2014-2015学年高中数学(人教版必修三)课时训练第三章 3.1.3 概率的基本性质

合集下载

人教版高中数学必修三 课时作业:第3章 概率 3.1.3 2

人教版高中数学必修三 课时作业:第3章 概率 3.1.3 2
A.374副B.224.4副
C.不少于225副D.不多于225副
答案:C
解析:根据概率,该校近视生人数应为37.4%×600=224.4,结合实际情况,眼镜商应带眼镜数不少于225副.
6.在掷骰子游戏中共抛掷6次,则点数4()
A.一定会出现B.不一定会出现
C.一定出现一次D.以上都不对
答案:B
解析:掷一次骰子,点数4出现的概率为 ,但掷6次,并不意味着必有一次点数4出现,有可能多次,有可能一次也没有.
正正
正正正
频数
15
10
15
频率
37.5%
25%
37.5%
骑车的频数是10,则频率是 =0.25=25%;
乘车频率是37.5%,则频数是40×37.5%=15;
步行的频数是15,频率是 =0.375=37.5%.
11.一个口袋内装有白球和黑球共100个,如果摸出一个球出现白球的概率是 ,那么这100个球中有多少个白球?
A.4个人中,必有1个被抽到
B.每个人被抽到的可能性为
C.由于抽到与不被抽到有两种情况,不被抽到的概率为
D.以上说法都不正确
答案:B
4.从存放号码分别为1,2,…,10的卡片的盒子中,有放回地取100次,每次取一张卡片并记下号码,统计结果如下:
卡片号码
1
2
3
4
5
6
7
8
9
10
取到的次数
10
11
8
8
6
10
答案:0.0303
解析:频率分布直方图是用面积表示频率的.则0.005×10+0.035×10+10a+0.020×10+0.010×10=1,
∴a=0.030,

人教A版高中数学必修三第三章3.1-3.1.2概率的意义 同步训练(1)(I)卷

人教A版高中数学必修三第三章3.1-3.1.2概率的意义 同步训练(1)(I)卷

人教A版高中数学必修三第三章3.1-3.1.2概率的意义同步训练(1)(I)卷姓名:________ 班级:________ 成绩:________一、单选题 (共5题;共10分)1. (2分)事件A发生的概率接近于0,则()A . 事件A不可能发生B . 事件A也可能发生C . 事件A一定发生D . 事件A发生的可能性很大2. (2分)下列说法正确的是()A . 任何事件的概率总是在(0,1]之间B . 频率是客观存在的,与试验次数无关C . 随着试验次数的增加,事件发生的频率一般会稳定于概率D . 概率是随机的,在试验前不能确定3. (2分)某市交警部门在调查一起车祸过程中,所有的目击证人都指证肇事车是一辆普通桑塔纳出租车,但由于天黑,均未看清该车的车牌号码及颜色.该市有两家出租车公司,其中甲公司有100辆桑塔纳出租车,3 000辆帕萨特出租车,乙公司有3 000辆桑塔纳出租车,100辆帕萨特出租车,交警部门应认定肇事车为哪个公司的车辆较合理()A . 甲公司B . 乙公司C . 甲与乙公司D . 以上都对4. (2分) (2018高一下·贺州期末) 下列说法正确的是()A . 一枚骰子掷一次得到2点的概率为,这说明一枚骰子掷6次会出现一次2点B . 某地气象台预报说,明天本地降水的概率为70%,这说明明天本地有70%的区域下雨,30%的区域不下雨C . 某中学高二年级有12个班,要从中选2个班参加活动,由于某种原因,一班必须参加,另外再从二至十二班中选一个班,有人提议用如下方法:掷两枚骰子得到的点数是几,就选几班,这是很公平的方法D . 在一场乒乓球赛前,裁判一般用掷硬币猜正反面来决定谁先打球,这应该说是公平的5. (2分)对空中飞行的飞机连续射击两次,每次发射一枚炮弹,设A={两次都击中飞机},B={两次都没击中飞机},C={恰有一次击中飞机},D={至少有一次击中飞机},下列关系不正确的是()A . A⊆DB . B∩D=C . A∪C=DD . A∪B=B∪D二、填空题 (共4题;共4分)6. (1分)已知随机事件A发生的频率是0.02,事件A出现了10次,那么可能共进行了________次试验.7. (1分)已知某厂的产品合格率为90%,抽出20件产品检查,其中的合格产品最可能有________件.8. (1分)管理人员从一池塘中捞出30条鱼做上标记,然后放回池塘,将带标记的鱼完全混合于鱼群中.10天后,再捕上50条,发现其中带标记的鱼有2条. 根据以上收据可以估计该池塘有________条鱼.9. (1分)玲玲和倩倩下象棋,为了确定谁先走第一步,玲玲对倩倩说:“拿一个飞镖射向如图所示的靶中,若射中区域所标的数字大于3,则我先走第一步,否则你先走第一步.”你认为这个游戏规则公平吗?________.(填“公平”或“不公平”)三、解答题 (共3题;共40分)10. (15分)某水产试验厂实行某种鱼的人工孵化,10 000个鱼卵能孵化8 513尾鱼苗,根据概率的统计定义解答下列问题:(1)这种鱼卵的孵化率(孵化概率)是多少?(2) 30 000个鱼卵大约能孵化多少尾鱼苗?(3)要孵化5 000尾鱼苗,大概需要多少个鱼卵?(精确到百位)11. (10分) (2018高一下·南阳期中) 由经验得知,在某商场付款处排队等候付款的人数及概率如表:排队人数人以上概率(1)至多有人排队的概率是多少?(2)至少有人排队的概率是多少?12. (15分)(2016·赤峰模拟) 某地区业余足球运动员共有15000人,其中男运动员9000人,女运动员6000人,为调查该地区业余足球运动员每周平均踢足球占用时间的情况,采用分层抽样的方法,收集300位业务足球运动员每周平均踢足球占用时间的样本数据(单位:小时)得到业余足球运动员每周平均踢足球所占用时间的频率分布直方图(如图所示),其中样本数据分组区间为:(0,2],(2,4],(4,6],(6,8],(8,10],(10,12].将“业务运动员的每周平均踢足球时间所占用时间超过4小时”定义为“热爱足球”.附:K2=P(K2≥k0)0.100.050.0100.005k0 2.706 3.841 6.6357.879(1)应收集多少位女运动员样本数据?(2)估计该地区每周平均踢足球所占用时间超过4个小时的概率.(3)在样本数据中,有80位女运动员“热爱足球”.请画出“热爱足球与性别”列联表,并判断是否有99%的把握认为“热爱足球与性别有关”.参考答案一、单选题 (共5题;共10分)1-1、2-1、3-1、4-1、5-1、二、填空题 (共4题;共4分)6-1、7-1、8-1、9-1、三、解答题 (共3题;共40分)10-1、10-2、10-3、11-1、11-2、12-1、12-2、12-3、。

