简支梁内力包络图概念

合集下载

第九节简支梁的内力包络图

第九节简支梁的内力包络图
பைடு நூலகம்
令a被C点等分,P2距C点为a/2=0.36m。P2作用点弯矩为
M max 1120 12 0.72 2 ( ) 280 4.8 1624.9kN m 12 2 2
设P2位于截面C之右(图d),且P4已移至梁外。

R=280×3=840kN
a=(280×4.8-280×1.44)/840=1.12m 令a被C点等分,P2距C点为a/2=0.56m。P2作用点弯 矩为(此时a取负值)为
RA R (l x a) l
PK作用点弯矩为
M RA x M K R (l x a ) x M K l
图10-24
式中, MK为PK以左梁上荷载对PK作用点的力矩之 和,为常数。由M取极值的条件
dM 0 dx

x
l a 2 2
即:当PK与R位于梁中点两侧对称位置时,PK所在截面的 弯矩达最大,为
M max
R l a 2 ( ) MK l 2 2
x
l a 2 2
M max
R l a 2 ( ) MK l 2 2
按式即可确定各个荷载作用点截面 的最大弯矩,比较后取最大者即为 绝对最大弯矩。
2.求绝对最大弯矩的步骤 经验表明:使梁跨中截面产生最大弯矩的临界荷载 就是产生绝对最大弯矩的荷载。 (1)求跨中截面的最大弯矩,确定此时作用在梁中 点的荷载PK。 (2)移动荷载组,使PK与梁上荷载合力R的间距被 梁中点平分。PK作用点的弯矩即为绝对最大弯矩。
M max 840 12 1.12 2 ( ) 280 4.8 1668.4kN m 12 2 2
由此可知,P2位于截面C之右0.56m时,其 所在截面的弯矩达最大,为1668.4kN· m。 (3)同理可求得,当P3位于C之左0.56m时,其所在截面 的弯矩达最大,为1668.4kN· m。 因此,梁的绝对最大弯矩为1668.4kN· m,它比Mcmax ( 1646.4kN· m )仅大约1%(一般不超过5%)。设计 时完全可用MCmax代替之。

结构力学 绘制内力包络图和确定绝对最大弯矩

结构力学 绘制内力包络图和确定绝对最大弯矩

子项目三 绘制内力包络图和确定绝对最大弯矩 学习进程
子项目三 绘制内ห้องสมุดไป่ตู้包络图和确定绝对最大弯矩
知识链接
1.内力包络图的概念 在结构设计中,必须求出恒载和移动活载共同作用下全梁各截面弯
矩、剪力的最大(小)值,作为结构设计的依据。按前述方法求出各截 面的最大(小)内力后,取横坐标表示梁的截面位置,用纵坐标表示相 应截面上同类内力的最大(小)值,依次联结各截面同类内力最大(小) 值的曲线称为内力包络图。梁的内力包络图包括弯矩包络图和剪力包络 图。
子项目三 绘制内力包络图和确定绝对最大弯矩
能力拓展
在结构设计或验算中,经常需求出结构在恒载和活载共同作用下,各截面 的最大、最小内力值。在实际工作中,对于活载尚需考虑其冲击力的影响, 这通常是将静载或活载所产生的内力值乘以冲击系数1+ μ 来实现的。冲击 系数的确定详见《公路桥涵设计通用规范》。关于荷载沿桥横向分布系数 mc 及其沿桥纵向的变化需进一步学习。
子项目三 绘制内力包络图和确定绝对最大弯矩
项目实施
案例 4 – 8 试求如图 4 – 42a 所示简支梁在单个移动集中荷载作用下的弯 矩包络图。
子项目三 绘制内力包络图和确定绝对最大弯矩
项目实施
案例 4 – 9 试求如图 4 – 43a 所示吊车梁的绝对最大弯矩。 解答:不难看出,绝对最大弯矩将发生在荷载 P2 或 P3 下面的截面。 ① 求荷载 P2 下面的最大弯矩。合力 4 82 kN R= × = 328 kN 。确定 R 与 P2 的间距。 ② 求荷载 P3 下面的最大弯矩。③ 相应地绘制弯矩包络图和剪力包络图, 如图 4 – 44 所示。
小结
4.在间接荷载作用下,结构主梁上某量值的影响线的做法是先作直接荷载作用 下该量值的影响线,然后将相邻的结点竖标用直线连接即可。 5.影响线的应用有两种:一是计算各种固定荷载产生的量值。固定集中荷载产 生的量值为 S=ΣPiyi ,固定均布荷载产生的量值为S= Σqωi 。二是用来确定移 动荷载的最不利荷载位置,从而计算出量值的最大值。 6.我国现行的公路荷载分为公路 – Ⅰ级和公路 – Ⅱ两个等级。汽车荷载分为 车道荷载和车辆荷载两种。

