有关音频编码的知识与技术参数

合集下载

2.3-音频编码技术

2.3-音频编码技术
Jitter Buffer

Page 36
3.2 自动噪声抑制-ANR

自动噪声抑制-ANR (Adaptive Noise Reduction):

噪声
解决通话中由于背景噪声太大无法听清
话音的问题,含有噪声的语音信号进行 噪声抑制以提高主观语音质量。
已被抑制
Page 37
3.2 自动电平控制-ALC
Page 19
第2章 常用语音编码比较和应用
2.1 常用语音编码算法 2.2 视频会议常用音频技术
Page 20
2.2 视频会议中音频技术
2006 1992 1988 1972 G.722
音质较好 延迟较长
AAC-LD
高保真CD音质 低延时编码
G.728
低延时编码 音质较差
低复杂度编码
G.711

舒适噪音生成CNG (Comfort Noise Generation):与VAD配合使用,设置播放舒 适噪音。
怎么这么静?是不是挂 断了?
舒适噪音:CNG
静音检测:VAD
用户 A
用户 B:停顿期间
Page 33
3.2 回声消除-EC (回声形成)

回声表示说话者的声音,经过网络设备后,环回到了自己。

输出码率:24/32/48Kbps
采样频率:32KHZ 优点:低运算,低带宽,高保真质量 缺点:牺牲高频信息,Polycom授权,极少数产商使用 应用领域:CD级高保真语音质量
Page 25
2.2 G.728

G.728是1992年由国际电信联盟(ITU-T)建议的一个压缩原则16 kbps 的压缩标准,并
Page 15

1.2数据编码声音编码教学设计人教中图版高中信息技术必修1

1.2数据编码声音编码教学设计人教中图版高中信息技术必修1
-查阅资料,了解声音编码技术的发展趋势,撰写一篇小论文,探讨声音编码技术在未来的应用前景。
3.小组合作作业:
-以小组为单位,选择一个声音编码技术在现实生活中的应用案例进行分析,撰写案例分析报告;
-小组之间进行交流分享,互相学习,提高团队协作能力。
4.创新设计作业:
-鼓励学生发挥创意,设计一个与声音编码相关的项目或产品,要求具有实际意义和可行性;
4.学习方式:学生更倾向于通过实践操作和案例分析的方式学习,对理论知识的学习兴趣相对较弱。
5.合作能力:学生在小组合作中表现出一定的积极性,但在分工、协作、沟通等方面仍有待提高。
针对以上学情分析,教师在教学过程中应注重理论与实践相结合,激发学生的学习兴趣,培养他们的动手操作能力和创新能力,同时加强团队协作能力的培养,提高学生在信息技术领域的综合素质。
3.情感态度与价值观方面:
-培养学生对声音编码技术的兴趣和热情;
-引导学生关注声音编码技术在环保、节能减排等方面的应用,提高他们的社会责任感。
(二)教学设想
1.创设情境,激发兴趣:
-以生活中熟悉的声音现象为例,引入声音编码的概念,激发学生学习兴趣;
-通过展示声音编码技术在音乐制作、语音识别等方面的应用,提高学生对声音编码技术重要性的认识。
4.分层次教学,关注个体差异:
-根据学生的实际情况,设置不同层次的教学目标,使每个学生都能在原有基础上得到提高;
-在教学过程中,关注学生的个体差异,给予个性化指导。
5.情感态度与价值观的培养:
-结合声音编码技术在环保、节能减排等方面的应用,开展主题活动,培养学生的社会责任感;
-强化知识产权意识,引导学生遵循法律法规,养成良好的网络道德素养。
4.培养学生尊重知识产权,遵循法律法规,养成良好的网络道德素养。

音视频编码一些参数解析:码流、码率、比特率、帧速率、分辨率、高清的区别

音视频编码一些参数解析:码流、码率、比特率、帧速率、分辨率、高清的区别

⾳视频编码⼀些参数解析:码流、码率、⽐特率、帧速率、分辨率、⾼清的区别GOP/ 码流 /码率 / ⽐特率 / 帧速率 / 分辨率GOP(Group of picture)关键帧的周期,也就是两个IDR帧之间的距离,⼀个帧组的最⼤帧数,⼀般的⾼视频质量⽽⾔,每⼀秒视频⾄少需要使⽤ 1 个关键帧。

