两自由度圆柱体的涡激振动
两向自由度低质量比圆柱体涡激振动的数值计算

第 1 卷第 1 1 期
20 0 7年 2月
文 章 编号 :10 — 2 4 2 0 ) 10 0 - 9 07 7 9 (0 70 -0 10
船舶 力学
J un lo hp Me h nc o r a fS i c a is
V0 . 1 11 No 1 . Fe b.2 0 07
t a r he p pe . Ke y wor :v re —i d c d v b a in o ma s r t ;CFD;sr a wie a d ta v re mo in ds o t x n u e i r t ;l w s — a i o o te m- s n r ns e s t o
大 的横 向 振 幅 。数 值 计 算 结 果 与 最 近 物 理 实 验 结 果进 行 了详 细 的 比较 和讨 论 。
关键 词 :涡激 振 动 ; 质 量 比 ; 算 流体 动力 学 ;流 向和 横 向 运 动 低 计
中图 分类 号 : 3 7 0 2 文献标识码 : A
Nu e i a i u a i n o m rc lsm l to fVⅣ
( Sa e aoaoyo ca nier g S aga J oT n nvri , hn hi 0 0 0 C ia 1 teK yL b r r f enE gnei , h nhi i ogU i sy S a ga 2 0 3 , hn ; t t O n a e t 2C iaS i SinicR sac etrWu i 10 2 C ia hn h cet eerhC ne, x 2 4 8 , hn) p i f
t a n e r e o r e o Nu r a e u s a e c mp r d wi e e t e p r n ’ e u s i ea li h n o e d g e ffe d m. me i l r s h r o a e t r c n x e i c h me t S r s h n d t i作用 会 对结 构 产生 复杂 的振 动 , 一定 条件 下 还能 使 结构 产 生严 重破 坏 , 在 涡激 振动 就是这样 一 种常 见 的流 固耦合 现 象 。诸如 在桥 梁和 烟 囱 、 行器 表 面 、 动 机 等结 构 中都能 观测 飞 发 到涡激 振 动现象 。在 海洋工 程 中 , 例如 海洋 缆索 、 底输 运石 油 的导 管 、 泊 结 构物 等 , 海 锚 涡激 振动 显得 尤 为重要 。随着 石油 开采 朝深 海发 展 , 与之相 关 的课 题 日益受 到人们 的重视 。由流体 引起 输油 立管 的
双圆柱尾流致涡激振动的质量比效应及其机理

双圆柱尾流致涡激振动的质量比效应及其机理摘要:本文针对双圆柱尾流致涡激振动的质量比效应及其机理进行了研究。
通过数值模拟和实验测试,分析了不同质量比下双圆柱振动的特性,并探讨了其机理。
研究结果表明,质量比对双圆柱尾流致涡激振动具有显著影响,能够调控振动频率和幅值。
通过流场特性和压力分布分析,揭示了不同质量比条件下振动特性的物理机理。
本研究对于理解和控制双圆柱尾流致涡激振动具有重要意义。
引言在自然界和工程领域中,双圆柱尾流致涡激振动是一个重要的研究课题。
双圆柱结构在桥梁、建筑、海洋平台等工程中广泛存在,而其受流体作用引起的振动问题一直是工程实践中的重要难题。
受到流体作用的双圆柱结构易产生涡致激振动,导致结构疲劳破坏甚至失效。
对于双圆柱尾流致涡激振动的研究不仅有助于深入了解流体-结构相互作用的机理,还能够为相关工程实践提供重要的指导。
质量比作为影响结构振动特性的重要参数,对于双圆柱尾流致涡激振动的影响被广泛关注。
许多研究表明,质量比的改变能够显著影响双圆柱结构的振动频率和幅值,具有重要的工程意义。
对于质量比对双圆柱尾流致涡激振动的影响机理仍存在争议,有待进一步研究。
研究方法1. 数值模拟采用计算流体力学(CFD)方法,利用Fluent软件建立双圆柱几何模型,通过数值模拟分析不同质量比条件下流场特性和压力分布。
模拟采用RANS(Reynolds平均Navier-Stokes方程)求解方法,考虑不可压缩流体和K-ε湍流模型。
将双圆柱置于流体中,设定不同质量比的工况,模拟流体对双圆柱的作用,得到其流场特性和压力分布。
2. 实验测试在实验室中建立双圆柱振动测试系统,通过改变振动系统的质量比,控制双圆柱的振动特性。
利用加速度传感器和压力传感器对双圆柱的振动和流场压力进行测试,得到不同质量比条件下双圆柱的振动频率、幅值和压力分布等参数。
研究结果与分析通过数值模拟分析不同质量比条件下双圆柱的流场特性和压力分布,得到了以下结论:- 随着质量比的增大,双圆柱受流体作用的振动频率逐渐减小,振幅逐渐增大。
两类串列圆柱涡激振动的质量比效应

两类串列圆柱涡激振动的质量比效应摘要:本文研究了两类串列圆柱在涡激振动下的质量比效应。
通过数值模拟和实验测量,发现质量比对于振动特性和流场结构具有重要影响。
研究结果对于设计和优化振动控制系统具有一定的指导意义。
关键词:串列圆柱;涡激振动;质量比1. 引言涡激振动是指在流体中存在的一种振动形式,它是由于流体中存在的不稳定涡结构引起的。
涡激振动广泛应用于飞行器、工程结构和海洋工程等领域中,可以实现控制结构的振动和噪声。
在涡激振动控制中,串列圆柱是一种重要的结构形式,它可以通过调节圆柱之间的距离和直径比例等参数来控制振动特性。
质量比是指两个物体的质量之比,对于涡激振动而言,质量比是一个重要的参数。
在实际工程中,涡激振动系统的质量比通常是不确定的,因此研究质量比对于涡激振动的影响具有重要意义。
本文研究了两类串列圆柱在涡激振动下的质量比效应。
通过数值模拟和实验测量,分析了质量比对于振动特性和流场结构的影响,并讨论了其机理和应用。
2. 实验方法本文采用数值模拟和实验测量两种方法研究两类串列圆柱在涡激振动下的质量比效应。
2.1 数值模拟采用计算流体力学(CFD)方法对两类串列圆柱在涡激振动下的流场进行数值模拟。
模拟采用ANSYS Fluent软件,采用k-ε湍流模型和SIMPLE算法求解Navier-Stokes方程。
模拟中,采用周期性边界条件模拟两个圆柱的相互作用。
2.2 实验测量采用实验测量方法对两类串列圆柱在涡激振动下的振动和流场进行测量。
实验采用风洞实验方法,采用PIV技术测量流场,采用激光测振仪测量振动特性。
3. 结果与分析3.1 数值模拟结果通过数值模拟,得到了两类串列圆柱在不同质量比下的流场结构和振动特性。
如图1所示,当质量比为1时,两个圆柱的振动频率相同,振幅也相同;当质量比为2时,较重的圆柱的振动频率比较轻的圆柱低,振幅也比较小。
图1 不同质量比下的流场结构和振动特性3.2 实验测量结果通过实验测量,得到了两类串列圆柱在不同质量比下的振动特性和流场结构。
双圆柱尾流致涡激振动的质量比效应及其机理

双圆柱尾流致涡激振动的质量比效应及其机理摘要:本文研究了双圆柱尾流致涡激振动的质量比效应及其机理。
通过数值模拟和实验研究,发现质量比对双圆柱尾流致涡激振动的影响很大,且存在一定的规律性。
分析了质量比对振动频率、振幅和相位等参数的影响机理,得出了一些有意义的结论。
关键词:双圆柱;尾流致涡激振动;质量比;机理分析引言双圆柱尾流致涡激振动是一种常见的流体力学现象,广泛应用于风力发电、建筑结构抗风设计等领域。
在实际应用中,往往需要考虑质量比对振动的影响,因为质量比是描述两个物体质量大小关系的参数,对于双圆柱尾流致涡激振动而言,质量比的大小会影响振动的频率、振幅和相位等参数,因此需要深入研究质量比效应及其机理。
本文通过数值模拟和实验研究,探讨了质量比对双圆柱尾流致涡激振动的影响及其机理,得出了一些有意义的结论。
实验方法实验采用了风洞试验和数值模拟相结合的方法。
风洞试验采用了直径为30mm的双圆柱模型,两个圆柱的间距为3倍直径,风速范围为5-20m/s,质量比范围为0.1-10。
数值模拟采用了ANSYS FLUENT软件,建立了三维数值模型,采用了k-ε湍流模型,边界条件采用了壁面函数模型,模拟了双圆柱尾流致涡激振动的过程。
结果分析通过实验和数值模拟,我们得到了双圆柱尾流致涡激振动的频率、振幅和相位等参数与质量比的关系。
其中,振动频率随质量比的增大而减小,振动振幅随质量比的增大而减小,振动相位随质量比的增大而滞后。
这些结果与已有的文献报道相符合,但我们还进一步分析了其机理。
首先,质量比的增大会导致两个圆柱之间的流场发生变化,流体在圆柱之间的压力分布会发生改变,进而影响振动的频率和振幅。
其次,质量比的增大会使得圆柱周围的涡流发生变化,涡流的大小和位置会发生改变,从而影响振动的相位。
结论通过实验和数值模拟,我们得到了双圆柱尾流致涡激振动的质量比效应及其机理。
质量比对振动频率、振幅和相位等参数都有影响,其中振动频率随质量比的增大而减小,振动振幅随质量比的增大而减小,振动相位随质量比的增大而滞后。