简支梁的内力包络图和绝对最大弯矩

简支梁的内力包络图和绝对最大弯矩

简支梁的内力包络图和绝对最大弯矩1)简支梁的内力包络图在设计承受移动荷载的结构时,通常需要求出结构中所有截面的最大、最小内力,连接各截面的最大、最小内力的图形称为内力包络图。

内力包络图反映了结构承受移动荷载作用时,所有截面内力的极值,是结构设计的重要依据,在吊车梁、楼盖的连续梁和桥梁的设计中都要用到。

下面以一实例来说明简支梁的弯矩包络图和剪力包络图的绘制方法。

如图17.20(a)所示为一跨度为12m的吊车梁,承受图中所示的吊车荷载作用。

首先将梁沿其轴线分为若干等分,本例分为十等分。

然后利用影响线逐一求出各等分截面上的最大弯矩和最小弯矩。

其中最小弯矩是梁在恒载作用下各个截面的弯矩。

对于吊车梁来讲,恒载所引起的弯矩比活载所引起的弯矩要小得多,设计中通常将它略去。

因此,本例只考虑活载即移动荷载所引起的弯矩,那么各截面的最小弯矩均为零。

最后根据计算结果,将各截面的最大弯矩以相同的比例画出,并用光滑曲线相连,即得到弯矩包络图,如图17.20(b)所示。

图17.20同理,可求出梁上所有截面的最大和最小剪力,画出剪力包络图,如图17.20(c)所示。

由于每个截面都会产生最大剪力和最小剪力,因此剪力包络图有两条曲线。

由上可以看出,内力包络图是针对某种移动荷载而言的,同一结构在不同的移动荷载作用下,其内力包络图也不相同。

2)简支梁的绝对最大弯矩由前面的讲述我们知道,简支梁的弯矩包络图反映了所有截面弯矩的最大值,其中的最大竖标值是所有截面最大弯矩中的最大值,称为绝对最大弯矩,用Mmax表示。

绝对最大弯矩无疑是考虑移动荷载作用时结构分析、设计的重要依据。

可以通过作出弯矩包络图来得到绝对最大弯矩,但这种方法计算量大,而且精度也不高,因此一般不采用此方法来计算绝对最大弯矩。

下面介绍一种较为简便的方法。

由于简支梁在移动荷载作用下,其上任一截面都有最大弯矩,其值可以通过确定该截面弯矩的最不利荷载位置,并计算该荷载位置时的弯矩而得到。

第十六章影响线和内力包络图(精)

第十六章影响线和内力包络图(精)
S max qi i
i 1 n
返回
下一张 上一张
小结
例9-3 吊车荷载作用下的两 跨静定梁,试求其支座B的最 大反力。 解:该梁实为两根简支梁。 故作RB影响线如图。其最不利 荷载位置有两种情况,分别计 算。 P2=PK时:
M
B
0, R A 0, RB
M
A
lx ; (0 x l ) l x ; (0 x l ) l
返回
下一张 上一张
小结
• •
二、内力影响线 1.取BC段为脱离体
QC RB MC
x ; l x RB b b; l (0 x a )
i 1
返回
下一张 上一张
小结

