,连接QM.小东同学发现:在点P由A运动到B的过程中,对于x1=AP的每一个确定的值,θ=∠QMP都有唯一确定的值与其对应,x1与θ的对应关系如下表所示:x1=AP012345θ=∠QMPα85∘130∘180∘145∘130∘小芸同学在读书时,发现了另外一个函数:对于自变量x2在−2≤x2≤2范围内的每一个值,都有唯一确定的角度θ与之对应,x2与θ的对应关系如图2所示:根据以上材料,回答问题:(1) 表格中α的值为.(2) 如果令表格中x1所对应的θ的值与图2中x2所对应的θ的值相等,可以在两个变量x1与x2之间建立函数关系.①在这个函数关系中,自变量是,因变量是;(分别填入x1和x2)②请在网格中建立平面直角坐标系,并画出这个函数的图象;③根据画出的函数图象,当AP=3.5时,x2的值约为.24.如图,在△ABC中,AB=8cm,点D是AC边的中点,点P是边AB上的一个动点,过点P作射线BC的垂线,垂足为点E,连接DE.设PA=x cm,ED=y cm.小石根据学习函数的经验,对函数y随自变量x的变化而变化的规律进行了探究.下面是小石的探究过程,请补充完整:(1) 通过取点、画图、测量,得到了x与y的几组值,如表:x/cm012345678y/cm 3.0 2.4 1.9 1.8 2.1 3.4 4.2 5.0(说明:补全表格时相关数据保留一位小数)(2) 建立平面直角坐标系,描出以补全后的表中各对对应值为坐标的点,画出该函数的图象;(3) 结合画出的函数图象,解决问题:点E是BC边的中点时,PA的长度约为cm.25.从甲城向乙城打长途电话,通话时间不超过3分钟收费2.4元,超过3分钟后每分钟加收1元,写出通话费用y(元)关于通话时间x(分)的函数关系式,如果通话10.5分钟,需要多少话费?(本题中x取整数,不足1分钟按1分钟计算)答案一、选择题(共10题)1. 【答案】B【解析】当t=0时,极差y2=85−85=0;当0<t≤10时,极差y2随t的增大而增大,最大值为85−42=43;当10<t≤20时,极差y2随t的增大保持不变,为43;当20<t≤24时,极差y2随t的增大而增大,最大值为140−42=98.【知识点】用函数图象表示实际问题中的函数关系2. 【答案】D【知识点】函数的概念3. 【答案】B【解析】从家到学校:平路是2千米,用3分钟,则从单位到家门口走平路仍用3分钟;从A到B是上坡,路程是1千米,时间是5−3=2分钟,则速度是:12千米/分钟从B到单位的一段是下坡,路程是6−3=3千米,时间是3分钟,则下坡的速度是1千米/分钟,则从单位到家门口需要的时间是:3 1 2+11+3=10(分钟).【知识点】用函数图象表示实际问题中的函数关系4. 【答案】D【解析】开始甲,乙两人相距660米,由图可知,前24分钟甲,乙两人相相距的路程在逐渐缩小.24分钟时,乙到达景点,此时甲、乙两人相距420米之后甲又走了6分钟与乙相遇,∴甲的速度=4206−70(米/分)甲总共走了30分钟,∴甲距景点30×70=2100米,由前24分钟甲、乙两人相距660来缩小到420米,得(甲的速度−乙的速度)×24=660−420,得乙的速度=60米/分,乙总共走了24分钟,∴乙距景点60×24=1440米.【知识点】用函数图象表示实际问题中的函数关系5. 【答案】Dxy,【解析】由题可知:10=12(x>0).所以y=20x故选D.【知识点】用函数图象表示实际问题中的函数关系6. 【答案】A【解析】该倒置的啤酒瓶内水面高度ℎ变化的过程分为两段,其变化规律为先慢后快,因为水匀速流出,所以表现在图象上为两条首尾相接的线段.【知识点】用函数图象表示实际问题中的函数关系7. 【答案】A【解析】依题意得:笔单价为9÷6=1.5元,琪琪花的总钱数为x支笔和两幅三角板的总价和,∴y=1.5x+10.【知识点】解析式法8. 【答案】B【解析】动点P从点A出发沿着A→B→C→D→E方向匀速运动,∴可知三角形PEF的面积可分为四个步骤进行图象的描绘,分别为AB,BC,CD,DE,∴答案为B.【知识点】图像法9. 【答案】D【解析】公交车的速度为(3200−1200)÷(12−7)=400(m/min),故②正确;小明从家出发乘上公交车的时间为7−(1200−400)÷400=5(min),故①正确;坐公交车的时间为12−5=7min,跑向学校的时间为10−7=3min,因为3<4,所以小明上课没有迟到,故④正确.小明下公交车后跑向学校的速度为(3500−3200)÷3=100(m/min)时,故③正确.【知识点】用函数图象表示实际问题中的函数关系10. 【答案】D【知识点】用函数图象表示实际问题中的函数关系二、填空题(共7题)11. 【答案】t=20v【知识点】解析式法12. 【答案】y ={0,0≤x ≤40,2x −80,x >40.【知识点】解析式法13. 【答案】 40【解析】由图象可得,甲的速度为:2400÷60=40(米/分钟), 乙的速度为:2400÷24−40=60(米/分钟), 则乙回到学校用了:2400÷60=40(分钟). 【知识点】用函数图象表示实际问题中的函数关系14. 【答案】 y =6x+105(0<x ≤656) 或 y =120−15x2(6≤x <8)【知识点】解析式法15. 【答案】①②③【解析】甲的速度为:8÷2=4(m/s );乙的速度为:500÷100=5(m/s );b =5×100−4×(100+2)=92(m );5a −4×(a +2)=0, 解得 a =8,c =100+92÷4=123(s ), ∴ 正确的有①②③.【知识点】用函数图象表示实际问题中的函数关系16. 【答案】C ,r ;2π【知识点】函数的概念17. 【答案】296【解析】小明从家出发时速度为 20.5=4 千米/小时,小明返回速度为 (4+1)=5 千米/小时 小明返回 4 分钟,即115小时,小明爸爸才出门且速度与小明返回速度一样 5 千米/小时,设小明与爸爸相遇用时 t (爸爸出门到相遇), 2−5×115=(5+5)t , t =16 小时,相遇后爸爸吃早餐用时 10 分钟,即 16 小时,爸爸返回家中用时 5t 5=16 小时,小明刚好到达学校,则小明返回拿工具再去学校过程中用时为:1 15+16+16+16=1730,总路程S=2+1730×5=2+176=296千米.故小明从家到学校途中步行总路程为296干米.【知识点】用函数图象表示实际问题中的函数关系三、解答题(共8题)18. 【答案】因为在Rt△ABP中,∠APB+∠BAP=90∘且∠APQ=90∘,所以∠APB+∠CPQ=90∘,所以∠BAP=∠CPQ,又∠B=∠C=90∘,所以△ABP∽△PCQ,所以PB:CQ=AB:PC,则xy =68−x,所以y=−16x2+43x(0<x<8).【知识点】性质与判定综合(D)、解析式法19. 【答案】(1) 5元.(2) y=0.5x+5.(3) 0.5元.【知识点】解析式法、用函数图象表示实际问题中的函数关系20. 【答案】(1) 时间t;路程S(2) 503;50(3) 9;3(4) 503t;50t−200【解析】(2) 甲的速度=1006=503km/h,乙的速度=50km/h.(3) 路程150千米/时,150÷503=9(小时),150÷50=3(小时),即甲行驶了 9 小时,乙行驶了 3 小时. (4) S =503t ,S =50t −200.【知识点】用函数图象表示实际问题中的函数关系、自变量与函数值、解析式法21. 【答案】(1) 由图象可知,蓄电池剩余电量为 35 千瓦时汽车已行驶了 150 千米. 1 千瓦时的电量汽车能行驶的路程为:15060−35=6 千米.(2) 设 y =kx +b (k ≠0),把点 (150,35),(200,10) 代入, 得 {150k +b =35,200k +b =10.∴{k =−0.5,b =110.∴y =−0.5x +110,当 x =180 时,y =−0.5×180+110=20,答:当 150≤x ≤200 时,函数表达式为 y =−0.5x +110,当汽车已行驶 180 千米时,蓄电池的剩余电量为 20 千瓦时.【知识点】用函数图象表示实际问题中的函数关系、行程问题22. 【答案】(1) 3.20 (2) (3) 5.58 【知识点】图像法23. 【答案】(1) 50∘ (2) ①x 1;x 2;②③−1.87.【知识点】列表法、函数的概念、图像法24. 【答案】(1) 2.7(2)(3) 6.8【知识点】图像法、列表法25. 【答案】当0<x≤3时,y=2.4;当x>3时,y=2.4+(x−3)=x−0.6,把x=11代入y=x−0.6得:y=11−0.6=10.4.答:如果通话10.5分钟,需要10.4元话费.【知识点】解析式法、分段函数。