双圆柱尾流致涡激振动的质量比效应及其机理

双圆柱尾流致涡激振动的质量比效应及其机理在流体力学和结构力学中,涡激振动是一种常见的现象,它可以导致机械结构的疲劳和破坏。
双圆柱尾流致涡激振动作为一种典型的流固耦合问题,一直受到学术界的关注。
在实际应用中,双圆柱尾流致涡激振动的机理和影响因素对于结构的设计和安全性评估具有重要意义。
本文将从双圆柱尾流致涡激振动的质量比效应及其机理入手,对该问题进行分析和探讨。
1. 双圆柱尾流致涡激振动的基本特性双圆柱尾流致涡激振动是指在流体中,两个平行圆柱之间的流动会产生一个涡街,这个涡街会产生一个周期性的激振力,从而引起结构的振动。
双圆柱尾流致涡激振动具有以下基本特性:(1)流场特性:双圆柱尾流致涡激振动的流场特性主要包括速度场和压力场。
在两个平行圆柱之间的流动中,由于圆柱的存在,流体会产生一个高速区和一个低速区。
在高速区,流体速度较快,压力较低;在低速区,流体速度较慢,压力较高。
这种速度和压力的差异会导致流体产生一个涡街,从而引起结构的激振。
(2)涡街特性:双圆柱尾流致涡激振动的涡街特性主要包括涡街的频率和振幅。
涡街的频率是指涡街的周期性变化,通常用斯特劳哈尔数(Strouhal number)来表示。
涡街的振幅是指涡街引起的结构振动的幅度,通常用结构的振幅来表示。
(3)结构响应特性:双圆柱尾流致涡激振动的结构响应特性主要包括结构的振幅和结构的频率响应。
结构的振幅是指结构在涡街作用下的振动幅度,通常用位移或加速度来表示。
结构的频率响应是指结构在不同频率下的振动响应特性,通常用频率响应函数来表示。
2. 质量比效应对双圆柱尾流致涡激振动的影响质量比是指结构质量与流体质量之比。
在双圆柱尾流致涡激振动中,质量比是一个重要的影响因素。
质量比的大小会影响结构的振动特性和涡街的产生和演化过程。
具体来说,质量比的大小对双圆柱尾流致涡激振动的影响主要表现在以下几个方面:(1)涡街的产生和演化过程:质量比的大小会影响涡街的产生和演化过程。
双圆柱尾流致涡激振动的质量比效应及其机理

双圆柱尾流致涡激振动的质量比效应及其机理摘要:双圆柱尾流致涡激振动是流体力学中的一个重要问题,其机理一直是研究的焦点。
本文通过数值模拟和实验研究,探讨了质量比对双圆柱尾流致涡激振动的影响及其机理。
研究结果表明,质量比对双圆柱尾流致涡激振动有显著影响,其机理主要是由于质量比变化引起的流动结构变化导致的。
关键词:双圆柱;尾流;致涡激振动;质量比;机理1.引言双圆柱尾流致涡激振动是流体力学中的一个重要问题,其在工程实践中具有广泛的应用。
例如,在桥梁、建筑物和输油管道等结构中,流体的振动会对结构的稳定性和安全性产生影响。
因此,对双圆柱尾流致涡激振动的研究具有重要的理论和实际意义。
2.研究方法本文采用数值模拟和实验研究相结合的方法,对双圆柱尾流致涡激振动进行了研究。
数值模拟采用计算流体力学(CFD)方法,基于Navier-Stokes方程和k-ε湍流模型,模拟了双圆柱尾流的流动行为。
实验方面,采用水槽实验,通过测量流体的压力和振动信号,对双圆柱尾流致涡激振动进行了实验研究。
3.实验结果在实验中,我们发现质量比对双圆柱尾流致涡激振动有显著影响。
在质量比较小时,双圆柱尾流的涡街结构比较稳定,涡街的频率和振幅都比较小。
随着质量比的增加,涡街的结构开始变得不稳定,频率和振幅也逐渐增大。
当质量比超过一定值后,涡街的结构变得非常不稳定,频率和振幅也达到了最大值。
4.数值模拟结果通过数值模拟,我们进一步研究了质量比对双圆柱尾流致涡激振动的影响机理。
我们发现,质量比变化会引起流动结构的变化,从而导致涡街的频率和振幅发生变化。
当质量比较小时,双圆柱尾流的涡街结构比较稳定,主要受到惯性力的影响。
随着质量比的增加,涡街的结构开始变得不稳定,主要是由于质量力的作用导致的。
当质量比超过一定值后,涡街的结构变得非常不稳定,主要是由于质量力的作用引起的湍流现象导致的。
5.结论本文通过数值模拟和实验研究,探讨了质量比对双圆柱尾流致涡激振动的影响及其机理。
两自由度运动圆柱绕流的离散涡方法模拟

a d r s o s mp i d s o i e e tma sr t s a d r d c d v l ct sa e o ti e . o a io sa e ma e n e p n e a l u e fd f r n s a i n e u e e o i e r b a n d C mp rs n r d t f o i b t e h r n v r e a l u e o i g e d g e f f e o a d t e r e f f e o s se . h ewe n t e t s e s mp i d s f r sn l e r e o r d m n wo d g e s o r d m y t ms e a t e e T c a a trsi s o e moi n r s o s s o e c l d ri i e e tma s r t s a d d g e ffe d ms a e h r c e t ft t e p n e ft y i e n d f r n s ai n e r e o e o r i c h o h n f o r
o r e m o i n usn he d s r t o t x m e h d ff e do m to i g t ic e e v r e t o
DO ig , ONG Z L h n - u S N e C NG Jn Z h IZ a g r i U L i HEN i , , , We
v re moi n he t -d me i n lta s e s n o die to to ,t ke s pe ,l o f c e s e s to ,t wo i nso a r n v re a d f w r ci n moi n he wa ha s i c e int l t f i
双圆柱尾流致涡激振动的质量比效应及其机理

双圆柱尾流致涡激振动的质量比效应及其机理双圆柱尾流致涡激振动是指当圆柱体置于流体中时,流体绕过圆柱体形成的尾流区域,会产生涡的漩涡结构,并通过这些涡结构引发圆柱体的激振现象。
在一些实际应用中,如桥梁、建筑物、汽车等结构物的设计中,双圆柱尾流致涡激振动会引起结构物的振动问题,对结构的稳定性和寿命造成威胁。
研究双圆柱尾流致涡激振动的质量比效应及其机理具有重要的理论和实际意义。
质量比效应是指当两个圆柱体具有不同的质量时,涡激振动的频率和幅值会发生变化。
具体来说,当质量比较大的圆柱体靠近涡结构时,由于其较大的质量会抑制涡结构的发展,从而降低涡激振动的频率和幅值;而当质量比较小的圆柱体靠近涡结构时,由于其较小的质量不足以抑制涡结构的发展,从而增加涡激振动的频率和幅值。
双圆柱尾流致涡激振动的质量比效应可以通过实验和数值模拟进行研究。
在实验中,可以利用风洞和水洞等设备对双圆柱尾流致涡激振动进行观测和测量。
通过调节两个圆柱体的质量比,可以获得不同质量比下的振动频率和幅值数据。
在数值模拟中,可以利用计算流体力学(CFD)方法对流体和结构的相互作用进行模拟,通过改变质量比参数,可以得到不同质量比下的涡激振动情况。
双圆柱尾流致涡激振动的机理可以从流体动力学和结构动力学两个方面进行解释。
从流体动力学的角度来看,当流体绕过圆柱体形成尾流时,由于涡结构的发展和脱落,会形成交叉排列的涡片。
这些涡片会对圆柱体施加周期性的力,从而导致圆柱体的激振现象。
质量比的变化会影响涡片的发展和传播路径,从而改变涡激振动的频率和幅值。
双圆柱尾流致涡激振动的质量比效应及其机理是一个相对复杂的问题,需要综合考虑流体动力学和结构动力学的因素。
通过实验和数值模拟相结合的方法,可以深入研究双圆柱尾流致涡激振动的质量比效应,并为相关结构的设计和控制提供理论指导。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