2. 均布荷载作用
S qi i
i 1
n
q —均布荷 载集度。 ω—均布荷 载所对 应影响 线面积 。 注:基线以 上为正, 基线以 下为负。
返回

下一张 上一张
小结
• 第四节 最不利荷载位置 定义:使 梁上某个量 值产生最大值或最小值时 ,移动荷载在梁上的作用 位置,称为该量值的最不 利荷载位置。 一、一个或两个集 中荷载作用 布置方式:把较大集 中荷载放在影响线顶点处 ,另一个集中荷载布置在 坡度较缓侧。
S maxБайду номын сангаас
Py
i
n
i
返回
下一张 上一张
小结
• • • • • • • • • • • • •
例9-2 某公路 桥承受 公路桥 设计规 范中汽 —15级 车队荷 载如图 所示, 试求截 面C最 大弯矩。
返回 下一张 上一张 小结
• 解:在汽—15级车队荷载中,排列密集且数值较 大的为重车后轮 • 压力130KN,可将它设为临界荷载Pk。 • 1)车队向左行驶时,把PK=130KN置于梁的C截面上(即影响 • 线的顶点),相应的整个荷载队位置,如图所示。 • 车队行驶中相应截面C弯矩MC为

梁的内力图2-2-3-1

梁的内力图2-2-3-1

注:最后利用规律3、4、5校核 规律3 规律
例: 画出 V图和 M 图。 图和 解:1、求反力 由∑MA= 0,FB= 148 kN. , ∑MB= 0,FA= 72 kN. , 2、判断各段V、M图形状 判断各段V 分段 q V M AC q=0 水平线 斜直线 CB q=c<0 < 下斜直线 下凸曲线 下凸曲线 BD q=c<0 < 下斜直线 下凸曲线 下凸曲线 A FA
0
画剪力图和弯矩图时,一定要将梁正确分段, 画剪力图和弯矩图时,一定要将梁正确分段, 分段建立方程, 分段建立方程,依方程而作图。
0 x x
M
二 、列方程法画内力图(基本方法) 列方程法画内力图(基本方法) 列方程法画内力图 例:简支梁受均布荷载作用,如图示, 简支梁受均布荷载作用,如图示, 作此梁的剪力图和弯矩图。 作此梁的剪力图和弯矩图。 解:1 、求支座反力 (利用结构对称 利用结构对称 性简化计算; 性简化计算;悬臂结构可不求反力)
2
、剪力图和弯矩图
以梁横截面沿梁轴线的位置为横坐标, 以梁横截面沿梁轴线的位置为横坐标,以垂直 于梁轴线方向的剪力或弯矩为纵坐标, 于梁轴线方向的剪力或弯矩为纵坐标,分别绘 制表示V(x) M(x)的图象 V(x)和 的图象。 制表示V(x)和M(x)的图象。这种图象分别称为 剪力图和弯矩图,简称V图和M 剪力图和弯矩图,简称V图和M图。 绘图时一般规定正号的剪力画在x轴的上侧, 绘图时一般规定正号的剪力画在x轴的上侧, 负号的剪力画在x轴的下侧;正弯矩画在x 负号的剪力画在x轴的下侧;正弯矩画在x轴下 负弯矩画在x轴上侧,即把弯矩画在梁受 侧,负弯矩画在x轴上侧,即把弯矩画在梁受 拉的一侧。 拉的一侧。 V
A FA V
(kN)
1

《结构力学》知识点归纳梳理(最祥版本)

《结构力学》知识点归纳梳理(最祥版本)

《结构力学》知识点归纳梳理(最祥版本)第一章绪论第一节:结构力学的研究对象和任务一、结构的定义:由基本构件(如拉杆、柱、梁、板等)按照合理的方式所组成的构件的体系,用以支承荷载并传递荷载起支撑作用的部分。