北师大版七年级数学下册变量之间的关系专题复习

变量之间的关系一、 基础知识回顾:1、表示两个变量之间关系的方法有( )、( )、( ). 2.图象法表示两个变量之间关系的特点是( )3.用图象法表示两个变量之间关系时,通常用水平方向的数轴(横轴)上的点表示( ),用竖直方向的数轴(纵轴)上的点表示( ).专题一、速度随时间的变化1、 汽车速度与行驶时间之间的关系可以用图象来表示,下图中A 、B 、C 、D 四个图象,可以分别用一句话来描述:(1)在某段时间里,速度先越来越快,接着越来越慢。
( ) (2)在某段时间里,汽车速度始终保持不变。
( ) (3)在某段时间里,汽车速度越来越快。
( ) (4)在某段时间里,汽车速度越来越慢。
( )2、描述一名跳水运动员从起跳到落水这一运动过程中,速度v 与时间t 之间关系的图象大致是( )3、李明骑车上学,一开始以某一速度行进,途中车子发生故障,只好停下修车,车修好后,因怕耽误时间,于是加快了车速.如用s 表示李明离家的距离,t 为时间.在下面给出的表示s 与t 的关系图6—41中,符合上述情况的是 ( )4、一辆轿车在公路上行驶,不时遇到各种情况,速度随之改变,先加速,再匀速又遇到情况而减速,过后再加速然后匀速,下公路、上小路,到达目的地.图6—43哪幅图象可近似描述上面情况 ( )5、“龟兔赛跑”讲述了这样的故事:领先的兔子看着缓慢爬行的乌龟,骄傲起来,睡了一觉。
当它醒来时,发现乌龟快到终点了,于是急忙追赶,但为时已晚,乌龟还是先到达了终点…….用S 1、S 2分别表示乌龟和兔子所行的路程,t 为时间,则下列图象中与故事情节相吻合的是( )VOVt时间速度 Ao速度D速度时间C速度 时间Boo6、星期天晚饭后,小红从家里出发去散步,下图描述了她散步过程中离家的距离s (米)与散步所用的时间t (分)之间的关系,依据图象下面描述符合小红散步情景的是( ) A.从家出发,到了一个公共阅读报栏,看了一会儿报,就回家了.B.从家出发,到了一个公共阅报栏,看了一会儿报,继续向前走了一段后,然后回家了.C.从家里出发,一直散步(没有停留),然后回家了 D.从家里出发,散了一会儿步,就找同学去了,18分钟后才开始返回.7、A 、B 两地相距500千米,一辆汽车以50千米/时的速度由A 地驶向B 地.汽车距B 地的距离y(千米)与行驶时间t(之间)的关系式为 .在这个变化过程中,自变量是 ,因变量是 .⑴时间从0时变化到24时,超警戒水位从 上升到 ; ⑵借助表格可知,时间从 到 水位上升最快 某机动车辆出发前油箱中有油42升,行驶若干小时后,在途中加油站加油若干.油箱中余油量Q(升)与行驶时间t(时) 之间的关系如图,请根据图像填空: ⑴机动车辆行驶了 小时后加油.⑻中途加油 升.⑵加油后油箱中的油最多可行驶 小时.⑶如果加油站距目的地还有230公里,机动车每小时走40公里,油箱中 的油能否使机动车到达目的地?答:。
七年级数学下册第三章变量之间的关系知识归纳

第三章变量之间的关系自变量变量的概念因变量变量之间的关系表格法关系式法变量的表达方法速度时间图象图象法路程时间图象一、变量、自变量、因变量1、在某一变化过程中,不断变化的量叫做变量。
2、如果一个变量y随另一个变量x的变化而变化,则把x叫做自变量,y叫做因变量。
3、自变量与因变量的确定:(1)自变量是先发生变化的量;因变量是后发生变化的量.(2)自变量是主动发生变化的量,因变量是随着自变量的变化而发生变化的量。
(3)利用具体情境来体会两者的依存关系。
二、表格1、表格是表达、反映数据的一种重要形式,从中获取信息、研究不同量之间的关系。
(1)首先要明确表格中所列的是哪两个量;(2)分清哪一个量为自变量,哪一个量为因变量;(3)结合实际情境理解它们之间的关系。
2、绘制表格表示两个变量之间关系(1)列表时首先要确定各行、各列的栏目;(2)一般有两行,第一行表示自变量,第二行表示因变量; (3)写出栏目名称,有时还根据问题内容写上单位;(4)在第一行列出自变量的各个变化取值;第二行对应列出因变量的各个变化取值.(5)一般情况下,自变量的取值从左到右应按由小到大的顺序排列,这样便于反映因变量与自变量之间的关系。
三、关系式1、用关系式表示因变量与自变量之间的关系时,通常是用含有自变量(用字母表示)的代数式表示因变量(也用字母表示),这样的数学式子(等式)叫做关系式。
2、关系式的写法不同于方程,必须将因变量单独写在等号的左边。
3、求两个变量之间关系式的途径:(1)将自变量和因变量看作两个未知数,根据题意列出关于未知数的方程,并最终写成关系式的形式.(2)根据表格中所列的数据写出变量之间的关系式;(3)根据实际问题中的基本数量关系写出变量之间的关系式;(4)根据图象写出与之对应的变量之间的关系式。
4、关系式的应用:(1)利用关系式能根据任何一个自变量的值求出相应的因变量的值;(2)同样也可以根据任何一个因变量的值求出相应的自变量的值;(3)根据关系式求值的实质就是解一元一次方程(求自变量的值)或求代数式的值(求因变量的值)。
新北师大版七年级数学下册第三章《变量之间的关系》单元复习题含答案解析 (14)

一、选择题(共10题)1.甲、乙二人同时从A地出发,沿同一条道路去B地,途中都使用两种不同的速度V1和V2(V1<V2),甲用一半的路程使用速度V1,另一半的路程使用速度V2,乙用一半的时间使用速度V1,另一半的时间使用速度V2,关于甲乙二人从A地到达B地的路程与时间的函数图象及关系,有图中4个不同的图示分析,其中横轴t表示时间,纵轴S表示路程,其中正确的图示分析为( )A.图(1)B.图( 1)或图( 2)C.图( 3)D.图( 4)2.甲、乙两位同学进行长跑训练,甲和乙所跑的路程S(单位:米)与所用时间t(单位:秒)之间的函数图象分别为线段OA和折线OBCD.则下列说法正确的是( )A.两人从起跑线同时出发,同时到达终点B.跑步过程中,两人相遇一次C.起跑后160秒时,甲、乙两人相距最远D.乙在跑前300米时,速度最慢3.下列各曲线表示的y与x的关系中,y不是x的函数的是( )A.B.C.D.4.一个容器有进水管和出水管,每分钟的进水量和出水量是两个常数.从某时刻开始4min内只进水不出水,从第4min到第24min内既进水又出水,从第24min开始只出水不进水,容器内水量y(单位:L)与时间x(单位:min)之间的关系如图所示,则图中a的值是( )A.32B.34C.36D.385.如图,在△ABC中,AB=AC,MN是边BC上一条运动的线段(点M不与点B重合,点BC,MD⊥BC交AB于点D,NE⊥BC交AC于点E,在N不与点C重合),且MN=12MN从左至右的运动过程中,设BM=x,△BMD和△CNE的面积之和为y,则下列图象中,能表示y与x的函数关系的图象大致是( )A.B.C.D.6.圆周长公式c=2πr中,下列说法正确的是( )A.r是自变量,2,π,c是常量B.π,r是自变量,2为常量C.c,r为变量,2,π为常量D.c为变量,2,π,r为常量7.2020年初以来,红星消毒液公司生产的消毒液在库存量为m吨的情况下,日销售量与产量持平.自1月底抗击“新冠病毒”以来,消毒液需求量猛增,该厂在生产能力不变的情况下,消毒液一度脱销,下面表示2020年初至脱销期间,该厂库存量y(吨)与时间t(天)之间函数关系的大致图象是( )A.B.C.D.8.已知,A市到B市的路程为260千米,甲车从A市前往B市运送物资,行驶2小时在M地汽车出现故障,立即通知技术人员乘乙车从A市赶来维修(通知时间忽略不计),乙车到达M 地后又经过20分钟修好甲车后以原速原路返回A市,同时甲车以原来 1.5倍的速度前往B市,如图是两车距A市的路程y(千米)与甲车所用时间x(小时)之间的函数图象,下列四种说法:①甲车出发时的速度是60千米时;②乙车的速度是96千米/时;③乙车返回时y与x的函数关系式为y=−96x+384;④甲车到达B市时乙已返回A市2小时20分钟.其中正确的个数是( )A.1个B.2个C.3个D.4个9.如图①,点P从长方形ABCD的顶点A出发沿A→B→C以2cm/s的速度匀速运动到点C,图②是点P运动时,△APD的面积y(cm2)随运动时间x(s)变化而变化的函数关系图象,则长方形ABCD的面积为( )A.36cm2B.48cm2C.32cm2D.24cm210.