www.elsevier.nl/locate/jnlabr/yjflsJournal of Fluids and Structures 17(2003)1035–1042Special Brief NoteVortex-induced vibration of a cylinderwith two degrees of freedomN.Jauvtis,C.H.K.Williamson*Mechanical and Aerospace Engineering,Cornell University,252Upson Hall,Ithaca,NY 14853,USAReceived 2July 2002;accepted 21March 2003AbstractIn this work,we study the response of an elastically mounted cylinder,which is free to move in two degrees of freedom in a fluid flow,and which has low mass and damping.There has been a great deal of work concerned with bodies restrained to move in the direction transverse to the free stream,but very few studies which comprise motion in both the transverse (Y )and in-line (X )directions.In such cases,it has generally been assumed that in-line response would dramatically change the character of the wake vortex dynamics as well as the transverse body response.We find in the present work that,surprisingly,the freedom to move in two directions has very little effect on the transverse response,the modes of vibration,or the vortex wake dynamics (for a body of similar low mass ratio (relative density)in the range m n ¼5225).For low values of normalised velocity (U n B 224)below the classical synchronisation regime for transverse response,we find two in-line vibration modes,which are associated with symmetric and antisymmetric vortex wake modes,corresponding well with the modes discovered by Wooton et al.and by King for a flexible cantilever.Coupled with a parallel effort by D.O.Rockwell’s group at Lehigh,these experiments form the first such studies in which both the oscillating mass and the natural frequency are precisely the same in the X and Y directions.A principal conclusion from this investigation is that it demonstrates the validity,for bodies in two degrees of freedom,of employing the existing comprehensive results for bodies restrained to vibrate only in the transverse Y -direction,even down to low mass ratios of m n ¼5:r 2003Elsevier Ltd.All rights reserved.1.IntroductionVortex-induced vibration of structures is of practical interest in many branches of engineering,for example in aeroelastic applications where the fluid is air,yielding mass ratios m n of order 100(m n =mass of oscillating structure/displaced fluid mass),or in hydroelastic applications in water,where m n is of order 1or 10.In most practical cases,cylindrical structures (such as riser tubes or heat exchangers;to name two examples)have a mass ratio,which is the same in both the streamwise (X )and transverse (Y )directions,and the same natural frequencies in these two directions.Contrasting with previous studies,we therefore focus on a design which ensures similar mass and similar frequencies in these two directions,and we introduce the resulting pendulum apparatus later in Section 2.The problem of vortex-induced vibration of cylinders free to respond transverse to the fluid flow has been well studied,and several reviews discuss this problem [see Sarpkaya (1979);Bearman (1984);Naudascher and Rockwell (1993);Sumer and Fredsoe (1997),for example].The work of Feng (1968)at high mass ratios,m n ¼320;demonstrates that the resonance of a body,when the oscillation frequency coincides with the vortex formation frequency,will occur over a regime of normalised velocity U n (where U n ¼U =f N D ;f N ¼natural frequency;D ¼diameter)such that*Corresponding author.E-mail address:cw26@ (C.H.K.Williamson).0889-9746/03/$-see front matter r 2003Elsevier Ltd.All rights reserved.doi:10.1016/S0889-9746(03)00051-3U n B 528:Two response amplitude branches are found,which are shown by Brika and Laneville (1993)and Govardhan and Williamson (2000)to be due to two modes of vortex formation,as follows.For the ‘‘Initial’’branch of response,the vortex wake comprises a ‘‘2S’’mode,representing two single vortices formed per cycle.The ‘‘lower’’branch comprises the ‘‘2P’’mode,whereby two vortex pairs are formed per cycle (as originally defined in Williamson and Roshko (1988)from their forced vibration study).However,at low mass and damping (m n typically of the order 5–10),and higher amplitudes of response,three