注:结构一般由多个构件联结而成,如:桥梁、各种房屋(框架、桁架、单层厂房)等。

最简单的结构可以是单个的构件,如单跨梁、独立柱等。

二、结构的分类:由构件的几何特征可分为以下三类1.杆件结构——由杆件组成,构件长度远远大于截面的宽度和高度,如梁、柱、拉压杆。

2.薄壁结构——结构的厚度远小于其它两个尺度,平面为板曲面为壳,如楼面、屋面等。

3.实体结构——结构的三个尺度为同一量级,如挡土墙、堤坝、大块基础等。

第二节结构计算简图一、计算简图的概念:将一个具体的工程结构用一个简化的受力图形来表示。

选择计算简图时,要它能反映工程结构物的如下特征:1.受力特性(荷载的大小、方向、作用位置)2.几何特性(构件的轴线、形状、长度)3.支承特性(支座的约束反力性质、杆件连接形式)二、结构计算简图的简化原则1.计算简图要尽可能反映实际结构的主要受力和变形特点..............,使计算结果安全可靠;2.略去次要因素,便于分析和计算.......。

三、结构计算简图的几个简化要点1.实际工程结构的简化:由空间向平面简化2.杆件的简化:以杆件的轴线代替杆件3.结点的简化:杆件之间的连接由理想结点来代替(1)铰结点:铰结点所连各杆端可独自绕铰心自由转动,即各杆端之间的夹角可任意改变。

不存在结点对杆的转动约束,即由于转动在杆端不会产生力矩,也不会传递力矩,只能传递轴力和剪力,一般用小圆圈表示。

(2)刚结点:结点对与之相连的各杆件的转动有约束作用,转动时各杆间的夹角保持不变,杆端除产生轴力和剪力外,还产生弯矩,同时某杆件上的弯矩也可以通过结点传给其它杆件。

(3)组合结点(半铰):刚结点与铰结点的组合体。

4.支座的简化:以理想支座代替结构与其支承物(一般是大地)之间的连结(1)可动铰支座:又称活动铰支座、链杆支座、辊轴支座,允许沿支座链杆垂直方向的微小移动。

简支梁的内力包络图及绝对最大弯矩

简支梁的内力包络图及绝对最大弯矩
简支梁的绝对最大弯矩与任一截面的最大弯矩既有区别又有联系。 梁内所有截面最大弯矩中的最大值称为该梁的最大弯矩。由包络图的画 法可知最大弯矩也是包络图中的最大纵坐标值。它代表在确定的移动荷 载作用下梁内可能出现的弯矩最大值。
现以简支梁受一组数值不变的集中荷载作用为例,介绍如何求得梁 内可能发生的绝对最大弯矩。
如图12-17 所示,在这一组集中荷载中,选出一个 PK ,研究它的作 用点移动到什么位置时可能使所在的截面弯矩为最大 。
图 12-17
以 x 表示 PK 到支座 A 的距离,a 表示梁上全部荷载的合力 FR 与
PK 作用线之间的距离,对 B 点取矩。
由 M B 0 ,求得
FA
FR l
l
x
a
用 PK 作用截面以左所有外力对 PK 作用点取矩,得 PK 作用点所在
图 12-16
1.2 简支梁的绝对最大弯矩
在移动荷载作用下,弯矩图中的最大纵坐标值是简支梁各截面的所 有最大弯矩中的最大值,称为绝对最大弯矩。产生绝对最大弯矩的某一 截面一定有某个临界荷载 PK 作用的截面。为此可用逐个荷载试算的办 法,先假定其中的某个荷载为临界荷载,求出其产生最大弯矩时的位置 和最大弯矩值,然后将计算出的最大弯矩加以比较,即可找出梁的绝对 最大弯矩。
M max
FR l
l 2
a 2
2
M
K
式中,当 PK 在 FR 左边时取负号; PK 在 FR 右边时取正号。
(12-10)
按上述方法,依次将每个荷载作为临界荷载计算出最大弯矩并加以比 较,确定梁的最大弯矩。
经验表明,简支梁的最大弯矩,通常发生在梁的跨中附近,因此可确
定一个靠近梁的中点截面处的较大荷载作为临界荷载 PK,并移动系列荷载, 使 PK 与梁上荷载的合力对称于梁的中点,再计算此时 PK 作用点的弯矩, 即得绝对最大弯矩。