某校在对某宿舍进行消毒的过程中,先经过5min的集中药物喷洒,再封闭宿舍10min,然后打开门窗进行通风,室内每立方米空气中含药量y(mg/m3)与药物在空气中的持续时间x(min)之间的函数关系,在打开门窗通风前分别满足两个一次函数,在通风后又成反比例,如图所示.下面四个选项中错误的是( )A.经过5min集中喷洒药物,室内空气中的含药量最高达到10 mg/m3B.室内空气中的含药量不低于8 mg/m3的持续时间达到了11minC.当室内空气中的含药量不低于5 mg/m3且持续时间不低于35分钟,才能有效杀灭某种传染病毒.此次消毒完全有效D.当室内空气中的含药量低于2 mg/m3时,对人体才是安全的,所以从室内空气中的含药量达到2 mg/m3开始,需经过59min后,学生才能进入室内二、填空题(共7题)11. 心理学家发现,学生对概念的接受能力 y 与提出概念所用的时间 x (单位:min )之间有如下关系:(其中0≤x ≤30).提出概念所用时间(x )257101213141720对概念的接受能力(y )47.853.556.35959.859.959.858.355(1)上表中反映了变量是 , 是自变量, 是因变量;(2)当提出概念所用时间是 10 min 时,学生的接受能力是 ;(3)根据表格中的数据,你认为提出概念 分钟时,学生的接受能力最强;(4)从表中可知,当时间 x 在 范围内,学生的接受能力逐步增强,当时间 x 在 范围内,学生的接受能力逐步降低.12. 一天早晨,小玲从家出发匀速步行到学校.小玲出发一段时间后,她的妈妈发现小玲忘带了一件必需的学习用品,于是立即下楼骑自行车,沿小玲行进的路线,匀速去追小玲.妈妈追上小玲将学习用品交给小玲后,立即沿原路线匀速返回家里,但由于路上行人渐多,妈妈返回时骑车的速度只是原来速度的一半.小玲继续以原速度步行前往学校.妈妈与小玲之间的距离 y (米)与小玲从家出发后步行的时间 x (分)之间的关系如图所示(小玲和妈妈上、下楼以及妈妈交学习用品给小玲耽搁的时间忽略不计).当妈妈刚回到家时,小玲离学校的距离为 米.13. 某物流公司的快递车和货车同时从甲地出发,以各自的速度匀速向乙地行驶,快递车到达乙地后卸完物品再另装货物共用 45 分钟,立即按原路以另一速度匀速返回,直至与货车相遇.已知货车的速度为 60 千米/时,两车之间的距离 y (千米)与货车行驶时间 x (小时)之间的函数图象,如图所示,现有以下 4 个结论:①快递车从甲地到乙地的速度为 100 千米/时;②甲、乙两地之间的距离为 120 千米;③图中点 B 的坐标为 (334,75);④快递车从乙地返回时的速度为 90千米/时,其中正确的是 (填序号).14.甲、乙两队参加了“端午情,龙舟韵”赛龙舟比赛,两队在比赛时的路程s(米)与时间t(秒)之间的函数图象如图所示,根据图象有以下四个判断:①乙队率先到达终点;②甲队比乙队多走了126米;③在47.8秒时,两队所走路程相等;④从出发到13.7秒的时间段内,甲队的速度比乙队的慢.所以正确判断的序号是.15.已知函数f(x)=√x+6,那么f(−2)=.16.两个少年在绿茵场上游戏.小红从点A出发沿线段AB运动到点B,小兰从点C出发,以相同的速度沿⊙O逆时针运动一周回到点C,两人的运动路线如图1所示,其中AC=DB.两人同时开始运动,直到都停止运动时游戏结束,其间他们与点C的距离y与时间x(单位:秒)的对应关系如图2所示.则下列说法正确的有.(填序号)①小红的运动路程比小兰的长;②两人分别在1.09秒和7.49秒的时刻相遇;③当小红运动到点D的时候,小兰已经经过了点D;④在4.84秒时,两人的距离正好等于⊙O的半径.17.已知A,B两地相距20千米,某同学步行由A地到B地,速度为每小时4千米,设该同学与B地的距离为y千米,步行的时间为x小时,则y与x之间的函数解析式为.三、解答题(共8题)18.等腰三角形的周长为16cm,设它的底边长为x cm,腰长为y cm.(1) 写出y关于x的函数解析式;(2) 求这个函数的定义域;(3) 当y=5时,求x的值.19.一销售员向某企业推销一种该企业生产必需的物品,若企业要40件,则销售员每件可获利40元,销售员(在不亏本的前提下)为扩大销售量,而企业为了降低生产成本,经协商达成协议,如果企业购买40件以上时,每多要1件,则每件降低1元.(1) 设每件降低x(元)时,销售员获利为y(元),试写出y关于x的函数关系式;(2) 当每件降低20元时,问此时企业需购进物品多少件?此时销售员的利润是多少?20.甲、乙两人同时从A地前往相距5千米的B地.甲骑自行车,途中修车耽误了20分钟,甲行驶的路程s(千米)关于时间t(分钟)的函数图象如图所示;乙慢跑所行的路程s(千米)关于时t(0≤t≤60).间t(分钟)的函数解析式为s=112(1) 在图中画出乙慢跑所行的路程关于时间的函数图象;(2) 乙慢跑的速度是每分钟千米;(3) 甲修车后行驶的速度是每分钟千米;(4) 甲、乙两人在出发后,中途 分钟时相遇.21. 如图①表示同一时刻的韩国首尔时间和北京时间,两地时差为整数.(1) 设北京时间为 x (时),首尔时间为 y (时),若 0≤x ≤12,求 y 关于 x 的函数表达式,并填写下表(同一时刻的两地时间).北京时间7:30 2:50首尔时间 12:15 (2) 如图②表示同一时刻的英国伦敦(夏时制)时间和北京时间,两地时差为整数.如果现在伦敦(夏时制)时间为 7:30,那么此时韩国首尔时间是多少?22. 如图,在 △ABC 中,∠ABC =90∘,∠C =40∘,点 D 是线段 BC 上的动点,将线段 AD 绕点 A顺时针旋转 50∘ 至 ADʹ,连接 BDʹ.已知 AB =2 cm ,设 BD 为 x cm ,BDʹ 为 y cm . 小明根据学习函数的经验,对函数 y 随自变量 x 的变化而变化的规律进行了探究,下面是小明的探究过程,请补充完整.(说明:解答中所填数值均保留一位小数)(1) 通过取点、画图、测量,得到了x与y的几组值,如下表:x/cm00.50.7 1.0 1.5 2.0 2.3y/cm 1.7 1.3 1.10.70.9 1.1(2) 建立平面直角坐标系,描出以补全后的表中各对对应值为坐标的点,画出该函数的图象.(3) 结合画出的函数图象,解决问题:线段BDʹ的长度的最小值约为cm;若BDʹ≥BD,则BD的长度x的取值范围是.23.阅读下面的材料:如果函数y=f(x)满足:对于自变量x的取值范围内的任意x1,x2,(1)若x1<x2,都有f(x1)<f(x2),则称f(x)是增函数;(2)若x1<x2,都有f(x1)>f(x2),则称f(x)是减函数.例题:证明函数f(x)=6x(x>0)是减函数.证明:设0<x1<x2,f(x1)−f(x2)=6x1−6x2=6x2−6x1x1x2=6(x2−x1)x1x2,∵0<x1<x2,∴x2−x1>0,x1x2>0.∴6(x2−x1)x1x2>0.即f(x1)−f(x2)>0.∴f(x1)>f(x2).∴函数f(x)−6x(x>0)是减函数.根据以上材料,解答下面的问题:已知函数f(x)=2x−1x2(x<0),例如f(−1)=2×(−1)−1(−1)2=−3,f(−2)=2×(−2)−1(−2)2=−54.(1) 计算:f(−3)=;(2) 猜想:函数f(x)=2x−1x2(x<0)是函数(填“增”或“减”);(3) 请仿照例题证明你的猜想.24.某固体物质在受热熔解过程中物质温度T(∘C)与时间t(s)的关系如图,其中A阶段物质为固态,B阶段物质为固液共存态,C阶段物质为液态.(1) 物质温度上升速度最快的是阶段,最慢的是阶段.(2) 若物质的温度是60∘C,那么时间t(s)的变化范围是.(3) 请写出A阶段物质温度T(∘C)与时间t(s)的函数关系式.25.在疫情期间,某口罩生产厂为提高生产效益引进了新的设备,其中甲表示新设备的产量y(万个)与生产时间x(天)的关系,乙表示旧设备的产量y(万个)与生产时间x(天)的关系:(1) 由图象可知,新设备因工人操作不当停止生产了天;(2) 求新、旧设备每天分别生产多少万个口罩?(3) 在生产过程中,x为何值时,新旧设备所生产的口罩数量相同.答案一、选择题(共10题)1. 【答案】B【解析】由题意得:甲在一半路程处将进行速度的转换,4个选项均符合,乙在一半时间处将进行速度的转换,函数图象将在t1处发生弯折,只有(1)(2)(4)符合,再利用速度不同,所以行驶路程就不同,两人不可能同时到达目的地,故(4)错误,故只有(1)(2)正确.