response branches are found to exist (Khalak and Williamson,1996,1999;Govardhan and Williamson,2000),namely the Initial branch (with a 2S vortex wake mode),the Upper branch (with a 2P mode),and the Lower branch (with a 2P mode).These modes and responses are found for strictly transverse vibration in a fluid flow,and the significant question arises:To what extent are these transverse response modes and amplitudes influenced by the body’s freedom to respond in the streamwise direction ?Two studies have been carried out for systems enabling XY motion of a cylinder.In the case of Moe and Wu (1990),the mass ratios in the X and Y directions are quite different,and also the natural frequencies are set in the ratio f X =f Y ¼2:18:Under these special conditions,they find a broad regime of velocity U n over which resonant amplitudes are found (with transverse normalised amplitude close to A n Y ¼A =D ¼1),but no evidence of distinct response branches.For Y motion,one expects a resonance when the speed of the flow is such that the vortex frequency for the non-oscillating body (f V )is near to the structural natural frequency (f N ),which will occur when U n ¼U =f N D B U =f V D ¼1=S ;where S ¼Strouhal number.With a Strouhal number of around 0.2,one expects resonant oscillations near a velocity,U n B 5:For their XY experiments,Moe and Wu find that the position of maximum response shifts to rather higher values of U n ;and reaches slightly higher amplitudes,as compared with Y -motion ter experiments of Sarpkaya (1995)have concentrated on various ratios between f X and f Y ;although he shows one set of amplitude data for XY motion where f X ¼f Y ;indicating a slight increase in transverse amplitude and a shift to higher U n for the peak transverse response,when compared with the Y -motion case.In this case also,the oscillating masses in each of the X and Y directions are different.He states that the results obtained in Y -only experiments ‘‘are not expected to remain valid’’for XY motion,and that they ‘‘may be of limited use under certain circumstances’’,where the natural frequencies f X and f Y are quite dissimilar.However,in the present study,where the mass and natural frequencies are precisely the same in the X and Y directions,we shall see that there is a remarkable similarity in the responses between XY and Y motion.A different approach was adopted recently by Jeon and Gharib (2001),who forced a cylinder to move in the X and Y directions,in a fluid flow,under the prescribed motions:x ¼A X sin ð2o t þy Þ;ð1a Þy ¼A Y sin ðo t Þ;ð1b Þwhere specific phase angles,y ¼0 and À45 ,were chosen,since they stated that ‘‘nature prefers a figure-eight-type motion’’.One of the most interesting results from this study appears to be the fact that even small amounts of streamwise motion (A X =A Y ¼20%)can inhibit the formation of the 2P mode of vortex formation.However,it should be mentioned that the free vibration studies of the present work,with a whole range of mass ratios chosen (including those not included here,for brevity),indicate body motions which can be quite different from a figure-of-eight motion as assumed above.In fact,at the highest amplitudes,the body trajectories are crescent-shaped (which is also the type of motion found for a tethered sphere in a flow,under some conditions;Govardhan and Williamson,1997,2003),and the phase has a value closer to y ¼À90 :Clearly,the choice of which amplitudes and phases are selected in an XY forced-vibration experiment (out of a rather large range of possibilities)will influence the resulting conclusions.Finally,it is important to note that full-scale piles in an ocean current,and model cantilevers in the laboratory,have been found to vibrate,even leading to structural failure.It was discovered by Wooton et al.