高中数学必修3章节训练-第3章3.3.1同步训练及解析

高中数学必修3章节训练-第3章3.3.1同步训练及解析

人教A 高中数学必修3同步训练1.面积为S 的△ABC 中,D 是BC 的中点,向△ABC 内部投一点,那么点落在△ABD 内的概率为( ) A.12 B.13 C.14 D.16解析:选A.向△ABC 内部投一点的结果有无限个,属于几何概型.设点落在△ABD 内为事件M ,则P (M )=△ABD 的面积△ABC 的面积=12. 2.一个红绿灯路口,红灯亮的时间为30秒,黄灯亮的时间为5秒,绿灯亮的时间为45秒.当你到达路口时,恰好看到黄灯亮的概率是( )A.112B.38C.116D.56解析:选C.到达路口看到红灯或黄灯或绿灯亮是一次试验,则该试验的结果有无限个,属于几何概型.设看到黄灯亮为事件A ,构成事件A 的测度是5,试验的全部结果构成的区域测度是30+5+45=80,则P (A )=580=116. 3.在半径为2的球O 内任取一点P ,则|OP |>1的概率为( )A.78B.56C.34D.12解析:选A.V 球=43π×23=323π, 当|OP |≤1时,球的体积为43π×13=43π, |OP |>1的概率为P =1-43π43π×23=78. 4.在区间[-1,2]上随机取一个数x ,则|x |≤1的概率为________.解析:由|x |≤1,得-1≤x ≤1.由几何概型的概率求法知,所求的概率P =区间[-1,1]的长度区间[-1,2]的长度=23. 答案:231.先将一个棱长为3的正方体木块的六个面分别涂上颜色,再将该正方体均匀切割成棱长为1的小正方体,现从切好的小正方体中任取一块,则所得正方体的六个面均没有涂色的概率是( )A.14B.16C.19D.127解析:选D.由题意,正方体被切割成27块,六个面均没有涂色的只有最中间那一块,则其概率为127.故选D. 2.在2010年山东省召开的全国糖茶博览会期间,4路公交车由原来的每15分钟一班改为现在的每10分钟一班,在车站停1分钟,则乘客到达站台立即乘上车的概率是( ) A.110 B.19C.111D.910解析:选C.记“乘客到达站台立即乘上车”为事件A ,则A 所占时间区域长度为1 min ,而整个区域的时间长度为11 min ,故由几何概型的概率公式,得P (A )=111. 3.x 是[-4,4]上的一个随机数,则x 满足x 2+x -2≤0的概率是( )A.12B.38C.58D .0 解析:选B.求出x 2+x -2≤0的解集为[-2,1],区间[-2,1]的长度为3,区间[-4,4]的长度为8,长度之比即是所求的概率为38.故选B. 4.将一个长与宽不等的长方形,沿对角线分成四个区域(如图所示),并涂上四种颜色,中间装个指针,使其可以自由转动,则对指针停留的可能性下列说法正确的是( )A .一样大B .蓝白区域大C .红黄区域大D .由指针转动圈数决定解析:选B.指针停留在哪个区域的可能性大,即表明该区域的张角大,显然,蓝、白区域大.故选B.5.设A 为圆周上一定点,在圆周上等可能地任取一点与A 连接,则弦长超过半径的概率为( )A.12B.13C.34D.23解析:选D.如图所示,图中AB =AC =OB (半径),则弦长超过半径,即是动点落在阴影部分所在的扇形圆弧上,由几何概型的概率计算公式,得P =240πOB1802πOB =23.故选D.6.在面积为S 的△ABC 的内部任取一点P ,则△PBC 的面积小于S 2的概率为( ) A.14 B.12 C.34 D.23解析:选C.EF 为△ABC 的中位线.当点P 位于四边形BEFC 内时,S △PBC 的面积小于S 2, 又∵S △AEF =14S ,S BEFC =34S . ∴△PBC 的面积小于S 2的概率为P =34S S =34. 7. 如图,在平面直角坐标系内,射线OT 落在60°角的终边上,任作一条射线OA ,则射线OA落在∠xOT 内的概率为________.解:记“射线OA 落在∠xOT 内”为事件A .构成事件A 的区域测度是60°,所有基本事件对应的区域测度是360°,所以由几何概型的概率公式得P (A )=60°360°=16. 答案:168.有一个底面圆的半径为1、高为2的圆柱,点O 为这个圆柱底面圆的圆心,在这个圆柱内随机取一点P ,则点P 到点O 的距离大于1的概率为________.解析:先求点P 到点O 的距离小于1或等于1的概率,圆柱的体积V 圆柱=π×12×2=2π,以O 为球心,1为半径且在圆柱内部的半球的体积V 半球=12×43π×13=23π.则点P 到点O 的距离小于1或等于1的概率为:23π2π=13,故点P 到点O 的距离大于1的概率为:1-13=23. 答案:239.如图,正方形OABC 的边长为2.(1)在其四边或内部取点P (x ,y ),且x ,y ∈Z ,则事件“|OP |>1”的概率________.(2)在其内部取点P (x ,y ),且x ,y ∈R ,则事件“△POA ,△PAB ,△PBC ,△PCO 的面积均大于23”的概率是________. 解析:(1)在正方形的四边和内部取点,P (x ,y )且x ,y ∈Z ,所有可能的事件是(0,0),(0,1),(0,2),(1,0),(1,1),(1,2),(2,0),(2,1),(2,2),其中满足|OP |>1的事件是(0,2),(1,1),(1,2),(2,0),(2,1),(2,2),所以满足|OP |>1的概率为23. (2)在正方形内部取点,其总的事件的包含的区域面积为4,由于各边长为2,所以要使△POA ,△PAB ,△PBC ,△PCO 的面积均大于23,应该三角形的高大于23,所以这个区域为每个边长从两端各去掉23后剩余的正方形,其面积为23×23=49,所以满足条件的概率为494=19. 答案:(1)23 (2)1910.平面上画了两条平行且相距2a 的平行线.把一枚半径r <a 的硬币任意投掷在这个平面上,求硬币不与任一条平行线相碰的概率.解:设事件A :“硬币不与任一条平行线相碰”.为了确定硬币的位置,由硬币中心O 向靠得最近的平行线引垂线OM ,垂足为M ,参看图,这样线段OM 长度(记作|OM |)的取值范围是[0,a ],只有当r <|OM |≤a 时,硬币不与平行线相碰,其长度范围是(r ,a ].所以P (A )= r ,a ]的长度[0,a ]的长度=a -r a . 11.街道旁边有一游戏:在铺满边长为9 cm 的正方形塑料板的宽广地面上,掷一枚半径为1 cm 的小圆板,规则如下:每掷一次交5角钱,若小圆板压在边上,可免费重掷一次;若小圆板全部落在正方形内可再交5角,再掷一次;若小圆板压在塑料板的顶点上,可获得一元钱.试问:(1)小圆板压在塑料板的边上的概率是多少?(2)小圆板压在塑料板顶点上的概率是多少?解:(1)如图(1)所示,因为O 落在正方形ABCD 内任何位置是等可能的,小圆板与正方形ABCD 的边相交接是在小圆板的中心O 到与它靠近的边的距离不超过1 cm 时,所以O 落在图(1)中的阴影部分时,小圆板就能与塑料板的边相交接.因此,试验全部结果构成的区域是边长为9 cm 的正方形,设事件A :“小圆板压在塑料板边上”.S 正方形=9×9=81(cm 2),S 阴影=9×9-7×7=32(cm 2).故所求概率P (A )=3281. (2)小圆板与正方形的顶点相交接是在小圆板的中心O 到正方形ABCD 的顶点的距离不超过小圆板的半径1 cm 时,如图(2)所示的阴影部分.设事件B :“小圆板压在塑料板顶点上”.S 正方形=9×9=81(cm 2),S 阴影=π×12=π(cm 2),故所求的概率P (B )=π81.12.已知正三棱锥S -ABC 的底面边长为a ,高为h ,在正三棱锥内取一点M ,试求点M 到底面的距离小于h 2的概率. 解:如图,在SA 、SB 、SC 上取点A 1、B 1、C 1,使A 1、B 1、C 1分别为SA 、SB 、SC 的中点,则当点M 位于面ABC 和面A 1B 1C 1之间时,点M 到底面的距离小于h 2.设△ABC 的面积为S ,由△ABC ∽△A 1B 1C 1且相似比为2,得△A 1B 1C 1的面积为S 4.由题意,三棱椎S -ABC 的体积为13Sh ,三棱台A 1B 1C 1-ABC 的体积为13Sh -13·S 4·h 2=13Sh ·78.故P =78.关于数学名言警句大全1、数学家本质上是个着迷者,不迷就没有数学。