【知识点】用函数图象表示实际问题中的函数关系2. 【答案】C【知识点】用函数图象表示实际问题中的函数关系3. 【答案】C【解析】根据函数的意义可知:对于自变量x的任何值,y都有唯一的值与之相对应,A,B,D 选项中,都是一一对应关系,而C选项不满足函数的定义.【知识点】函数的概念4. 【答案】C【解析】由图象可知,进水的速度为:20÷4=5(L/min),出水的速度为:5−(35−20)÷(16−4)=3.75(L/min),第24分钟时的水量为:20+(5−3.75)×(24−4)=45(L),a=24+ 45÷3.75=36.【知识点】用函数图象表示实际问题中的函数关系5. 【答案】B【知识点】图像法6. 【答案】C【知识点】函数的概念7. 【答案】D【解析】根据题意可知,库存量y(吨)与时间t(天)之间函数关系的图象为先水平,再逐渐下降,最后为0.故选D.【知识点】用函数图象表示实际问题中的函数关系8. 【答案】B【解析】①前2小时甲车行驶80km,=40km/h;∴v=802②乙车总行驶路程为80×2=160km,总行驶时间为4−2−13=53h,∴v=16053=96km/h;③ ∵乙车速度为96km/h,∴乙返回时的直线k=−96,将(4,0)代入y=−96x+b得y=−96x+384;④ CD段甲车速度为40×1.5=60km/h,S=260−80=180km,∴t甲=18060=3h,乙车返回所用时间:t乙=8096=56h,3−56=136h,∴甲到达乙返回2h10min.∴②③正确.【知识点】用函数图象表示实际问题中的函数关系9. 【答案】C【解析】由题图可得AB=2×2=4(cm),BC=(6−2)×2=8(cm),所以长方形ABCD的面积是4×8=32(cm),故选C.【知识点】图像法10. 【答案】C【知识点】用函数图象表示实际问题中的函数关系二、填空题(共7题)11. 【答案】学生对概念的接受能力与老师提出概念的时间(单位:min)之间的关系;老师传授概念的时间;学生对概念的接受能力;10min;59.9;2∼13min;14∼20min【知识点】列表法12. 【答案】200【知识点】用函数图象表示实际问题中的函数关系13. 【答案】①③④【解析】设快递车出发时的速度为m千米/时,到由图象得3(m−6)=120,解得m=100,①正确;甲、乙两地之间的距离大于120千米,②错误;点B的横坐标是快递车返回的时刻:3×4560=334(h),纵坐标是此时货车到乙地的距离:120−34×60=75(km),∴点B的坐标为(334,75),③正确;设快递车从乙地返回是的速度为n千米/时,则(414−334)(n+60)=75,解得n=90,④正确.【知识点】用函数图象表示实际问题中的函数关系14. 【答案】③④【知识点】用函数图象表示实际问题中的函数关系15. 【答案】2【知识点】解析式法16. 【答案】④【解析】①由图可知,速度相同的情况下,小红比小兰提前停下来,时间花的短,故小红的运动路程比小兰的短,故本选项不符合题意;②两人分别在1.09秒和7.49秒的时刻与点C距离相等,故本选项不符合题意;③当小红运动到点D的时候,小兰也在点D,故本选项不符合题意;④当小红运动到点O的时候,两人的距离正好等于⊙O的半径,此时t=9.682=4.48.故本选项正确.故答案为:④.【知识点】用函数图象表示实际问题中的函数关系17. 【答案】y=20−4x【知识点】解析式法三、解答题(共8题)18. 【答案】(1) 依题意得2y+x=16,∴2y=16−x,∴y=8−12x,∴y关于x的函数解析式为y=8−12x.(2) ∵2y>x,2y=16−x,∴2x<16,∴x<8,∵ x >0, ∴ 0<x <8,∴ 这个函数的定义域为 0<x <8.(3) 当 y =5 时,8−12x =5,∴ −12x =−3,∴ x =6.【知识点】解析式法、实际问题中的自变量的取值范围19. 【答案】(1) y =(40−x )(40+x )=1600−x 2.(2) 当降低 20 元时,需购进 40+20=60 (件) 此时销售员的利润 y =1600−202=1200(元).【知识点】解析式法20. 【答案】(1) 略 (2) 112 (3) 320(4) 24【知识点】用函数图象表示实际问题中的函数关系21. 【答案】(1) 从题图①看出,同一时刻,首尔时间比北京时间多 1 小时, 所以 y 关于 x 的函数表达式是 y =x +1,0≤x ≤12. 填表如下:北京时间7:3011:152:50首尔时间8:3012:153:50(2) 设伦敦(夏时制)时间为 t 时,则北京时间为 (t +7) 时, 结合(1)可得,韩国首尔时间为 (t +8) 时,所以当伦敦(夏时制)时间为 7:30,韩国首尔时间为 15:30. 【知识点】解析式法22. 【答案】(1) 0.9 (2) 如图所示. (3) 0.7;0≤x ≤0.9【知识点】列表法、图像法23. 【答案】(1) −79(2) 减(3) 证明:设x1<x2<0,f(x1)−f(x2)=2x1−1x12−2x2−1x22=(x2−x1)[2x1x2−(x1+x2)](x1x2)2,∵x1<x2<0,∴x2−x1>0,x1x2>0,x1+x2<0,∴(x2−x1)[2x1x2−(x1+x2)](x1x2)2>0,即f(x1)−f(x2)>0,∴f(x1)>f(x2),∴函数f(x)=2x−1x2(x<0)是减函数,猜想得证.【解析】(1) 计算:f(−3)=2×(−3)−1(−3)2=−79.(2) 由(1)知,f(−3)=−79,当x=−2时,f(−2)=2×(−2)−1(−2)2=−54,∵−3<−2<0,f(−3)>f(−2),∴猜想:函数f(x)=2x−1x2(x<0)是减函数.【知识点】解析式法24. 【答案】(1) C;B(2) 20≤t≤50(3) T=3t(0≤t≤20).【知识点】用函数图象表示实际问题中的函数关系、正比例函数解决实际问题25. 【答案】(1) 2.(2) 新设备:4.8÷1=4.8(万个/天),乙设备:16.8÷7=2.4(万个/天),∴甲设备每天生产4.8万个口罩,乙设备每天生产2.4万个口罩.(3) ① 2.4x=4.8,解得x=2;② 2.4x=4.8(x−2),解得x=4.∴在生产过程中,x为2或4时,新旧设备所生产的口罩数量相同.【知识点】用函数图象表示实际问题中的函数关系。
北师大版七年级下册第三章变量之间的关系知识点归纳与复习

第三章 变量之间的关系 知识点归纳与复习知识点1 常量与变量1.小亮以每小时8千米的速度匀速行走时,所走路程s(千米)随时间t (小时)的增大而增大,则下列说法正确的是 ( ) A.8和s,t 都是变量 B.8和t 都是变量C. s 和t 都是变量D.8和s 都是变量2.在三角形ABC 中,它的底边是a,底边上的高是h,则三角形面积S=21ah.当a 为定长时,在此式中 ( )A. S,h 是变量,21,a 是常量 B. S,h,a 是变量,21是常量 C. a,h 是变量,21,S 是常量D.S 是变量,21a,h 是常量3.小亮帮母亲预算家庭月份电费开支情况,下表是小亮家4月初连续8天每天早上电表显示的读数: 表格中反映的变量是 ,自变量是 ,因变量是 .知识点2 用表格表示变量间的关系4.1-6个月的婴儿生长发育得非常快,出生体重为4000克的婴儿,他们的体重y (克)和月龄x (月)之间的关系如表所示,则6个月大的婴儿的体重为 ( )A. 7600克B. 7800克C. 8200克D. 8500克5.弹簧挂上物体后会伸长,测得一弹簧的长度y(cm)与所挂的物体的质量x(kg)之间有下面的关系,则下列说法中不正确的是 ( )A.x 与y 都是变量,且x 是自变量,y 是因变量B.所挂物体质量为4kg 时.弹簧长度为12cmC.弹簧不挂重物时的长度为0cmD.物体质量每增加1kg,弹簧长度增加0.5cm6.邓老师设计一个计算程序,输入和输出的数据如下表所示,那么当输入数据是正整数n 时,输出的数据是 .7. 下表是三发电器厂2017年上半年每个月的产量:(1)根据表格中的数据,你能否根据x 的变化,得到y 的变化趋势?(2)根据表格你知道哪几个月的月产量保持不变?哪几个月的月产量在匀速增长?哪个月的产量最高? (3)试求2017年上半年的平均月产量是多少?(结果保留整数)知识点3 用关系式表示的变量间关系8.