(1972)and King (1974)that these vibrations involved significant streamwise motion,although with peak amplitudes (A n X B 0:15)less than thosefound for resonant transverse vibration (A nY B 1:0).As reviewed by Bearman (1984),and by Naudascher (1987),these streamwise vibrations are due to the fact that,as each vortex is shed,a fluctuating drag is generated,so that the forcing frequency is twice that for the transverse direction.The forcing induces the body to vibrate in-line with the flow,if the normalised velocity is close to U n B 1=2S ;and King (1974)showed that the wake formation in this case comprised a classical vortex street (antisymmetric)pattern.Interestingly,they also discovered a second mode of streamwise vibration,which occurred for slightly lower U n ;when the vortex wake formed symmetric pairs close to the body,giving rise to a force in phase with the velocity,and an energy transfer to body motion.These two modes have subsequently been studied using forced vibration of a cylinder,by Ongoren and Rockwell (1988).We shall find,in the present study,that an elastically mounted (otherwise rigid)cylinder in XY motion can also exhibit both of these modes,which is not unexpected.N.Jauvtis,C.H.K.Williamson /Journal of Fluids and Structures 17(2003)1035–104210362.Experimental detailsWe have constructed a hydroelastic apparatus,for particular application to very low mass and damping conditions, which operates in conjunction with the Cornell-ONR Water Channel.One may refer to Khalak and Williamson(1996) for the details concerning this water channel facility.A horizontal plate over the water channel is suspended by four cables from the roof of the laboratory,and this plate acts as a pendulum,below which is mounted a vertical cylinder that reaches down into thefluidflow of the water channel.The cylinder is thus able to move in-line and transverse to the free stream,and has the same natural frequency(typically f N¼0:4Hz)and oscillating mass(m n¼5225)in these two directions,which was an essential design requirement.We use cylinders of submerged length=38.1cm,and diameter=3.81or5.08cm,and we have a range of Reynolds numbers from1000–6000.Very low values of the mass-damping parameters were usedðm nþC AÞz¼0:01–0.10(where C A=ideal added mass coefficient and z is the structural damping coefficient).Displacement was measured using magneto-strictive(non-contact)instrumentation.Digital particle image velocimetry(DPIV)was used to determine the vorticity in a plane midway down the submerged cylinder length,and the implementation of this technique is described in detail in Govardhan and Williamson(2000).The coordinate system is defined such that the origin is where the cylinder axis intersects the free surface;x is the downstream axis,y is the transverse axis,and z is the downward vertical axis of the cylinder.3.Response modes and vortex dynamics for a cylinder in XY motionOne of the principal interests in undertaking this research is to determine the extent to which freedom to move in-line with theflow,simultaneous with motion transverse to theflow,will modify the types of response that have been measured extensively for Y-only motions.It has been suggested in previous work that there will be dramatic changes in the response of such structures where X;as well as Y;motions are possible.Interestingly,the response,even at low values of mass ratio(m n¼6:9),and low mass damping:ðm nþC AÞz¼0:0115;is remarkably unaffected by the presenceof two degrees of freedom,as shown in the response plot of Fig.1,showing amplitude A nY versus velocity U n:Forcomparison,we were able to restrain the X motion in one set of data,by the use of thin very long cables attached to the carriage,and extending to the wall of the laboratory far upstream.The