高中人教版数学必修3课本练习_习题参考答案

高中人教版数学必修3课本练习_习题参考答案

高中数学必修③课本练习,习题参考答案新心希望教育:RenYongSheng 第一章算法初步1.1算法与程序框图1.1.1算法的概念(p5)1. 解;第一步:输入任意正实数r,第二步:计算第三步:输出圆的面积S2. 解;第一步:给定一个大于l的正整数;第二步:令;第三步:用除,得到余数;第四步:判断“”是否成立,若成立,则i是n的因数;否则,i不是n的因数;第五步:使的值增加l,仍用表示,即令;第六步,判断“”是否成立.若是,则结束算法;否则,返回第三步1.1.2程序框图与算法的基本逻辑(P19)1.解;算法步骤:第一步,给定精确地d,令i=1第二步,取出的到小数点后第i位的不足近似值,记为a;取出的到小数点后第i位的过剩近似值,记为b,第三步,计算第四步,若m<d,则执行第五步;否则,将i的值增加1,返回第二步.第五步,输出程序框图如下图所示:1.1算法与程序框图(P20)A 组解;题目:在国内寄平信(外埠),每封信的质量x(克)不超过60克时的邮费(单位:分)标准为,试写出计算邮费的算法并画出程序框图。

算法如下:第一步,输入质量数x。

第二步,判断是否成立,若是,则输出y=120,否则执行第三步。

第三步,判断是否成立,若是,则输出y=240,否则,输出y=360,算法结束。

程序框图如下图所示:(注释:条件结构)2.解:算法如下:第一步,i=1,S=0.第二步,判断是否成立,若成立,则执行第三步,否则,执行第四步。

第三步,,i=i+1,返回第二步。

第四步,输出S.程序框图如下图所示:(注释:循环结构)3. 解:算法如下:第一步,输入人数x,设收取的卫生费为y元。

第二步,判断x>3是否成立,若不成立,y=5,输出y;否则,输出y.程序框图如下图所示:(注释:条件结构)BB 组1. 解:分析:我们设计对于一般的二元一次方程组(其中)的通用算法:第一步,,得(即) (3)第二步,解(3),得 (4)第三步,将(4)代入(1),得,因此,只要输入相应的未知数的系数和常数项,就能计算出方程组的解,即可以输出x、y的值,用顺序结构即可。

高中数学第三章函数3.1函数的概念与性质3.1.3函数的奇偶性第课时学案含解析B版第一册

高中数学第三章函数3.1函数的概念与性质3.1.3函数的奇偶性第课时学案含解析B版第一册

3。

1。

3 函数的奇偶性第2课时学习目标1.掌握函数奇偶性的简单应用。

2.了解函数图像的对称轴、对称中心满足的条件。

自主预习1.函数的奇偶性与单调性的性质(1)若f(x)为奇函数且在区间[a,b](a<b)上为增函数(减函数),则f(x)在[—b,—a]上为(函数),即在关于原点对称的区间上单调性.(2)若f(x)为偶函数且在区间[a,b](a〈b)上为增函数(减函数),则f(x)在[-b,-a]上为(函数),即在关于原点对称的区间上单调性.2.奇偶函数的运算性质在公共定义域内:(1)两个奇函数的和函数是函数,积函数是函数;(2)两个偶函数的和函数、积函数都是函数;(3)一个奇函数、一个偶函数的积函数是函数。

3.函数的对称轴与对称中心(1)若函数f(x)的定义域为D,对∀x∈D都有f(T+x)=f (T—x)(T为常数),则x=是f(x)的对称轴.(2)若函数f(x)的定义域为D,对∀x∈D都有f(a+x)+f(a-x)=2b(a,b为常数),则是f(x)的对称中心.课堂探究题型一利用奇偶性求函数解析式例1(1)函数f(x)是R上的偶函数,且当x<0时,f(x)=x(x-1),则当x〉0时,f(x)=。

(2)函数f(x)为R上的奇函数,当x〉0时,f(x)=-2x2+3x+1,则f(x)=.【训练1】(1)设函数f(x)是定义在R上的奇函数,当x〈0时,f(x)=-x2-x,求函数f(x)的解析式;(2)已知f(x)是R上的偶函数,当x∈(0,+∞)时,f(x)=x2+x—1,当x∈(-∞,0)时,求f(x)的解析式.题型二利用奇偶性研究函数的性质例2研究函数f(x)=x2—2|x|+1的单调性,并求出f(x)的最值.【训练2】研究函数f(x)=x+1的单调性,并写出函数的值x域。