增加关键帧个数可改善质量,但是同时增加带宽和⽹络负载。

需要说明的是,通过提⾼GOP值来提⾼图像质量是有限度的,在遇到场景切换的情况时,H.264编码器会⾃动强制插⼊⼀个I帧,此时实际的GOP值被缩短了。

另⼀⽅⾯,在⼀个GOP中,P、B帧是由I帧预测得到的,当I帧的图像质量⽐较差时,会影响到⼀个GOP中后续P、B帧的图像质量,直到下⼀个GOP开始才有可能得以恢复,所以GOP值也不宜设置过⼤。

同时,由于P、B帧的复杂度⼤于I帧,所以过多的P、B帧会影响编码效率,使编码效率降低。

另外,过长的GOP还会影响Seek操作的响应速度,由于P、B帧是由前⾯的I或P帧预测得到的,所以Seek操作需要直接定位,解码某⼀个P或B帧时,需要先解码得到本GOP内的I帧及之前的N个预测帧才可以,GOP值越长,需要解码的预测帧就越多,seek响应的时间也越长。

CABAC/CAVLCH.264/AVC标准中两种熵编码⽅法,CABAC叫⾃适应⼆进制算数编码,CAVLC叫前后⾃适应可变长度编码,CABAC:是⼀种⽆损编码⽅式,画质好,X264就会舍弃⼀些较⼩的DCT系数,码率降低,可以将码率再降低10-15%(特别是在⾼码率情况下),会降低编码和解码的速速。

CAVLC将占⽤更少的CPU资源,但会影响压缩性能。

帧:当采样视频信号时,如果是通过逐⾏扫描,那么得到的信号就是⼀帧图像,通常帧频为25帧每秒(PAL制)、30帧每秒(NTSC 制);场:当采样视频信号时,如果是通过隔⾏扫描(奇、偶数⾏),那么⼀帧图像就被分成了两场,通常场频为50Hz(PAL制)、60Hz(NTSC制);帧频、场频的由来:最早由于抗⼲扰和滤波技术的限制,电视图像的场频通常与电⽹频率(交流电)相⼀致,于是根据各地交流电频率不同就有了欧洲和中国等PAL制的50Hz和北美等NTSC制的60Hz,但是现在并没有这样的限制了,帧频可以和场频⼀样,或者场频可以更⾼。

数字音频编码技术和AVS音频标准

数字音频编码技术和AVS音频标准

数字音频编码技术和A VS音频标准胡瑞敏 高 戈 张 勇 王晓晨摘要:随着信息技术和互联网的飞速发展,多媒体信息已经成为人们获取信息的主要载体之一。

作为多媒体技术的关键,多媒体数据压缩编码近年来在技术和应用方面都取得了长足的发展。

本文简要介绍了数字音频编码技术的发展概况,并重点介绍了我国自主知识产权的AVS系列数字音频编码标准及其核心关键技术,并对其在多媒体业务中的应用做了展望。

关键词:音频编码 AVS-P3音频标准 AVS-P10移动语音和音频标准 AVS-S音频标准1 引言数字技术的出现与应用为人类带来了深远的影响,数字音频技术作为应用最为广泛的数字技术之一,具有高保真、大动态范围和稳健性的优点已经伴随着CD、VCD、MP3、DVD等大众消费类产品走进千家万户。

但是原始的数字化信号的存储量是非常大的,随着多媒体应用的日益广泛,特别是在存储空间受限以及移动和网络传输中,常常受到带宽等因素的限制,无法兼容高码率。

但是用户期望在所有的数字系统上都能享受CD音质的回放,因此为了利用有限的资源,必须在不降低音质的情况下,对原始数字音频信号进行压缩,减小数据传输所需要的码率。

近10多年来,基于应用的需求促进了数字音频压缩技术的研究,各种高质量的音频编码技术取得了较快的发展[1]。

本文首先简要介绍了数字音频编码技术的发展概况,然后概要介绍了已制定完成的面向数字电视、高密度激光存储应用的AVS-P3音频标准,并重点介绍了正在制定的面向中低码率移动多媒体应用的AVS-P10移动语音和音频标准以及面向安防监控应用的AVS-S音频标准的核心关键技术与特色,并对它们在多媒体业务中的应用做了展望。