如果一盒圆珠笔有12支,售价18元,用y(元)表示圆珠笔售价,x(支)表示圆珠笔的支数,那么y 与x 之间的关系应该是 ( )9.一个正方形的边长为3cm,它的各边边长减少xcm 厅,得到的新正方形的周长为ycm,则y 与x 之间的关系式是 ( ) A .y=12-4x B .y=4x-12 C .y=12-x D .以上都不对10..在某次试验中,测得两个变量m 和之间的4组对应数据如下表:则m 与v 之间的关系最接近于下列各关系式中的 ( )A. v=2m-2B. v=m 2-1 C. v=3m-3 D. v=m+111.在一定条件下,若物体运动的路程s(米)与时间t (秒)的关系式为s=3t 2+2t+1,则当t=4秒时,该物体所经过的路程为 ( ) A .28米 B .48米 C .57米 D .88米12.某公司制作毕业纪念册的收费如下:设计费与加工费共1000元,另外每册收取材料费4元,则总收费y 与制作纪念册的册数x 的关系式为 .13.同一温度的华氏度数y(°F)与摄氏度数x(℃)之间的关系式是y=59x+32.若某一温度的摄氏度数值与华氏度数值恰好相等,则此温度的摄氏度数为________℃.14.十一期间,小明和父母一起开车到距家200千米的景点旅游.出发前,汽车油箱内储油45升,当行驶150千米时,发现油箱剩余油量为30升.(假设行驶过程中汽车的耗油量是均匀的)(1)求该车平均每千米的耗油量,并写出剩余油量Q(升)与行驶路程x(于米)的关系式;(2)当x=280千米时,求剩余油量Q的值.15.将长为40cm、宽为15cm的长方形白纸按图所示的方法黏合起来,黏合部分宽为5cm(1)根据上图,将表格补充完整.(2)设x张白纸粘合后的总长度为ycm,则y与x之间的关系式是什么?(3)你认为多少张白纸粘合起来总长度可能为2018cm吗?为什么?知识点4 用图象表示的变量间关系16.夏天,一杯开水放在桌子土,杯中水的温度T(℃)随时间t变化的关系的大致图象是()17.二十四节气是中国古代劳动人民长期经验积累的结品,它与白昼时长密切相关.当春分秋分时,昼夜时长大致相等;当夏至时,白昼时长最长.如图是一年中部分节气所对应的白昼时长示意图.在下列选项中,白昼时长超过13小时的节气是 ( )A. 惊蛰B. 小满C. 秋分D. 大寒18.如图,图象(折线OEFPMN )描述了某汽车在行驶过程中速度与时间的函数关系,下列说法中错误的是( )A .第3分时汽车的速度是40千米/时B .第12分时汽车的速度是0千米/时C .从第3分到第6分,汽车行驶了120千米D .从第9分到第12分,汽车的速度从60千米/时减少到0千米/时19.如图所示的函数图象反映的过程是:小明从家去书店,又去学校取封信后马上回家,其中x 表示时间,y 表示小明离他家的距离,则小明从学校回家的平均速度为______千米∕小时.20. 甲骑自行车,乙乘公交车,从同一地点出发沿相同路线前往某校参加绘画比赛,图中l 甲、l 乙分别表示甲、乙两人前往目的地所行使的路程s (千米)随时间t (分)变化的函数图象,则每分钟乙比甲多21.如图所示,是某港口从上午8时到下午8时的水深情况,据图回答下列问题: (1)在8时到20时这段时间内,大约什么时间港口的水位最深,深度是多少米? (2)在8时到20时这段时间内,大约什么时间港口的水位最浅,深度是多少米? (3)在这段时间里,水深是如何变化的?第20题图第21题图。
七年级数学专项习题——变量之间的关系(附参考答案)

1. 已知AB ∥CD ,现将一个含30°角的直角三角尺EFG 七年级数学专项习题——变量之间的关系(附参考答案)按如图方式放置,其中顶点F 、G 分别落在直线AB ,CD 上,GE 交AB 于点H ,若∠EHB =50°,则∠AFG 的度数为( )A .100°B .110°C .115°D .120°2. 如图,已知AB ∥DF ,DE 和AC 分别平分∠CDF 和∠BAE ,若∠DEA =46°,∠ACD =56°,则∠CDF 的度数为( )A .22°B .33°C .44°D .55°3. 如图,将长方形ABCD 沿EF 翻折,再沿ED 翻折,若∠FEA ″=105°,则∠CFE = 度.4. 已知∠1的两边分别平行于∠2的两边,若∠1=40°,则∠2的度数为 .5. 如图,将一副三角板的直角顶点重合,摆放在桌面上,当∠AOC= 时,AB所在直线与CD所在直线互相垂直.6. 已知:如图△ABC中,AC⊥BC,点D、E在AB边上,点F在AC边上,DG⊥BC于G,∠1=∠2.求证:EF∥CD.(请在下面空白处写出完整证明过程)∴∠AHG =∠EHB =50°,∵AB ∥CD ,∴∠EGD =∠AHG =50°,∵∠FGE =60°,∴∠FGD =∠FGE +∠EGD =60°+50°=110°,∵AB ∥CD ,∴∠AFG =∠FGD =110°1.解:∵GE 交AB 于点H 参考答案,.故选:B .2.解:过点C 作CN ∥AB ,过点E 作EM ∥AB ,∵FD ∥AB ,CN ∥AB ,EM ∥AB ,∴AB ∥CN ∥EM ∥FD∴∠BAC =∠NCA ,∠NCD =∠FDC ,∠FDE =∠DEM ,∠MEA =∠EAB . ∴∠DEA =∠FDE +∠EAB ,∠ACD =∠BAC +∠FDC .又∵DE 和AC 分别平分∠CDF 和∠BAE ,∴∠FDC =2∠FDE =2∠EDC ,∠BAE =2∠BAC =2∠EAC , ∴56°=∠BAC +2∠FDE ①,46°=∠FDE +2∠BAC ②.①+②,得3(∠BAC +∠FDE )=102°,∴∠BAC +∠FDE =34°③.①-③,得∠FDE =22°.∴∠CDF =2∠FDE =44°.故选:C .3.解:由四边形ABFE 沿EF 折叠得四边形A ′B ′FE ,∴∠A ′EF =∠AEF .∵∠A ′EF =∠A ′ED +∠DEF ,∠AEF =180°-∠DEF .∴∠A ′ED +∠DEF =180°-∠DEF .由四边形A ′B ′ME 沿AD 折叠得四边形A ″B ″ME ,∴∠A ′ED =∠A ″ED .∵∠A ″ED =∠A ″EF +∠DEF =105°+∠DEF ,∴∠A ′ED =105°+∠DEF .∴105°+∠DEF +∠DEF =180°-∠DEF .∴∠DEF =25°.∵AD ∥BC ,∴∠DEF =∠EFB =25°.∴∠CFE =180°-∠EFB =180°-25°=155°.故答案为:155.4. 解:①若∠1与∠2位置如图1所示:∵AB ∥DE ,∴∠1=∠3, 又∵DC ∥EF ,∴∠2=∠3,∴∠1=∠2,又∵∠1=40°,∴∠②若∠1与∠2位置如图2所示:∵AB∥DE,∴∠1=∠3,又∵DC∥EF,∴∠2+∠3=180°,∴∠2+∠1=180°,又∵∠1=40°,∴∠2=180°-∠1=180°-40°=140°,综合所述:∠2的度数为40°或140°,故答案为:40°或140°.5.6. 证明:,,( 已知 ),( 垂直的定义 ),( 同位角相等,两直线平行)两直线平行,内错角相等),( 已知 ),( 等量代换 )同位角相等,两直线平行)。
新北师大版七年级数学下册第三章《变量之间的关系》单元复习题含答案解析 (39)

一、选择题(共10题)1.已知A,B 两地相距3千米,小黄从A地到B地,平均速度为4千米/小时,若用x(小时)表示行走的时间,y(千米)表示余下的路程,则y关于x的函数解析式是( ))A.y=4x(x≥0)B.y=4x−3(x≥34)C.y=3−4x(x≥0)D.y=3−4x(0≤x≤342.如图所示的图象(折线ABCDE)描述了一辆汽车在某一直线上的行驶过程中,汽车离出发地的距离s(千米)与行驶时间t(小时)之间的函数关系,根据图中提供的信息,给出下列说法:①汽车共行驶了140千米;②汽车在行驶途中停留了1小时;③汽车在整个行驶过程中的平均速度为30千米/小时;④汽车出发后6小时至9小时之间行驶的速度在逐渐减小.其中正确的说法共有( )A.1个B.2个C.3个D.4个3.假设汽车匀速行驶在高速公路上,那么在下列各量中,变量的个数是( )①行驶速度;②行驶时间;③行驶路程;④汽车油箱中的剩余油量.A.1个B.2个C.3个D.4个4.如图,大小两个正方形在同一水平线上,小正方形从图①的位置开始,匀速向右平移,到图③的位置停止运动.如果设运动时间为x,大小正方形重叠部分的面积为y,则下列图象中,能表示y与x的函数关系的图象大致是( )A.B.C.D.5.