题型三证明函数图像的对称性例3求证:二次函数f(x)=—x2—2x+1的图像关于x=-1对称。

【训练3】证明函数f(x)=x的图像关于点(—1,1)对x+1称.课堂练习1。

高中数学人教A版必修三课时作业:第3章 概率 3.1.2 Word版含答案

高中数学人教A版必修三课时作业:第3章 概率 3.1.2 Word版含答案
8.某人抛掷一枚硬币100次,结果正面朝上有53次.设正面朝上为事件A,则事件A出现的频数为________,事件A出现的频率为________.
答案:530.53
9.掷一颗骰子,骰子落地时向上的数是偶数但不是3的倍数的概率是________.
答案:
解析:由题意,骰子落地时向上的点数为2,4,占全部结果的 = .
3.1.2概率的意义
课时目标
1.能够正确地理解概率的意义,会用概率的观点解释某些自然或社会现象.
2.能够正确认识概率思想在决策中的指导意义.
识记强化
概率的正确理解
随机事件在一次试验中发生与否是随机的,但随机性中含有规律性,认识了这种随机性中的规律性,就能使我们比较准确地预测随机事件发生的可能性.
课时作业
3
4
5
6
7
2点
3
4
5
6
7
8
3点
4
5
6
7
8
9
4点
5
6
7
8
9
10
5点
6
7
8
9
10
11
6点
7
8
9
10
11
12
由表格可以看出:两个骰子的点数相加之和为7的情形有6种,而两个骰子的点数相加之和为9的情形只有4种,所以小王赢的概率大.
11.在孟德尔豌豆试验中,若用纯黄色圆粒和纯绿色皱粒作为父本进行杂交,试求子一代结果中性状分别为黄色圆粒、黄色皱粒、绿色圆粒和绿色皱粒的比例约为多少?
A.0.53 B.0.5
C.0.47 D.0.37
答案:A
解析:取到号码为奇数Байду номын сангаас次数为10+8+6+18+11=53.∴f= =0.53.

最新人教版高中数学必修3第三章同步训练1(附答案)

第三章概率3.1事件与概率3.1.1随机现象3.1.2事件与基本事件空间1.下列现象:①连续掷一枚硬币两次,两次都出现正面向上;②异性电荷,相互吸引;③标准大气压下,水在1 ℃结冰,其中是随机现象的是()A.①B.②C.③D.①③2.下列事件中,不可能事件是()A.三角形的内角和为180°B.三角形中大角对大边,小角对小边C.锐角三角形中两内角和小于90°D.三角形中任两边之和大于第三边3.投掷两颗骰子,点数之和为8所含的基本事件有__________种.4.从1,2,3,…,30中任意选一个数,这个试验的基本事件空间为__________,“它是偶数”这一事件包含的基本事件个数为__________.答案:1.A②是必然现象,③是不可能现象.轻轻告诉你利己之心使我们受到迷惑,只有正义的希望才不会使我们误入歧途。

——卢梭2.C锐角三角形中两内角和大于90°.3.5基本事件为(2,6),(3,5),(4,4),(5,3),(6,2).4.Ω={1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16,17,18,19,20,21,22,23,24,25,26,27,28,29,30} 151.下列现象是必然现象的是()A.|x-1|=0 B.x2+1<0C.x+1>0 D.(x+1)2=1+2x+x22.先后抛掷2枚均匀的一分,二分的硬币,观察落地后硬币的正反面情况,则下列事件包含3个基本事件的是()A.“至少一枚硬币正面向上”B.“只有一枚硬币正面向上”C.“两枚硬币都是正面向上”D.“两枚硬币一枚正面向上,另一枚反面向上”3.有下列事件:(1)射击运动员杜丽射击一次命中10环;(2)太阳从东方升起;(3)在高一(1)班有三位同学生日在同一天;(4)从若干把外形相同的不同钥匙中随意取出一把,恰好打开门锁.其中是随机事件的有__________.4.写出下列试验的基本事件空间:(1)甲、乙两队进行一场足球赛,观察甲队比赛结果(包括平局)__________;(2)从含有6件次品的50件产品中任取4件,观察其中次品数__________.5.一个盒子中放有5个完全相同的小球,其上分别标有号码1,2,3,4,5.从中任取一个,记下号数后放回.再取出1个,记下号数后放回,按顺序记录为(x,y),试写出“所得两球的和为6”所包含的基本事件.6.一套分上、中、下三册的选集,随机地放到书架上.(1)写出这个试验的基本事件空间;(2)求这个试验基本事件的总数;(3)写出“上册在三册中的最左边”这一事件所包含的基本事件.答案:1.D2.A“至少一枚硬币正面向上”包括“1分正面向上,2分正面向上”,“1分正面向上,2分正面向下”,“1分正面向下,2分正面向上”三个基本事件.3.(1)(3)(4)(2)是必然事件.4.(1)Ω={胜,平,负}(2)Ω={0,1,2,3,4}5.解:由图可直观的看出,“所得两球的和为6”包含以下5个基本事件:(1,5),(2,4),(3,3),(4,2),(5,1).6.解:(1)基本事件空间Ω={(上,中,下),(上,下,中),(中,上,下),(中,下,上),(下,中,上),(下,上,中)}.(2)这个试验的基本事件共有6个.(3)“上册在三册中的最左边”这一事件包含下列2个基本事件:(上,中,下),(上,下,中).1.在1,2,3,…,10这10个数字中,任取3个数字,那么“这3个数字之和大于6”这一事件是()A.必然事件B.不可能事件C.随机事件D.以上选项均不正确答案:C因为1+2+3=6,故3个数字之和大于6是随机事件.2.同时投掷两枚大小相同的骰子,用(x ,y)表示结果,记A 为“所得点数之和小于5”,则事件A 包含的基本事件数是 ( )A .3B .4C .5D .6答案:D (1,1),(1,2),(1,3),(2,1),(2,2),(3,1)共6个基本事件.3.从12个同类产品(其中有10个正品,2个次品)中任意抽取3个的必然事件是 ( )A .3个都是正品B .至少有1个次品C .3个都是次品D .至少有1个是正品答案:D 12个产品中只有2个次品,∴从中抽取3个至少有1个正品.4.已知集合A ={-9,-7,-5,-3,-1,0,2,4,6,8},从集合A 中选取不相同的两个数,构成平面直角坐标系上的点,观察点的位置,则事件“点落在x 轴上”包含的基本事件共有 ( )A .7个B .8个C .9个D .10个答案:C 点落在x 轴上所包含的基本事件的特征是(x,0),又依题意,x ≠0,且A 中有9个非零常数,∴共包含9个基本事件.5.①“从自然数中任取两数,其中一个是偶数”,这是__________事件;②“从自然数中任取连续两数,乘积是偶数”,这是__________事件;③“从自然数中任取两数,差为12”,这是__________事件. 答案:①随机 ②必然 ③不可能6.质点O 从直角坐标平面上的原点开始,等可能地向上、下、左、右四个方向移动,每次移动一个单位长度,观察该点平移4次后的坐标,则事件“平移后的点位于第一象限”是__________事件.答案:随机7.“从0、1、2、3、4中不返回地取两次,每次取一个数,构成有序实数对(x ,y),x 表示第一次取出的数字,y 表示第二次取出的数字”,则这个事件的基本事件空间是__________.答案:Ω={(0,1),(0,2),(0,3),(0,4),(1,0),(1,2),(1,3),(1,4),(2,0),(2,1),(2,3),(2,4),(3,0),(3,1),(3,2),(3,4),(4,0),(4,1),(4,2),(4,3)}8.将数字1,2,3,4任意排成一列,试写出该试验的基本事件空间,并指出事件“得到偶数”包含多少个基本事件.答案:解:将数字1,2,3,4任意排成一列,要考虑顺序性,如基本事件“1234”与“2134”为不同的基本事件.这个试验的基本事件实质是由1,2,3,4四个可组成的没有重复数字的四位数.这个试验的基本事件空间Ω={1234,1243,1324,1342,1423,1432,2134,2143,2314,2341,2413,2431,3124,3142,3214,3241,3412,3421,4123,4132,4213,4231,4312,4321}.其基本事件总数是24.事件“得到偶数”包含12个基本事件.12个基本事件为:1234,1324,1342,1432,2134,2314,3124,3142,3214,3412,4132,4312.9.同时转动如图所示的两个转盘,记转盘①得到的数为x ,转盘②得到的数为y ,结果为(x ,y).(1)写出这个试验的基本事件空间.(2)求这个试验的基本事件的总数.(3)“x+y=5”这一事件包含哪几个基本事件?“x<3且y>1”呢?(4)“xy=4”这一事件包含哪几个基本事件?“x=y”呢?答案:解:(1)Ω={(1,1),(1,2),(1,3),(1,4),(2,1),(2,2),(2,3),(2,4),(3,1),(3,2),(3,3),(3,4),(4,1),(4,2),(4,3),(4,4)};(2)基本事件的总数为16;(3)“x+y=5”包含以下4个基本事件:(1,4),(2,3),(3,2),(4,1);“x<3且y>1”包含以下6个基本事件:(1,2),(1,3),(1,4),(2,2),(2,3),(2,4);(4)“xy=4”包含以下3个基本事件:(1,4),(2,2),(4,1);“x=y”包含以下4个基本事件:(1,1),(2,2),(3,3),(4,4).点评:随机事件的结果是针对条件而言的,要弄清某一随机事件的所有结果,必须首先明确事件发生的条件,由题意按一定的次序写出答案.10.设有一列北上的火车,已知停靠的站由南至北分别为S1,S2,…,S1010站.若甲在S3站买票,乙在S6站买票.设基本事件空间Ω表示火车所有可能停靠的站,令A表示甲可能到达的站的集合,B表示乙可能到达的站的集合.(1)写出该事件的基本事件空间Ω;(2)写出事件A、事件B包含的基本事件;(3)铁路局需为该列车准备多少种北上的车票?答案:解:(1)Ω={S1,S2,S3,S4,S5,S6,S7,S8,S9,S10};(2)A={S4,S5,S6,S7,S8,S9,S10};B={S7,S8,S9,S10};(3)铁路局需要准备从S1站发车的车票共计9种,从S2站发车的车票共计8种,……从S9站发车的车票1种,合计共9+8+…+2+1=45(种).。