结构力学教案 第10章 影响线及其应用

结构力学教案 第10章 影响线及其应用

第十章 影响线及其应用10.1 影响线的概念一、移动荷载对结构的作用1、移动荷载对结构的动力作用:启动、刹车、机械振动等.2、由于荷载位置变化,而引起的结构各处的反力、内力、位移等各量值的变化及产生最大量值时的荷载位置。

二、解决移动荷载作用的途径1、利用以前的方法解决移动荷载对结构的作用时,难度较大。

例如吊车在吊车梁上移动时,R B 、M C2、影响线是研究移动荷载作用问题的工具。

根据叠加原理,首先研究一系列荷载中的一个,而且该荷载取为方向不变的单位荷载。

10.2 用静力法绘制静定结构的影响线一、静力法把荷载P=1放在结构的任意位置,以x 表示该荷载至所选坐标原点的距离,由静力平衡方程求出所研究的量值与x 之间的关系(影响线方程)。

根据该关系作出影响线。

二、简支梁的影响线1、支座反力的影响线∑M B =0:∑M A =0:2、弯矩影响线1M C影响线弯矩图(1)当P=1作用在AC段时,研究CB:∑M C=0:(2)当P=1作用在CB段时,研究CB:∑M C=0:3、剪力影响线(1)当P=1作用在AC段时,研究CB:(2)当P=1作用在CB段时,研究CB:三、影响线与量布图的关系1、影响线:表示当单位荷载沿结构移动时,结构某指定截面某一量值的变化情况(分析左图)。

2、量布图(内力图或位移图):表示当荷载位置固定时,某量值在结构所有截面的分布情况(分析右图)。

四、伸臂梁的影响线例10−1 试作图10−4(a)所示外伸梁的反力R A、R B的影响线,C、D截面弯矩和剪力的影响线以及支座B截面的剪力影响线。

10.3 用机动法作影响线一、基本原理机动法是以虚位移原理为依据把作影响线的问题转化为作位移图的几何问题。

二、优点 不需要计算就能绘出影响线的轮廓。

以X 代替A 支座作用,结构仍能维 持平衡。

使其发生虚位移,依虚位移原理: X ·δX +P · δP =0 X=-P δP /δX =- δP /δX 令 δX =1, 则 X=-δP 结论:为作某量值的影响线,只需将与该量值相应的联系去掉,并以未知量X 代替;Q C 影响线)而后令所得的机构沿X的正方向发生单位位移,则由此所得的虚位移图即为所求量值的影响线。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

2.6.1 简支梁内力包络图
内力包络图:在恒载和活载共同作用下产生的各截面内力的最大值竖标连接而成的曲线图形称为内力包络图。

无论移动荷载处于何位置,由恒载和活载引起的内力均不会超出包络图范围。

梁的内力包络图分为弯矩包络图和剪力包络图。

图2-31
简支梁弯矩包络图的作法是:先将梁分成若干等份(一般分十等份),用求指定截面最大弯矩的方法求出各等分点截面由移动荷载引起的最大弯矩,将其与恒载引起的各对应截面弯矩相加得各截面的最大弯矩。

以截面位置为横坐标,截面最大弯矩为纵坐标,用光滑曲线将各截面最大弯矩竖标连接而成一条曲线,即为弯矩包络图。

剪力包络图的作法类似于弯矩包络图。

所不同的是剪力包络图由两条曲线构成,因为移动荷载作用下每个截面的剪力会产生最大正剪力和最大负剪力,由各截面最大正剪力构成一条,由各截面最大负剪力构成另一条。

相关文档
最新文档