2 数字音频编解码技术的发展及研究现状音频压缩技术的发展最初是从无损压缩开始的。

上世纪70年代初期,音频编码中采用了脉冲编码调制(PCM)编码,这是一种最通用的无压缩编码,它的特点是保真度高,编解码运算复杂度低,但编码后的数据量大,编码效率比较低[2]。

音频编码及常用格式

音频编码及常用格式

音频编码及常用格式音频编码标准发展现状国际电信联盟(ITU)主要负责研究和制定与通信相关的标准,作为主要通信业务的电话通信业务中使用的语音编码标准均是由ITU负责完成的。

其中用于固定网络电话业务使用的语音编码标准如ITU-T G.711等主要在ITU-T SG 15完成,并广泛应用于全球的电话通信系统之中。

目前,随着Internet网络及其应用的快速发展,在2005到2008研究期内,ITU-T将研究和制定变速率语音编码标准的工作转移到主要负责研究和制定多媒体通信系统、终端标准的SG16中进行。

在欧洲、北美、中国和日本的电话网络中通用的语音编码器是8位对数量化器(相应于64Kb/s的比特率)。

该量化器所采用的技术在1972年由CCITT (ITU-T的前身)标准化为G.711。

在1983年,CCIT规定了32Kb/s的语音编码标准G.721,其目标是在通用电话网络上的应用(标准修正后称为G.726)。

这个编码器价格虽低但却提供了高质量的语音。

至于数字蜂窝电话的语音编码标准,在欧洲,TCH-HS是欧洲电信标准研究所(ETSI)的一部分,由他们负责制定数字蜂窝标准。

在北美,这项工作是由电信工业联盟(TIA)负责执行。

在日本,由无线系统开发和研究中心(称为RCR)组织这些标准化的工作。

此外,国际海事卫星协会(Inmarsat)是管理地球上同步通信卫星的组织,也已经制定了一系列的卫星电话应用标准。

音频编码标准发展现状音频编码标准主要由ISO的MPEG组来完成。

MPEG1是世界上第一个高保真音频数据压缩标准。

MPEG1是针对最多两声道的音频而开发的。

但随着技术的不断进步和生活水准的不断提高,有的立体声形式已经不能满足听众对声音节目的欣赏要求,具有更强定位能力和空间效果的三维声音技术得到蓬勃发展。

而在三维声音技术中最具代表性的就是多声道环绕声技术。

目前有两种主要的多声道编码方案:MUSICAM环绕声和杜比AC-3。

通信网音频编码汇总

通信网音频编码汇总

音频编码汇总PCMU(G.711U)类型:Audio制定者:ITU-T所需频宽:64Kbps(90.4)特性:PCMU和PCMA都能提供较好的语音质量,但是它们占用的带宽较高,需要64kbps。

优点:语音质量优缺点:占用的带宽较高应用领域:voip版税方式:Free备注:PCMU and PCMA都能够达到CD音质,但是它们消耗的带宽也最多(64kbps)。

如果网络带宽比较低,可以选用低比特速率的编码方法,如G.723或G.729,这两种编码的方法也能达到传统长途电话的音质,但是需要很少的带宽(G723需要5.3/6.3kbps,G729需要8kbps)。

如果带宽足够并且需要更好的语音质量,就使用PCMU 和 PCMA,甚至可以使用宽带的编码方法G722(64kbps),这可以提供有高保真度的音质。

PCMA(G.711A)类型:Audio制定者:ITU-T所需频宽:64Kbps(90.4)特性:PCMU和PCMA都能提供较好的语音质量,但是它们占用的带宽较高,需要64kbps。