高中数学人教A版必修三课时作业第3章概率3.1.1含答案

3.1.1 随机事件的概率课时目标1.了解随机事件、必然事件、不可能事件的概念,体会确定性现象与随机现象的含义. 2.理解概率及频率与概率的区别及联系.识记强化1.事件的概念 (1)必然事件:在条件S 下,一定会发生的事件,叫做相对于条件S 的必然事件. (2)不可能事件:在条件S 下,一定不会发生的事件,叫做相对于条件S 的不可能事件. (3)确定事件:必然事件与不可能事件统称为相对于条件S 的确定事件. (4)随机事件在条件S 下,可能发生也可能不发生的事件,叫做相对于条件S 的随机事件. 2.频数与频率在相同的条件S 下重复n 次试验,观察某一事件A 是否出现,称n 次试验中事件A 出现的次数n A 为事件A 出现的频数,称事件A 出现的比例f n (A )=n An为事件A 出现的频率.3.概率对于给定的事件A ,如果随着试验次数的增加,事件A 发生的频率f n (A )稳定在[0,1]中的某一个常数上,把这个常数记作P (A ),称为事件A 的概率.课时作业一、选择题1.将一根长为a 的铁丝随意截成三段,构成一个三角形,此事件是( ) A .必然事件 B .不可能事件 C .确定事件 D .随机事件 答案:D解析:只有任意两段长度之和大于第三段长度时,才能构成三角形,故此事件为随机事件.2.下列说法正确的是( )①频数和频率都反映一个对象在实验总次数中出现的频繁程度; ②每个实验结果出现的频数之和等于实验总次数; ③每个实验结果出现的频率之和不一定等于1; ④概率就是频率. A .① B.①②④ C .①② D.③④ 答案:C3.在n +2件同类产品中,有n 件是正品,2件是次品,从中任意抽出3件产品的必然事件是( )A .3件都是次品B .3件都是正品C .至少有一件是次品D .至少有一件是正品 答案:D4.下列说法正确的是( ) A .任何事件的概率总是在(0,1)之间 B .频率是客观存在的,与试验次数无关C .随着试验次数增加,频率一般会越来越接近概率D .概率是椭机的,在试验前不能确定 答案:C 5.下列说法:①频率反映随机事件的频繁程度,概率反映随机事件发生的可能性大小; ②做n 次随机试验,事件A 发生m 次,则事件A 发生的频率mn就是事件的概率; ③频率是不能脱离n 次试验的试验值,而概率是具有确定性的不依赖于试验次数的理论值;④频率是概率的近似值,而概率是频率的稳定值.其中正确的个数是( )A.1 B.2C.3 D.4答案:C解析:由概率的统计定义可知①、③、④是正确的.6.抛掷一枚硬币出现“正面向上”的概率为0.5是指( )A.正面向上的可能性是50%B.在100次抛掷中恰有50次正面向上C.无论抛掷多少次,总有50次正面向上D.以上说法都不正确答案:A二、填空题7.把一对骰子掷一次,可能出现________种不同结果.答案:36解析:会用列举法列出各种不同的情况.每枚骰子都会出现6种不同的情况,故共有6×6=36种不同的结果.8.下列事件是随机事件的有________.①连续两次掷一枚硬币,两次都出现正面朝上;②异性电荷,相互吸引;③在标准大气压下,水在1℃时结冰.答案:①9.①某地3月6日下雨;②函数y=a x(a>0且a≠1)在定义域上是减函数;③实数的绝对值小于0;④a,b∈R,若a+b=0,则a2=b2;⑤某人射击8次恰有4次中靶.其中必然事件是________,不可能事件是________,随机事件是________.答案:④③①②⑤解析:①是随机事件,某地3月6日可能下雨,也可能不下雨;②是随机事件,函数y=a x(a>1且a≠0)在a>1时为增函数,在0<a<1时为减函数,未给出a值之前很难确定给的a值是大于1还是小于1的;③是不可能事件,任意实数a,总有|a|≥0,故|a|<0不可能发生;。