下列变量间的关系:①正方形的周长与边长;②圆的面积与半径;③ y=±√x;④商场中某种商品的单价为a元,销售总额与销售数量.其中是函数关系的是( )A.①②③B.①②④C.①③④D.②③④6.小红到文具商店买彩笔,每打彩笔12支,售价18元.那么买彩笔所需的钱数y(元)与购买彩笔的支数x(支)之间的关系式为( )A.y=23x B.y=32x C.y=12x D.y=18x7.在20km的环湖越野赛中,甲乙两选手的行程y(单位:km)随时间x(单位:h)变化的图象如图所示,根据图中提供的信息,下列说法中错误的有( )①出发后1小时,两人行程均为10km;②出发后1.5小时,甲的行程比乙多2km;③两人相遇前,甲的速度小于乙的速度;④甲比乙先到达终点.A.1个B.2个C.3个D.4个8.第一次“龟兔赛跑”,兔子因为在途中睡觉而输掉比赛,很不服气,决定与乌龟再比一次,并且骄傲地说,这次我一定不睡觉,让乌龟先跑一段距离我再去追都可以赢.结果兔子又一次输掉了比赛,则下列函数图象可以体现这次比赛过程的是( )A.B.C.D.9.下列各曲线中不能表示y是x的函数是( )A.B.C.D.10.在平面直角坐标系中,⊙O的圆心为原点,点A为⊙O上一点,过点A作AB⊥x轴于B,作AC⊥y轴于C,连接BC,取BC的中点P.当点A沿圆周运动时,点P也随之运动.当点A运动到Aʹ的位置时,点P随之运动到点Pʹ的位置.用虚线画出点P运动的路线,下列图中,正确的是( )A.B.C.D.二、填空题(共7题)11.表示函数的方法一般有:、和.12.某人购进一批水果到集贸市场零售,已知卖出的水果数量x与售价y的关系如表所示:数量x/kg12345则y与x之间的表达式为,8kg 售价y/元 1.5+0.23+0.4 4.5+0.66+0.87.5+1水果的售价为元.13.某研究所发布了《2019年中国城市综合实力排行榜》,其中部分城市的综合实力、GDP和教育科研与医疗的排名情况如图所示,综合实力排名全国第5名的城市,教育科研与医疗排名全国第名.14.多边形内角和y与边数n之间的关系式是y=(n−2)×180∘.这个关系式中,变量是,常量是.15.某地扶贫人员甲从办公室出发,骑车匀速前往A村走访群众,出发几分钟后,扶贫人员乙发现甲的手机落在办公室,无法联系,于是骑车沿相同路线匀速去追甲.乙刚岀发2分钟,甲也发现自己手机落在办公室,立刻原路原速骑车返回办公室,2分钟后甲遇到乙,乙把手机给甲后立即原路原速返回办公室,甲继续原路原速赶往A村.甲、乙两人相距的路程y(米)与甲出发的时间x(分)之间的关系如图所示(乙给甲手机的时间忽略不计).有下列三个说法:①甲出发10分钟后与乙相遇;②甲的速度是400米/分;③乙返回办公室用时4分钟.其中所有正确说法的序号是.16.甲、乙两人沿同一条直路走,如果两人分别从这条直路上的A,B两处同时出发,都以不变的速度相向而行,图1是甲离开A处后行走的路程y(单位:m)与行走时间x(单位:min)的函数图象,图2是甲、乙两人之间的距离y(单位:m)与甲行走时间x(单位:min)的函数图象,则a−b=.17. 如表反映的是高速路上匀速行驶的汽车在行驶过程中时间 x (时)与油箱的余油量 y (升)之间的关系,这种关系可以表示为 .行驶时间x(时)0123⋯余油量y(升)60504030⋯三、解答题(共8题)18. 小明早晨从家骑车到学校,先上坡后下坡,行程情况如图所示.若返回时,上、下坡的速度不变,则小明从学校骑车回家用的时间是多少?19. 已知A ,B 两地相距 30 km ,甲、乙两人从两地出发相向而行,甲先出发.如图所示两人离A 地的路程 S (km )与时间 t (h )的关系,请结合图象解答下列问题:(1) 分别求甲乙两人的速度;(2) 甲出发多少小时两人恰好相距 10 km ?20. 甲、乙两人同时从A 地前往相距 5 千米的B 地.甲骑自行车,途中修车耽误了 20 分钟,甲行驶的路程 s (千米)关于时间 t (分钟)的函数图象如图所示;乙慢跑所行的路程 s (千米)关于时间 t (分钟)的函数解析式为 s =112t (0≤t ≤60).(1) 在图中画出乙慢跑所行的路程关于时间的函数图象;(2) 乙慢跑的速度是每分钟千米;(3) 甲修车后行驶的速度是每分钟千米;(4) 甲、乙两人在出发后,中途分钟时相遇.21.已知某种蔬菜质量x(kg)和单价y(元)之间的关系如下表:蔬菜质量x/kg0<x≤2020<x≤4040<x≤60单价y/元 1.4 1.2 1.0你能将其中某个变量看成另一个变量的函数吗?22.点燃一根蜡烛后,蜡烛的高度ℎ(厘米)与燃烧时间t(分)之间的关系如下表:t/分0246810ℎ/厘米302928272625(1) 蜡烛未点燃前的长度是多少厘米?(2) 写出蜡烛的高度ℎ(厘米)与燃烧时间t(分)之间的关系式.(3) 求这根蜡烛能燃烧多长时间.23.小明骑自行车去学校,最初以某一速度匀速行驶,中途自行车发生故障,停下来修车耽误了几分钟,为了按时到校,他加快了速度,仍保持匀速行驶,结果准时到校,到校后,小明画了自行车行进路程s(km)与行进时间t(h)的图象,如图所示,请回答:(1) 这个图象反映了哪两个变量之间的关系?(2) 根据图象填表;时间t(h)00.20.30.4路程s(km)(3) 路程s可以看成时间t的函数吗?24.已知A=(4x4−x2)÷x2,B=(2x+5)(2x−5)+1.(1) 求A和B;(2) 若变量y满足y−A=B,求y与x的关系式;(3) 在(2)的条件下,当y=7时,求8x2+(8x2−y)2−30的值.25.嘉嘉将长为20cm,宽为10cm的长方形白纸,按图所示方法粘合起来,粘合部分(图上阴影部分)的宽为3cm.(1) 求5张白纸粘合后的长度.(2) 设x张白纸粘合后总长为y cm.写出y与x之间的函数关系式.(3) 求当x=20时的y值,并说明它在题目中的实际意义.答案一、选择题(共10题)1. 【答案】D【解析】根据题意得走完全程需要的时间为3÷4=34(小时),∴y=3−4x(0≤x≤34).故选D.【知识点】解析式法2. 【答案】A【知识点】用函数图象表示实际问题中的函数关系3. 【答案】C【知识点】常量、变量4. 【答案】C【解析】依题意,阴影部分的面积函数关系式是分段函数,面积由“增加→不变→减少”变化.【知识点】用函数图象表示实际问题中的函数关系5. 【答案】B【知识点】函数的概念6. 【答案】B【解析】由题意可知,彩笔的单价=1812=32(元),∴买彩笔所需要的钱y与购买彩笔的支数x之间的关系为:y=32x.【知识点】解析式法7. 【答案】B【解析】根据图象可知:两个图象交于(1,10),因此①出发后1小时,两人行程均为10km,①是正确的;甲的速度为:10千米/小时,甲路程为10×1.5=15千米,乙在0.5∼1.5时之间函数关系式为y=4x+6,当x=1.5小时,乙的路程为y=12千米,甲的行程比乙多3km而不是多2km,因此②是错误的;乙的速度0.5小时之前是16千米/时,0.5∼1.5时之间是4千米/时,而甲的速度是10千米/时,因此“③两人相遇前,甲的速度小于乙的速度是错误的,”④甲比乙先到达终点”是正确的.因此:错误的结论有2个.【知识点】用函数图象表示实际问题中的函数关系8. 【答案】B【解析】由兔子比乌龟晚到终点,排除选项A,C,D.【知识点】用函数图象表示实际问题中的函数关系9. 【答案】B【知识点】函数的概念10. 【答案】B【解析】连接OP,OPʹ,由题意可知BC=BʹCʹ=半径,则OP=OPʹ=12BC,在点A的运动过程中,OP的长不变,∴点P运动的路线是以点O为圆心,OP长为半径的圆的一段弧.【知识点】图像法二、填空题(共7题)11. 【答案】列表法;关系式法;图象法【知识点】列表法、解析式法、图像法12. 【答案】y=1.7x;13.6【知识点】解析式法13. 【答案】3【解析】由题中第一个图可得综合实力排名全国第5名的城市的GDP排名为第9,由题中第二个图可得GDP排名为第9的城市的教育科研与医疗的排名为第3名.【知识点】用函数图象表示实际问题中的函数关系14. 【答案】y,n;−2,180°【知识点】常量、变量15. 【答案】①②③【知识点】用函数图象表示实际问题中的函数关系16. 【答案】12【解析】从图1可见甲的速度为1202=60m/min,从图2可以看出,当x=67时,二人相遇,即:(60+V乙)×67=120,解得:乙的速度V乙=80m/min,∴乙的速度快,从图2可看出乙用了b分钟走完全程,甲用了a分钟走完全程,a−b=12060−12080=12.