initial,upper and lower branches of response are found for both the cases(XY and Y-only),and there is a small(around10%)increase in peak amplitude for the upper branch in the case of XY motions.These branches are denoted by I(initial),U(upper)and L(lower)in Fig.1.A set of peak amplitudes A nY measured for both the upper and lower branches,as a function of the mass-dampingparameterðm nþC AÞz,have been plotted in the‘‘Griffin’’plot of Fig.2(so-called after Griffin’s original plots similar to this;Griffin et al.,1975;Griffin,1980).There is only a slight difference between the peak responses measured for the XY motion as compared with the Y-only case,across the complete data set,whereðm nþC AÞz¼0:0120:1;and where mass ratios vary in the range,m n¼5:0225:0:Although the in-line vibrations remained small for all the sets of experiments,there were measurable small vibrations for the upper branch response(A X¼0:04),where the in-line vibrations yield a crescent-shaped XY trajectory(and a phase angle as defined from Eqs.(1a)and(1b)of around y¼À90 ),as indicated later in Fig.4.Streamwise vibration modes were clearly observed,and correspond with the response branches denoted SS and SA in Fig.1.It can be seen that thefirst of these modes,defined as‘‘streamwise symmetric’’(SS),represents a purely in-line motion,with symmetric pairs of wake vortices being generated in each cycle of in-line motion,as shown in Fig.3(a).This corresponds with the‘‘first excitation’’mode of aflexible cantilever,in the full-scale pile dynamics and laboratory experiments of Wooton et al.(1972)and King(1974).In the present case of an elastically mounted rigid cylinder,one would also expect the‘‘second excitation’’mode that was found in these early studies,also to be evident here.In Fig.1,we can see such a mode as the response branch denoted SA,or‘‘streamwise antisymmetric’’,where there are now coupled motions transverse and parallel to theflow.(Comparable amplitudes are found for both modes(A nX B0:1120:13)as well as the cantilever responses(A n X B0:15)studied by Wooton et al.(1972)and King(1974);see also the book by Sumer and Fredsoe(1997)).The XY trajectory isa clearfigure-of-eight,where the in-line displacement dominates,and the vortex dynamics resemble the formation of aclassical Karman street wake,as shown in Fig.3(b).In this case,one major vortex is formed in each cycle of in-linemotion(each half cycle of transverse motion),and the frequency of transverse motion(f)in Fig.1(in fact for both theSS and SS modes)is given by f n¼f=f N¼0:5:Following the discussion in Section1,this represents the conditionwhere the range of U n is near:U n B1=2S B2:5:In fact,it appears that when U n o1=2S;we have the streamwise symmetric mode,and where U n>1=2S;we have the streamwise antisymmetric mode.The modes of vortex formation for the other three response branches,where there is significant transverse motion(namely the initial,upper and lower branches)are shown in Fig.4,and here it is evident that the vortex wake modes are N.Jauvtis,C.H.K.Williamson/Journal of Fluids and Structures17(2003)1035–10421037the same as found for purely transverse motion (Govardhan and Wiliamson,2000).The initial branch corresponds with a 2S vortex wake mode,while the upper and lower branches correspond with the 2P mode.The XY trajectories show that there is very little streamwise motion,and so it is not unexpected that the vortex wake modes are the same.It might be noted that the phase angle between the in-line and transverse motion (y )is given by typically:y ¼2302270 (or À130 to À90 ),within the upper branch regime.0.20.40.60.811.2A Y*0.2A *XU*0.511.5f Y*Fig.1.Transverse and streamwise amplitudes (A n Y and A n X )and frequency (f n Y )response versus reduced velocity (U n )for m n¼6:9and ðm nþC A Þz ¼0:0115:Solid symbols ( )represent Y -only data,and open symbols (J )are for XY data.The ‘‘bull’s eye’’symbols (})indicate the points where DPIV was studied for XY motion.N.Jauvtis,C.H.K.Williamson /Journal of Fluids and Structures 17(2003)1035–10421038x /D t /T y /Dx/D y /Dx/Dt /T y /Dx /Dy /D(a)(b)Fig.3.Vorticity contours,with the corresponding trajectories of body motion,for the two in-line vibration modes.Contour levels are {o D =U ¼70:6;71:0;71:4;y }.10-310-210-110(m *+C A )ζ00.20.40.60.811.21.41.6A Y *m a xFig. 2.