优点:语音质量优缺点:占用的带宽较高应用领域:voip版税方式:Free备注:PCMU and PCMA都能够达到CD音质,但是它们消耗的带宽也最多(64kbps)。

如果网络带宽比较低,可以选用低比特速率的编码方法,如G.723或G.729,这两种编码的方法也能达到传统长途电话的音质,但是需要很少的带宽(G723需要5.3/6.3kbps,G729需要8kbps)。

如果带宽足够并且需要更好的语音质量,就使用PCMU 和 PCMA,甚至可以使用宽带的编码方法G722(64kbps),这可以提供有高保真度的音质。

ADPCM(自适应差分PCM)类型:Audio制定者:ITU-T所需频宽:32Kbps特性:ADPCM(adaptive difference pulse code modulation)综合了APCM的自适应特性和DPCM系统的差分特性,是一种性能比较好的波形编码。

音视频编解码理解音视频处理的编程原理

音视频编解码理解音视频处理的编程原理

音视频编解码理解音视频处理的编程原理音视频编解码是指将音视频信号转换为数字信号的过程,然后再将数字信号转换为可播放的音视频信号的过程。

在现代多媒体应用中,音视频编解码在很多方面都扮演着重要的角色,包括音频录制、音频处理、视频录制、视频处理等。

本文将详细介绍音视频编解码的原理以及与编程相关的技术。

一、音视频编解码的基本原理音视频编解码的基本原理是将模拟信号(如声音、图像)转换为数字信号,然后对数字信号进行压缩和解压缩处理,最后将解压缩后的信号转换为模拟信号以供播放。

整个过程可以分为以下几个关键步骤:1. 采样与量化:音视频信号是连续的模拟信号,在进行编码处理之前,需要对信号进行采样和量化操作。

采样是指周期性地记录信号的数值,量化是指将采样得到的连续信号的值映射为离散的数值。

2. 压缩编码:在音视频处理过程中,数据量通常非常庞大,如果直接将原始数据进行存储和传输,会导致资源浪费和传输速度慢。

因此,压缩编码技术应运而生。

压缩编码是通过编码算法对音视频信号进行压缩,减小数据量。

常见的音视频压缩编码算法有MPEG、H.264等。

3. 压缩数据传输与存储:经过压缩编码后的音视频数据可以更加高效地进行传输和存储。

传输方面,可以通过网络协议(如RTSP、RTP)将音视频数据传输到远程设备进行播放。

存储方面,可以将音视频数据保存在本地设备或其他存储介质中。

4. 解压缩处理:在音视频播放过程中,需要对编码后的音视频数据进行解压缩处理。

解压缩是压缩的逆过程,通过解码算法将压缩后的音视频数据还原为原始的数字信号。

5. 数字信号转换为模拟信号:解压缩处理后的音视频数据是数字信号,需要将其转换为模拟信号以供播放。

这一过程叫做数模转换,常见的设备有扬声器和显示器等。

二、音视频编码相关的编程原理与技术音视频编码相关的编程原理与技术主要包括以下几个方面:1. 编码库与解码库:编码库是实现音视频压缩编码的关键组件,解码库则是实现解压缩处理的关键组件。

视频编码跟音频编码常识新

视频编码跟音频编码常识新

视频与音频编码知识动态链接:Adobe premiere pro编码定义:原始的视屏图像数据和音频信息都包含有大量的冗余信息,编码就是压缩的过程,将信息中的冗余信息去掉。

分为视屏编码和音频编码,两者是分开的。

一般来说视频比那马方案往往决定了高清视频的画质高低(严格意义上还有码率因素).音频编码决定了起音质的好坏。

常用视频编码:XVID(DIVX的升级版),DIVX,H.264,MPEG-2\MPEG-4等。

Mpeg1:早期vcd使用,分辨率是352*288,压缩比低。

Mpeg2:一般DVD使用,有NTSC(720*480)和PAL(720*576),压缩比高于mpeg1.Mpeg4:目前使用最多的技术,avi文件始祖,大大提高压缩比,而质量堪比DVDDivx:基于mpeg4开发,有一定算法优先。