【知识点】用函数图象表示实际问题中的函数关系17. 【答案】y=60−10x【解析】由表格数据可知,行驶时间每延长1小时,剩余油量减少10升,即耗油量为10升/时,所以y=60−10x.【知识点】解析式法三、解答题(共8题)18. 【答案】由图象可知小明上坡速度为 3.618=0.2(千米/分),下坡速度为9.6−3.630−18=0.5(千米/分),返回时,先走上坡路,上坡时间为9.6−3.60.2=30(分),后走下坡路,下坡时间为 3.60.5=7.2(分),即所用总时间为30+7.2=37.2(分).【知识点】用函数图象表示实际问题中的函数关系19. 【答案】(1) 甲的速度为15km/h,乙的速度为10km/h.(2) 设甲出发t小时两人恰好相距10km.根据题意,得15t+10(t−0.5)=20或15t+10(t−0.5)=40.解得t=1(h)或t=1.8(h).【知识点】用函数图象表示实际问题中的函数关系20. 【答案】(1) 略(2) 112(3) 320(4) 24【知识点】用函数图象表示实际问题中的函数关系21. 【答案】可以将y看成x的函数.【知识点】函数的概念22. 【答案】(1) 当t=0时,ℎ=30.故蜡烛未点燃前的长度是30厘米.(2) 由表格可知,蜡烛每燃烧2分钟,长度减少1厘米,即每燃烧1分钟,长度减少12厘米,∴y=30−12t,其中0≤t≤60.(3) 令y=0得t=60,故可燃烧60分钟.【知识点】其他实际问题、用函数图象表示实际问题中的函数关系23. 【答案】(1) 这个图象反映了变量s与t的关系.(2) 0;2;2;4(3) 路程s可以看成时间t的函数.【知识点】用函数图象表示实际问题中的函数关系、函数的概念、列表法24. 【答案】(1) A=(4x4−x2)÷x2 =4x2−1.B=(2x+5)(2x−5)+1=4x2−25+1=4x2−24;(2) 由y−A=B,得y=A+B=4x2−1+4x2−24=8x2−25;(3) 把y=7代入(2)中关系式,得8x2−25=7,即x2=4,则原式=8×4+(8×4−7)2−30=32+625−30=627.【知识点】多项式除以单项式、解析式法、简单的代数式求值25. 【答案】(1) 由题意得,20×5−3×(5−1)=88,则5张白纸粘合后的长度是88cm.(2) y=20x−3(x−1),即y=17x+3.(3) 当x=20时,y=17×20+3=343,答:实际意义是:20张白纸粘合后的长度是343cm.【知识点】解析式法。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
专题三:变量之间的关系基础知识回顾:1. 表示两个变量之间关系的方法有( )、( )、( ). 2.图象法表示两个变量之间关系的特点是( )3.用图象法表示两个变量之间关系时,通常用水平方向的数轴(横轴)上的点表示( ),用竖直方向的数轴(纵轴)上的点表示( ).一、速度随时间的变化1、 汽车速度与行驶时间之间的关系可以用图象来表示,下图中A 、B 、C 、D 四个图象,可以分别用一句话来描述:(1)在某段时间里,速度先越来越快,接着越来越慢。
( ) (2)在某段时间里,汽车速度始终保持不变。
( ) (3)在某段时间里,汽车速度越来越快。
( ) (4)在某段时间里,汽车速度越来越慢。
( )2、描述一名跳水运动员从起跳到落水这一运动过程中,速度v 与时间t 之间关系的图象大致是( )3、明骑车上学,一开始以某一速度行进,途中车子发生故障,只好停下修车,车修好后,因怕耽误时间,于是加快了车速.如用s 表示明离家的距离,t 为时间.在下面给出的表示s 与t 的关系图6—41中,符合上述情况的是 ( )OOVtOVOVtVt时间速度 Ao速度D速度时间C速度 时间Booo4、一辆轿车在公路上行驶,不时遇到各种情况,速度随之改变,先加速,再匀速又遇到情况而减速,过后再加速然后匀速,下公路、上小路,到达目的地.图6—43哪幅图象可近似描述上面情况 ( )5、“龟兔赛跑”讲述了这样的故事:领先的兔子看着缓慢爬行的乌龟,骄傲起来,睡了一觉。
当它醒来时,发现乌龟快到终点了,于是急忙追赶,但为时已晚,乌龟还是先到达了终点…….用S1、S2分别表示乌龟和兔子所行的路程,t为时间,则下列图象中与故事情节相吻合的是()6、星期天晚饭后,小红从家里出发去散步,下图描述了她散步过程中离家的距离s(米)与散步所用的时间t(分)之间的关系,依据图象下面描述符合小红散步情景的是()A.从家出发,到了一个公共阅读报栏,看了一会儿报,就回家了.B.从家出发,到了一个公共阅报栏,看了一会儿报,继续向前走了一段后,然后回家了.C.从家里出发,一直散步(没有停留),然后回家了D.从家里出发,散了一会儿步,就找同学去了,18分钟后才开始返回.7、A、B两地相距500千米,一辆汽车以50千米/时的速度由A地驶向B地.汽车距B地的距离y(千米)与行驶时间t(之间)的关系式为 .在这个变化过程中,自变量是,因变量是 .时间/时0 4 8 12 16 20 24stS1S2AstBS1S2stS1S2CstS2S1D超警戒水位/米 +0.2 +0.25 +0.35 +0.5 +0.7 +0.9 +1.0⑴时间从0时变化到24时,超警戒水位从 上升到 ; ⑵借助表格可知,时间从 到 水位上升最快9、某机动车辆出发前油箱中有油42升,行驶若干小时后,在途中加油站加油若干.油箱中余油量Q(升)与行驶时间t(时) 之间的关系如图,请根据图像填空:⑴机动车辆行驶了 小时后加油。
中途加油 升。
⑵加油后油箱中的油最多可行驶 小时。
⑶如果加油站距目的地还有230公里,机动车每小时走40公里,油箱中的油能否使机动车到达目的地? 答: 。
10、.声音在空气中传播的速度y (米/秒)(简称音速)与气温x (℃)之间的关系如下:气温(x ℃) 0 5 10 15 20 音速y (米/秒)331334337340343从表中可知音速随温度的升高而__________.在气温为20 ℃的一天召开运动会,某人看到发令枪的烟0.2秒后,听到了枪声,则由此可知,这个人距发令地点__________米。
11、如图6-31,表示一骑自行车者与一骑摩托车者沿相同路线由甲地到乙地行驶过程的图象,两地间的距离是100千米,请根据图象回答或解决下面的问题.(1)谁出发的较早?早多长时间?谁到达乙地早?早到多长时间?(2)两人在途中行驶的速度分别是多少?· · · · · · ·· · · · · · · 1 2 3 5 6 7 8 6 18 24 30 12 Q/升· · · · 3642(3)指出在什么时间段两车均行驶在途中;在这段时间,①自行车行驶在摩托车前面;②自行车与摩托车相遇;③自行车行驶在摩托车后面?二、温度与时间的关系1、夏天,一杯热水越来越凉,图中可表示这杯水的水温T 与时间t 的函数关系的是( )2、气温与海拔高度有关,一般情况下,每升高1 km,气温下降6℃.某山地面温度为28℃,请写出气温t (℃)与高度h (km)之间的关系式:________.3、.下面是某人某一天正常体温的变化图(如图7).)(1)大约什么时间其体温最高?最高体温是多少?(2)大约什么时间其体温最低?最低体温是多少?(3)在什么时间其体温在降低? (4)在什么时间其体温在升高?(5)A 、B 两点分别表示什么?(6)从大体上说说体温在24小时的变化情况.4、大山在一天中的体温变化情况如图6-44:(1)大约在_______时,大山的体温最高,这时最高体温是_________.(2)大约在_______时,大山的体温最底,最低体温是__________.(3)大山的体温在升高的时段是_________;(4)大山的体温在降低的时段是_________.三、高度(深度)与时间的变化1、如图是某蓄水池的横断面示意图,分深水区和浅水区,如果这个蓄水池以固定的流量注水,下面哪个图象能大致表示水的最大深度h和时间t之间的关系?( )A B C D2、如下图:向放在水槽底部的烧杯注水(流量一定)注满烧杯后,继续注水,直至注满水槽,水槽中水面上升高度与注水时间之间的关系大致是下列图象中的()第10题图3、气温随高度而变化的过程中,________是自变量,_______因变量4、一圆锥的底面半径是5cm,当圆锥的高由2cm变到10cm时,圆锥的体积由________3cm变到_________3cm.5、弹簧的长度与所挂物体的质量的关系如下图所示,由图可知不挂重物时弹簧的长度为6、.在弹性限度,某弹簧伸长的总长度y(cm)与所挂重物质量x(g)之间的关系如下表:重物质量x(g) 0 1 2 3 4 5弹簧伸长的总长度y(cm)8 8+0.2 8+0.4 8+0.6 8+0.8 8+1.0(1)上表反映了________和________两个量之间的关系;(2)关于y与x之间的关系式是________。