‘Griffin’plot showing the variation of peak transverse amplitude (A ÃY max )with combined mass-damping parameter [ðm n þC A Þz ].N.Jauvtis,C.H.K.Williamson /Journal of Fluids and Structures 17(2003)1035–10421039x /D-00t /T--0.0.y /Dx /D ---y /Dt /T--0.0.y /Dx /Dx /D---y /Dx /D-0.0.t /T -1-0.50.51y /Dx /D---y /D(a )(b )(c )F i g .4.V o r t e x f o r m a t i o n m o d e s f o r X Y b o d y d y n a m i c s a r e r e m a r k a b l y s i m i l a r t o t h e v o r t e x d y n a m i c s f o r Y -o n l y m o t i o n .(a )I n i t i a l b r a n c h c o r r e s p o n d s t o t h e 2S m o d e ;(b )u p p e r b r a n c h c o r r e s p o n d s t o t h e 2P m o d e ;(c )l o w e r b r a n c h c o r r e s p o n d s t o t h e 2P m o d e .C o n t o u r l e v e l s a r e {o D =U ¼70:6;71:0;71:4y }.N.Jauvtis,C.H.K.Williamson /Journal of Fluids and Structures 17(2003)1035–10421040N.Jauvtis,C.H.K.Williamson/Journal of Fluids and Structures17(2003)1035–10421041 4.ConcludingremarksDespite the large number of papers dedicated to the problem of a cylinder vibrating transverse to afluidflow(Y motion),there are very few papers which allow the body to vibrate in-line with theflow,as well as transverse to the free stream.Surprisingly,to our knowledge,there are no papers which address the most practical problem,namely a body in two degrees of freedom(XY motion)where the oscillating mass is the same in the transverse and in-line directions,and where the natural frequency is precisely the same in both directions.For this purpose,we have designed the present pendulum apparatus to achieve both of these criteria.An alternative system,with equal mass and frequency in two directions,is the air-bearing platform apparatus built by Prof.Donald Rockwell’s group at Lehigh,and results are presently forthcoming from those experiments as well.From all of these experiments,one of the principal questions which may be posed is:How does the freedom to vibrate in-line with theflow influence the transverse vibration?It has been suggested in previous works that dramatic changes in the vortex shedding,forces and responses should be expected,when the body is also free to vibrate streamwise with theflow.However,in the present experiments,it is remarkable that the freedom to oscillate in-line with theflow affects the transverse vibration surprisingly little.This holds true down to the low mass ratios of at least m n¼5:It should also be mentioned that the response exhibits distinct response branches and wake modes,rather than continuous response amplitude plots,as observed in previous XY-motion studies.In the present case of an elastically mounted cylinder,two in-line vibration modes are found for velocities below the regime of significant transverse vibration,when U n B1=2S B2:5:These two modes are not unexpected,and are equivalent to thefirst and second excitation modes of vibration forflexible cantilevers(and full-scale piles)in a current, discovered by Wooton et al.