高中数学(人教版A版必修三)配套课时作业第三章 概率 3.1.2 Word版含答案

概率的意义课时目标.通过实例,进一步理解概率的意义.会用概率的意义解释生活中的实例.了解“极大似然法”和遗传机理中的统计规律..对概率的正确理解随机事件在一次试验中发生与否是随机的,但随机性中含有,认识了这种随机性中的,就能比较准确地预测随机事件发生的..游戏的公平性()裁判员用抽签器决定谁先发球,不管哪一名运动员先猜,猜中并取得发球的概率均为,所以这个规则是的.()在设计某种游戏规则时,一定要考虑这种规则对每个人都是的这一重要原则..决策中的概率思想如果我们面临的是从多个可选答案中挑选正确答案的决策任务,那么“”可以作为决策的准则,这种判断问题的方法称为极大似然法,极大似然法是统计中重要的统计思想方法之一..天气预报的概率解释天气预报的“降水”是一个,“降水概率为”指明了“降水”这个随机事件发生的为,在一次试验中,概率为的事件也,因此,“昨天没有下雨”并不能说明“昨天的降水概率为”的天气预报是的..孟德尔与遗传机理中的统计规律孟德尔在自己长达七、八年的试验中,观察到了遗传规律,这种规律是一种统计规律.一、选择题.某气象局预报说,明天本地降雪的概率为,下列解释正确的是().明天本地有的区域下雪,的区域不下雪..明天本地下雪的可能性是..明天本地全天有的时间下雪,的时间不下雪..明天本地一定下雪..已知某厂的产品合格率为,现抽出件产品检查,则下列说法正确的是().合格产品少于件.合格产品多于件.合格产品正好是件.合格产品可能是件.每道选择题有个选择项,其中只有个选择项是正确的,某次考试共有道选择题,某人说:“每个选择项正确的概率是,我每题都选择第一个选择项,则一定有道题选择结果正确”,这句话().正确.错误.不一定.无法解释.同时向上抛掷个质量均匀的铜板,落地时这个铜板全都正面向上,则这个铜板更可能是下面哪种情况().这个铜板两面是一样的.这个铜板两面是不一样的.这个铜板中有个两面是一样的,另外个两面是不一样的.这个铜板中有个两面是一样的,另外个两面是不一样的.某市交警部门在调查一起车祸过程中,所有的目击证人都指证肇事车是一辆普通桑塔纳出租车,但由于天黑,均未看清该车的车牌号码及颜色,而该市有两家出租车公司,其中甲公司有辆桑塔纳出租车,辆帕萨特出租车,乙公司有辆桑塔纳出租车,辆帕萨特出租车,交警部门应先调查哪个公司的车辆较合理().甲公司.乙公司.甲与乙公司.以上都对.从个同类产品(其中个正品,个次品),任意抽取件产品,下列说法中正确的是().抽出的件产品中必有件正品,一件次品.抽出的件产品中可能有件正品,一件次品.抽取件产品时逐个不放回抽取,前件是正品,第件必是次品.抽取件产品时,不可能抽得件正品,一件次品题号。