7、△ABC的底边BC=8 cm,当BC边上的高线从小到大变化时,△ABC的面积也随之变化.(1)在这个变化过程中,自变量和因变量各是什么?(2)△ABC的面积y(cm2)与高线x(cm)的关系式是什么?(3)用表格表示当x由5 cm变到10 cm时(每次增加1cm),y的相应值.(4)当x每增加1 cm时,y如何变化?四、数学与生活1、我国从1949年到1999年的人口统计数据如下:(精确到0.01亿):thA0thB0thC0thD(1)如果用x 表示时间,y 表示我国人口总数,那么随着x 的变化,y 的变化趋势是什么?(2)X 和y 哪个是自变量?哪个是因变量?(3)从1949年起,时间每向后推移10年,我国人口是怎样的变化?(4)你能根据此表格预测2009年时我国人口将会是多少?2、研究表明,当钾肥和磷肥的施用量一定时,土豆的产量与氮肥的施用量有如下关系: (1)上表反映了哪两个变量之间的关系? 哪个是自变量?哪个是因变量?(2)当氮肥的施用量是101千克/公顷时,土豆的产量是多少? 如果不施氮肥呢?(3)根据表格中的数据,你认为氮肥的施用量是多少时比较适宜?说说你的理由(4)粗略说一说氮肥的施用量对土豆产量的影响。
3、一年中,每天日照(从日出到日落)的时间是不同的,下图表示了某地区从1998年1月1日到1998年12月26日的日照时间.⑴右图描述是哪两个变量之间的关系?其中自变量是什么?因变量是什么?⑵哪天的日照时间最短?这一天的日照时间约是多少?⑶哪天的日照时间最长?这一天的日照时间约是多少?⑷大约在什么时间段,日照时间在增加?在什么时间段,日照时间在减少?⑸说一说该地一年中日照时间是怎样随时间而变化的.4、某人用新充值的50元IC卡打长途,按通话时间3分钟收2.4元,超过1分钟加收一元钱的方式缴纳话费。
若通话时间为t分钟(t大于等于3分钟),那么费用w可以表示为;当通话时间达到10分钟时,卡中所剩话费从50元减少到元5、在弹簧限度,弹簧挂上物体后弹簧的长度与所挂物体的质量之间的关系如下表:⑵如果用x表示弹性限度物体的质量,用y表示弹簧的长度,那么随着x的变化,y的变化趋势如何?写出y与x的关系式.⑶如果此时弹簧最大挂重量为25千克,你能预测当挂重为14千克时,弹簧的长度是多少?5、一种豆子每千克售2元,豆子总的售价y(元)与所售豆子的质量x(kg)之间的关系如下表.(1)在这个表中反映哪两个变量之间的关系?哪个是自变量?哪个是因变量?(2)当豆子卖出5 kg时,总价是多少?(3)如果用x表示豆子卖出的质量,y表示总价,按表中给出的关系,用一个式子把x和y之间的关系表示出来。
(4)当豆子卖出20 kg时,总价是多少?五:中考真题1、(2013•)2013年“中国好声音”全国巡演站在奥体中心举行.童童从家出发前往观看,先匀速步行至轻轨车站,等了一会儿,童童搭乘轻轨至奥体中心观看演出,演出结束后,童童搭乘邻居叔叔的车顺利回到家.其中x表示童童从家出发后所用时间,y表示童童离家的距离.下面能反映y与x的函数关系的大致图象是()A. B.C.D.2、(2013•湘西州)小芳的爷爷每天坚持体育锻炼,某天他慢步行走到离家较远的公园,打了一会儿太极拳,然后沿原路跑步到家里,下面能够反映当天小芳爷爷离家的距离y(米)与时间x(分钟)之间的关系的大致图象是()A. B.C.D.3、(2013•东营)若定义:f(a,b)=(-a,b),g(m,n)=(m,-n),例如f(1,2)=(-1,2),g(-4,-5)=(-4,5),则g(f(2,-3))=()A.(2,-3) B.(-2,3) C.(2,3) D.(-2,-3)4、(2013•)甲、乙两人在一次百米赛跑中,路程s(米)与赛跑时间t(秒)的关系如图所示,则下列说确的是()A.甲、乙两人的速度相同 B.甲先到达终点C.乙用的时间短 D.乙比甲跑的路程多5、(2013•潍坊)用固定的速度如图所示形状的杯子里注水,则能表示杯子里水面的高度和注水时间的关系的大致图象是()A. B. C. D.6、(2013•)如图是我市几个旅游景点的大致位置示意图,如果用(0,0)表示新宁莨山的位置,用(1,5)表示隆回花瑶的位置,那么城市南山的位置可以表示为()A.(2,1) B.(0,1)C.(-2,-1)D.(-2,1)7、(2013•)均匀地向一个瓶子注水,最后把瓶子注满.在注水过程中,水面高度h随时间t的变化规律如图所示,则这个瓶子的形状是下列的()A. B. C. D.8、(2013•乌鲁木齐)某仓库调拨一批物资,调进物资共用8小时,调进物资4小时后同时开始调出物资(调进与调出的速度保持不变).该仓库库存物资m(吨)与时间t(小时)之间的函数关系如图所示.则这批物资从开始调进到全部调出所需要的时间是()A.8.4小时 B.8.6小时 C.8.8小时 D.9小时(第8题图)9、(2013•黄冈)一列快车从甲地驶往乙地,一列特快车从乙地驶往甲地,快车的速度为100千米/小时,特快车的速度为150千米/小时,甲乙两地之间的距离为1000千米,两车同时出发,则图中折线大致表示两车之间的距离y(千米)与快车行驶时间(小时)之间的函数图象是()A. B.C. D.10、(2013•)如图是我国古代计时器“漏壶”的示意图,在壶盛一定量的水,水从壶底的小孔漏出.壶壁画有刻度,人们根据壶中水面的位置计时,用x表示时间,y表示壶底到水面的高度,则y与x的函数关系式的图象是()A. B.C. D.11、(2013•)如图,是一对变量满足的函数关系的图象,有下列3个不同的问题情境:①小明骑车以400米/分的速度匀速骑了5分,在原地休息了4分,然后以500米/分的速度匀速骑回出发地,设时间为x分,离出发地的距离为y千米;②有一个容积为6升的开口空桶,小亮以1.2升/分的速度匀速向这个空桶注水,注5分后停止,等4分后,再以2升/分的速度匀速倒空桶中的水,设时间为x分,桶的水量为y升;③矩形ABCD中,AB=4,BC=3,动点P从点A出发,依次沿对角线AC、边CD、边DA运动至点A停止,设点P的运动路程为x,当点P与点A不重合时,y=S△ABP;当点P与点A重合时,y=0.其中,符合图中所示函数关系的问题情境的个数为()A.0 B.1 C.2 D.312、(2013•)某书定价25元,如果一次购买20本以上,超过20本的部分打八折,试写出付款金额y(单位:元)与购书数量x(单位:本)之间的函数关系.13、(2013•)“龟兔首次赛跑”之后,输了比赛的兔子没有气馁,总结反思后,和乌龟约定再赛一场.图中的函数图象刻画了“龟兔再次赛跑”的故事(x表示乌龟从起点出发所行的时间,y1表示乌龟所行的路程,y2表示兔子所行的路程).有下列说法:①“龟兔再次赛跑”的路程为1000米;②兔子和乌龟同时从起点出发;③乌龟在途中休息了10分钟;④兔子在途中750米处追上乌龟.其中正确的说法是.(把你认为正确说法的序号都填上)变量之间的关系练习题一.选择题1.老师骑车外出办事,离校不久便接到学校到他返校的紧急,老师急忙赶回学校.下面四个图象中,描述老师与学校距离的图象是()2.某同学从学校走回家,在路上遇到两个同学,一块儿去文化宫玩了会儿,然后回家,下列象能刻画这位同学所剩路程与时间的变化关系的是()3.地表以下的岩层温度y随着所处深度x的变化而变化,在某个地点y与x的关系可以由公式2035+=xy来表示,则y随x的增大而()A、增大B、减小C、不变D、以上答案都不对4.在利用太阳能热水器来加热水的过程中,热水器里的水温随所晒时间的长短而变化,这个问题中因变量是()A.太强弱B.水的温度C.所晒时间D.热水器5.长方形的周长为24厘米,其中一边为x(其中0>x),面积为y平方厘米,则这样的长方形中y与x 的关系可以写为()A、2xy= B、()212xy-= C、()xxy⋅-=12 D、()xy-=1226.已知△ABC的底边BC上的高为8cm,当它的底边BC从16cm变化到5cm时,△ABC的面积() A、从20cm2变化到64cm2 B、从64cm2变化到20cm2C、从128cm2变化到40cm2D、从40cm2变化到128cm27.小明骑自行车上学,开始以正常速度匀速行驶,但行至中途自行车出了故障,只好停下来修车。