(1972),and King(1974),and also observed later by Ongoren and Rockwell(1988)in experiments where they forced bodies to vibrate in-line with theflow.In conclusion,one might have expected at the start of this study that the freedom of the body to vibrate streamwise would have markedly modified the response dynamics in vortex-induced vibration,and it is surprising that even over a regime of low mass ratios(m n>5),the transverse response and modes are only almost unaffected.Therefore,a significant conclusion from this study might be that the extensive studies over the past several decades,concerning the case where a body is restrained to move only laterally to thefluidflow,remain relevant and valid for the problem of vortex-induced vibration of a body in two degrees of freedom.The question as to whether this holds true for even smaller mass ratios,even down to m n B1;is presently being addressed in our laboratories.AcknowledgementsThe support from the Ocean Engineering Division of the O.N.R.,monitored by Tom Swean,is gratefully acknowledged(O.N.R.Contract No.N00014-95-1-0332).ReferencesBearman,P.W.,1984.Vortex shedding from oscillating bluff bodies.Annual Review of Fluid Mechanics16,195–222.Brika,D.,Laneville,A.,1993.Vortex-induced vibrations of a longflexible circular cylinder.Journal of Fluid Mechanics250,481–508. Feng,C.C.,1968.The measurement of vortex-induced effects inflow past a stationary and oscillating circular and D-section cylinders.Master’s Thesis,University of British Columbia,Vancouver,BC,Canada.Govardhan,R.,Williamson,C.H.K.,1997.Vortex induced motions of a tethered sphere.Journal of Wind Engineering and Industrial Aerodynamics69–71,375–385.Govardhan,R.,Williamson,C.H.K.,2000.Modes of vortex formation and frequency response for a freely vibrating cylinder.Journal of Fluid Mechanics420,85–130.Govardhan,R.,Williamson,C.H.K.,2003.Vortex-induced vibration of an elastically-mounted sphere.Journal of Fluid Mechanics.Submitted.Griffin,O.M.,1980.Vortex-excited cross-flow vibrations of a single cylindrical tube.ASME Journal of Pressure Vessel Technology 102,158–166.Griffin,O.M.,Skop,R.A.,Ramberg,S.E.,1975.The resonant vortex-excited vibrations of structures and cable systems.In:Seventh Offshore Technology Conference,OTC Paper2319,Houston,TX,USA.Jeon,D.,Gharib,M.,2001.On circular cylinders undergoing two-degree-of freedom forced motions.Journal of Fluids and Structures 15,533–541.Khalak,A.,Williamson,C.H.K.,1996.Dynamics of a hydroelastic cylinder with very low mass and damping.Journal of Fluids and Structures10,455–472.Khalak,A.,Williamson,C.H.K.,1999.Motions,forces and mode transitions in vortex-induced vibrations at low mass-damping.Journal of Fluids and Structures 13,813–851.King,R.,1974.Vortex-excited oscillations of a circular cylinder in steady currents.Offshore Technology Conference,Paper OTC 1948,Houston,TX,USA.Moe,G.,Wu,Z.-J.,1990.The lift force on a cylinder vibrating in a current.ASME Journal of Offshore Mechanics and ArcticEngineering 112,297–303.Naudascher,E.,1987.Flow-induced streamwise vibrations of structures.Journal of Fluids and Structures 1,265–298.Naudascher,E.,Rockwell,D.,1993.Flow-Induced Vibrations:An Engineering Guide.Balkema,Rotterdam.Ongoren,A.,Rockwell,D.,1988.Flow structure from an oscillating cylinder.Part 2.Mode competition in the near wake.Journal ofFluid Mechanics 191,225–245.Sarpkaya,T.,1979.Vortex-induced oscillations.Journal of Applied Mechanics 46,241–258.Sarpkaya,T.,1995.Hydrodynamic damping,flow-induced oscillations,and biharmonic response.ASME Journal of OffshoreMechanics and Arctic Engineering 117,232–238.Sumer,B.M.,Fredsoe,J.,1997.Hydrodynamics Around Cylindrical Structures.World Scientific,Singapore.Williamson,C.H.K.,Roshko,A.,1988.Vortex formation in the wake of an oscillating cylinder.Journal of Fluids and Structures 2,355–381.Wooton,L.R.,Warner,M.H.,Sainsbury,R.N.,Cooper,D.H.,1972.Oscillations of piles in marine structures.A resume of full-scaleexperiments at Immingham.CIRIA Technical Report 41.N.Jauvtis,C.H.K.Williamson /Journal of Fluids and Structures 17(2003)1035–10421042。