高一数学人教版必修3第三章课时提升作业 十七 3.1.3

课时提升作业十七概率的基本性质(25分钟60分)一、选择题(每小题5分,共25分)1.若A,B是互斥事件,则( )A.P(A∪B)<1B.P(A∪B)=1C.P(A∪B)>1D.P(A∪B)≤1【解析】选D.因为A,B互斥,所以P(A∪B)=P(A)+P(B)≤1.(当A,B对立时,P(A∪B)=1)2.对空中飞行的飞机连续射击两次,每次发射一枚炮弹,设A={两次都击中飞机},B={两次都没击中飞机},C={恰有一炮弹击中飞机},D={至少有一炮弹击中飞机},下列关系不正确的是( )A.A⊆DB.B∩D=C.A∪C=DD.A∪B=B∪D【解析】选D.“恰有一炮弹击中飞机”指第一枚击中第二枚没中或第一枚没中第二枚击中,“至少有一炮弹击中”包含两种情况:一种是恰有一炮弹击中,一种是两炮弹都击中,所以A∪B≠B∪D.3.下列各组事件中,不是互斥事件的是( )A.一个射手进行一次射击,命中环数大于8与命中环数小于6B.统计一个班的数学成绩,平均分不低于90分与平均分不高于90分C.同时投掷3枚硬币,恰有两枚正面向上与至多一枚正面向上D.检验某种产品,合格率高于70%与合格率低于70%【解析】选B.对于B,设事件A1为平均分不低于90分,事件A2为平均分不高于90分,则A1∩A2为平均分等于90分,A1,A2可能同时发生,故它们不是互斥事件. 【补偿训练】从装有十个红球和十个白球的罐子里任取2球,下列情况中是互斥而不对立的两个事件是( )A.至少有一个红球;至少有一个白球B.恰有一个红球;都是白球C.至少有一个红球;都是白球D.至多有一个红球;都是红球【解析】选B.对于A,“至少有一个红球”可能为一个红球、一个白球,“至少有一个白球”可能为一个白球、一个红球,故两事件可能同时发生,所以不是互斥事件;对于B,“恰有一个红球”,则另一个必是白球,与“都是白球”是互斥事件,而任取2个球还有都是红球的情形,故两事件不是对立事件;对于C,“至少有一个红球”为都是红球或一红一白,与“都是白球”显然是对立事件;对于D,“至多有一个红球”为都是白球或一红一白,与“都是红球”是对立事件.4.某城市2017年的空气质量状况如表所示:其中污染指数T≤50时,空气质量为优;50<T≤100时,空气质量为良;100<T≤150时,空气质量为轻微污染.该城市2017年空气质量达到良或优的概率为( )A. B. C. D.【解析】选A.所求概率为++=.5.口袋内装有一些大小相同的红球、白球和黑球,从中摸出1个球,摸出红球的概率是0.52,摸出白球的概率是0.28,那么摸出黑球的概率是( )A.0.2B.0.28C.0.52D.0.8【解析】选 A.本题主要考查互斥事件的概率加法公式.设“摸出红球”为事件M,“摸出白球”为事件N,“摸出黑球”为事件E,则P(M)+P(N)+P(E)=1,所以P(E)=1-P(M)-P(N)=1-0.52-0.28=0.2.二、填空题(每小题5分,共15分)6.在掷骰子的游戏中,向上的数字为5或6的概率为.【解析】记事件A为“向上的数字为5”,事件B为“向上的数字为6”,则A与B互斥.所以P(A∪B)=P(A)+P(B)=+=.答案:7.同时抛掷两枚骰子,既不出现5点也不出现6点的概率为,则5点或6点至少出现一个的概率是.【解析】记既没有5点也没有6点的事件为A,则P(A)=,5点或6点至少出现一个的事件为B.因为A∩B=∅,A∪B为必然事件,所以A与B是对立事件,则P(B)=1-P(A)=1-=.故5点或6点至少出现一个的概率为.答案:8.(2018·泰安高一检测)经统计某储蓄所一个窗口等候的人数及相应的概率如下:(1)t= .(2)至少3人排队等候的概率是.【解析】(1)因为t+0.3+0.16+0.3+0.1+0.04=1,所以t=0.1.(2)至少3人包括3人,4人,5人以及5人以上,且这三类是互斥的,所以概率为0.3+0.1+0.04=0.44.答案:(1)0.1 (2)0.44三、解答题(每小题10分,共20分)9.某保险公司利用随机抽样的方法,对投保的车辆进行抽样,样本车辆中每辆车的赔付结果统计如下:(1)若每辆车的投保金额为2 800元,估计赔付金额大于投保金额的概率.(2)在样本车辆中,车主是新司机的占10%,在赔付金额为4 000元的样本车辆中,车主是新司机的占20%,估计在已投保车辆中,新司机获赔金额为4 000元的概率.【解析】(1)设A表示事件“赔付金额为3 000元”,B表示事件“赔付金额为4 000元”,以频率估计概率得P(A)==0.15,P(B)==0.12,由于投保金额为2 800元,赔付金额大于投保金额的情形是赔付3 000元和4 000元,所以其概率为P(A)+P(B)=0.15+0.12=0.27.(2)设C表示事件“投保车辆中新司机获赔4 000元”,由已知,样本车辆中车主为新司机的有0.1×1 000=100,而赔付金额为4 000元的车辆中车主为新司机的有0.2×120=24,所以在已投保车辆中新司机获赔金额为4 000元的频率为=0.24,由频率估计概率得P(C)=0.24.10.一盒中装有各色球12个,其中5个红球、4个黑球、2个白球、1个绿球.从中随机取出1球,求:(1)取出1球是红球或黑球的概率.(2)取出的1球是红球或黑球或白球的概率.【解析】(1)从12个球中任取1球得红球有5种取法,得黑球有4种取法,得红球或黑球共有5+4=9种不同取法,任取1球有12种取法.所以任取1球是红球或黑球的概率为P1==.(2)从12个球中任取1球得红球有5种取法,得黑球有4种取法,得白球有2种取法,从而得红球或黑球或白球的概率为=.【一题多解1】(利用互斥事件求概率)记事件A1={任取1球为红球},A2={任取1球为黑球},A3={任取1球为白球},A4={任取1球为绿球},则P(A1)=,P(A2)=,P(A3)=,P(A4)=.根据题意知,事件A1,A2,A3,A4彼此互斥,由互斥事件概率公式,得(1)取出1球为红球或黑球的概率为P(A1∪A2)=P(A1)+P(A2)=+=.(2)取出1球为红球或黑球或白球的概率为P(A1∪A2∪A3)=P(A1)+P(A2)+P(A3)=++=.【一题多解2】(利用对立事件求概率)(1)由一题多解1知,取出1球为红球或黑球的对立事件为取出1球为白球或绿球,即A1∪A2的对立事件为A3∪A4,所以取得1球为红球或黑球的概率为P(A1∪A2)=1-P(A3∪A4)=1-P(A3)-P(A4)=1--==.(2)A1∪A2∪A3的对立事件为A4,所以P(A1∪A2∪A3)=1-P(A4)=1-=.(20分钟40分)一、选择题(每小题5分,共10分)1.抛掷一枚骰子,记事件A为“落地时向上的点数是奇数”,事件B为“落地时向上的点数是偶数”,事件C为“落地时向上的点数是3的倍数”,事件D为“落地时向上的点数是6或4”,则下列每对事件是互斥事件但不是对立事件的是( ) A.A与B B.B与C C.A与D D.C与D【解析】选C.A与B互斥且对立;B与C有可能同时发生,即出现6,从而不互斥;A 与D不会同时发生,从而A与D互斥,又因为还可能出现2,故A与D不对立;C与D有可能同时发生,从而不互斥.2.某家庭电话,打进的电话响第一声时被接的概率为,响第二声时被接的概率为,响第三声时被接的概率为,响第四声时被接的概率为;则电话在响前四声内被接的概率为( )A. B. C. D.【解析】选B.设“电话响第一声被接”为事件A,“电话响第二声被接”为事件B,“电话响第三声被接”为事件C,“电话响第四声被接”为事件D,则A,B,C,D两两互斥,从而P(A+B+C+D)=P(A)+P(B)+P(C)+P(D)=+++=.二、填空题(每小题5分,共10分)3.甲、乙两人进行中国象棋比赛,甲赢的概率为0.5,下和的概率为0.2,则甲不输的概率为.【解析】甲不输与甲、乙两人下成和棋是互斥事件,所以根据互斥事件的概率计算公式可以知道甲不输的概率P=0.2+0.5=0.7.答案:0.74.甲射击一次,中靶概率是p1,乙射击一次,中靶概率是p2,已知,是方程x2-5x+6=0的根,且p1满足方程x2-x+=0.则甲射击一次,不中靶概率为;乙射击一次,不中靶概率为.【解析】由p1满足方程x2-x+=0知,-p1+=0,解得p1=;因为,是方程x2-5x+6=0的根,所以·=6,解得p2=,因此甲射击一次,不中靶概率为1-=,乙射击一次,不中靶概率为1-=.答案:三、解答题(每小题10分,共20分)5.(2018·济宁高一检测)人群中各种血型的人所占的比例见下表:已知同种血型的人可以输血,O型血可以给任一种血型的人输血,任何人的血都可以输给AB型血的人,其他不同血型的人不能互相输血,小明是B型血,若他因病需要输血,问:(1)任找一个人,其血可以输给小明的概率是多少?(2)任找一个人,其血不能输给小明的概率是多少?【解析】(1)对任一人,其血型为A,B,AB,O型血的事件分别记为A′,B′,C′, D′,它们是互斥的.由已知,有P(A′)=0.28,P(B′)=0.29,P(C′)=0.08,P(D′)=0.35.因为B,O型血可以输给B型血的人,故“可以输给B型血的人”为事件B′∪D′,根据概率的加法公式,得P(B′∪D′)=P(B′)+ P(D′)=0.29+0.35=0.64.(2)由于A,AB型血不能输给B型血的人,故“不能输给B型血的人”为事件A′∪C′,且P(A′∪C′)=P(A′)+P(C′)=0.28+0.08=0.36.【易错警示】不能由于只有四种血型就简单地认为四种情况的概率都是0.25.本题中某种血型的人所占的比例其实就是任找一人,他是该血型的概率.【补偿训练】袋中有12个小球,分别为红球、黑球、黄球、绿球,从中任取一球,得到红球的概率是,得到黑球或黄球的概率是,得到黄球或绿球的概率是,试求得到黑球、得到黄球、得到绿球的概率各是多少?【解析】从袋中任取一球,记事件“得到红球”、“得到黑球”、“得到黄球”、“得到绿球”分别为A,B,C,D,则P(A)=,P(B∪C)=P(B)+P(C)=,P(C∪D)=P(C)+P(D)=,P(B∪C∪D)=P(B)+P(C)+P(D)=1-P(A)=1-=.则由解得即得到黑球、得到黄球、得到绿球的概率分别为,,.6.(2018·荆州高一检测)某超市为了解顾客的购物量及结算时间等信息,安排一名员工随机收集了在该超市购物的100位顾客的相关数据,如表所示.已知这100位顾客中的一次购物量超过8件的顾客占55%. (1)确定x,y的值,并估计顾客一次购物的结算时间的平均值.(2)求一位顾客一次购物的结算时间不超过2分钟的概率.(将频率视为概率) 【解析】(1)由已知得,25+y+10=55,x+y=35,所以x=15,y=20,该超市所有顾客一次购物的结算时间组成一个总体,所收集的100位顾客一次购物的结算时间可视为一个容量为100的简单随机样本,顾客一次购物的结算时间的平均值可用样本平均数估计,其估计值为:- 11 -=1.9(分钟).(2)记A 为事件“一位顾客一次购物的结算时间不超过2分钟”,A 1,A 2,A 3分别表示事件“该顾客一次购物的结算时间为1分钟”“该顾客一次购物的结算时间为1.5分钟”“该顾客一次购物的结算时间为2分钟”.将频率视为概率,得 P(A 1)==,P(A 2)==, P(A 3)==.因为A=A 1∪A 2∪A 3,且A 1,A 2,A 3是互斥事件,所以P(A)=P(A 1∪A 2∪A 3)=P(A 1)+P(A 2)+P(A 3)=++=.故一位顾客一次购物的结算时间不超过2分钟的概率为.。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。


A.对立事件
B.不可能事件 C.互斥但不对立事件 D.以上答案都不对 3.给出以下结论:
①互斥事件一定对立;②对立事件一定互斥;③互斥 事件不一定对立;④事件A与B的和事件的概率一定大于事件 A的概率;⑤事件A与B互斥,则有P(A)=1-P(B).
其中正确命题的个数为( C ) A.0个 B.1个 C.2个
D.A不包含B

栏 目 链 接

题型一 理解和判断互斥事件
例1 判断下列每对事件是否为互斥事件. (1)将一枚硬币抛两次,事件A:两次出现正面,事
件B:只有一次出现正面.
(2)某人射击一次,事件A:中靶,事件B:射中9 环. (3)某人射击一次,事件A:射中环数大于5,事件B: 射中环数小于5.

跟 踪 训 练 解析:(1)由于事件C“至多订一种报纸”中包括“只 订甲报”,即事件A与事件C有可能同时发生,故A与C不是 互斥事件. (2)事件B “至少订一种报纸”与事件E “一种报纸也 不订”是不可能同时发生的,故事件B与E是互斥事件,由 于事件B发生会导致事件E一定不发生、B 互斥,记- A 、- B 分别为 A、B 的 对立事件,那么( B ) A.A∪B 是必然事件 B.- A ∪- B 是必然事件 C.- A 与- B 一定互斥 D.- A 与- B 一定不互斥
2.把红、黑、蓝、白4张纸牌随机地分发给甲、乙、 丙、丁4个人,每人分得1张,事件“甲分得红牌”与事 件“乙分得红牌”是( C )

基础梳理
1.事件的包含关系.
一定发生 如果事件A发生,则事件B_______________. 则称事件
B_______________ 事件A. 包含
例如:事件A={投掷一个骰子投得向上点数为2},B ={投掷一个骰子投得向上点数为偶数},则 ____________ , 事件 B包含事件A
记作:______. A⊆B
2.相等事件.
A⊆B 且______ B⊆A ,那么事件A与事件B相等. 若______
3.并(和)事件. 事件A发生或事件B发生 ,则 若某事件发生当且仅当_____________________ 称此事件为事件A与B的并事件(或称和事件),记作:A∪B. 4.交(积)事件. 若某事件发生当且仅当 __________________ ,则称 事件 A发生且事件B发生 此事件为事件A与B的交事件(或称积事件),记作:A∩B. 5.互斥事件. 不可能事件,即 A∩B = ______ 若 A∩B 为 __________ ∅ ,那么称事 互斥 件A与事件B________.
第三章
3.1 3.1.3


随机事件的概率 概率的基本性质
栏 目 链 接

1.正确理解事件的包含、并(和)、交(积)、相等,
及互斥事件和对立事件的概念.
2.掌握概率的几个基本性质.
3.正确理解和事件与积事件,以及互斥事件与对立
事件的区别与联系.

栏 目 链 接
P(A∪B)=P(A)+P(B);

若事件 A 与 B 为对立事件,则 A∪B 为必然事件,所以
P(A)+P(B)=,于是有 1 1-P(B) P(A∪B)=____________ P(A)=____________.
1 例如:投掷骰子六点向上的概率为 ,投得向上点数 6 5 6 不为六点的概率为________ .
6.对立事件.
_____________________________________________ 若A ∩B为不可能事件,A∪B为必然事件,那么称事 件A与事件B互为 ___________________________ 对立事件.
例如:某同学在高考中数学考了150分,与这同学在 高考中数学考得130分,这两个事件是互斥事件 ________. 7.互斥事件概率加法公式. 当事件A与B互斥时,满足加法公式:
认识.如果A,B是两个互斥事件,反映在集合上,是表示A,
B这两个事件所含结果组成的集合彼此互不相交.

如果事件A1,A2,A3,…,An中的任何两个都是互
斥事件,即称事件A1,A2,…,An彼此互斥,反映在集 合上,表现为由各个事件所含的结果组成的集合彼此互 不相交.

确理解.

(1)互斥事件是对两个事件而言的.若有A,B两个事件, 当事件A发生时,事件B就不发生;当事件B发生时,事件A就 不发生(即事件A,B不可能同时发生),我们就把这种不可能
同时发生的两个事件叫做互斥事件,否则就不是互斥事件.
(2) 对互斥事件的理解,也可以从集合的角度去加以

解析:(1)若“两次出现正面”发生,则“只有一次
出现正面”不发生,反之亦然,即事件A与B不可能同时发
生,则A,B互斥. (2)某人射击一次中靶不一定击中9环,但击中九环 一定中靶,即B发生则A一定发生,则A,B不互斥. (3)A,B互斥.
点评:互斥事件是概率知识中的重要概念,必须正
跟 踪 训 练
1.某县城有甲、乙两种报纸供居民订阅,记事件A为
“只订甲报”,事件B为“至少订一种报纸”,事件C为
“至多订一种报纸”,事件D为“不订甲报”,事件E为 “一种报纸也不订”.判断下列事件是不是互斥事件;如
果是,再判断它们是不是对立事件.
(1)A与C; (2)B与E; (3)B与D; (4)B与C; (5)C与E.
D.3个
4.设A,B为两个事件,且P(A)=0.3,则当
_________________________________________________ _______________________
时,一定有P(B)=0.7( B )
A.A与B互斥 B.A与B对立
C.A⊆B
相关文档
最新文档