Xvid:divx技术封锁以后被人破解开发的,也是基于mpeg4的编码技术更先进,采用开放源码,画质更好。

H.261:早期的低码率编码,应用于352*288和176*144,现在已不用。

H.263:在低码率下能够提供比H.261更好的图像效果,改进一些算法。

H.263+:h.263的改进型H.264:H.264集中了以往标准的优点,高效压缩,与H.263+和mpeg4 sp相似。

Rm\rmvb:real 公司推出的应用于网络的高压缩编码,rm 是固定码率。

Rmvb是动态码率(就是静态画面采用低码率,动态采用高码率)X264X264是国际标准H.264的编码器实现,是一个开源encoder,得益于H.264的高效压缩性能,加之于X264的高效(编码速度快)实现,X264目前被广泛应用于DVDrip 领域。

封装格式(也叫容器)所谓封装格式就是将已经编码压缩好的视频和音频按照一定的格式放到一个文件中,也就是说仅仅是一个外壳。

格式类型AVI:微软在90年代初创立的封装标准,是当时为对抗quicktime格式(mov)而推出的,只能支持固定CBR恒定比特率编码的声音文件。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

有关音频编码的知识与技术参数
2. 2视频数据的细化打包[4]
视频数据的细化打包可以保证信道使用和差错健壮性之间的最优化关系。

单一的MPEG4码流通常被分成一串独立可解码的、有规则长度的视频分组,每个分组都以复同步字开始。

这些视频分组通过MPEG4编码器产生,并被看作是压缩层的一部分。

因此他们应与IP、UDP和RTP层所创立的分组分开。

区分RTP 分组和MPEG4视频分组很重要,RTP分组的建立是与MPEG4编码过程分离的,而视频分组则是由MPEG4 编码器生成。

对一个固定大小的报头来说,视频载荷的大小是控制平衡的重要因素,可调整打包机制中差错健壮性和吞吐量的最正确关系。

一个分组头部任何一部分的损坏,都会导致整个RTP分组的丢失。

由于一个MPEG4视频分组内数据敏感度的不同,情况就更复杂了。

已数据分割的MPEG4分组被分成2部分, 第一部分包含了头和运动数据,第二部分包含了实质数据。

没有第一部分,第二部分就不能被译码。

因此,第一部分的损坏导致一个完整视频分组丢失。

任何RTP打包分析都必须考虑这些因素。

有2种打包机制可将MPEG4数据封装进RTP分组中。

在第一种机制中(见图2(a)), 一个MPEG4分组被封装进单一的RTP 分组;而在第二种机制中(见图2(b)), 一个RTP分组包含一个视频帧,每个视频帧包含许多个MPEG4分组,每个MPEG4分组末尾都插入8b的循环冗余效验码(CRC),来帮助
实现视频分组数据中的差错隐藏,同时保持和标准MPEG4解码器的向后兼容性。

2. 3移动网络上的优先级传输[1, 3]
当前的视频编码方案主要考虑带宽的限制,而对高误码率和分组丢失率的考虑不够。

可行的解决方法是采用基于分层的可伸缩编码方案,根据人的视觉特性,分层视频编码通常使用不平等的差错保护(UEP),即将编码视频流分割成几个误码保护等级不同的子流,主要保护最重要的子流,使高优先级基本层获得一个可保证的服务质量并使之细化。

这种方法称为带传输优先级的分层编码,在视频传输系统中专门用来使差错恢复变得更加容易。

为实现视频传输质量的提高还可以通过将视频数据作为两个独立的数据流发送,来实现视频比特流不同部分的优化。

这种情况下编码器要求网络通过不同优先级的信道来发送数据,将更重要的和差错敏感的数据分配给更可靠更安全的信道。

因此,运动和报头数据流被设定为更高的差错保护等级,再经比纹理数据流更可靠的载体来传送。

在MPEG4压缩标准系统中,数据分割是将关键数据放在每个视频分组的开始,从而当第二部分中低敏感性的纹理数据出错时,抑制丢失视频分组的可能性。


优先级传输方法的应用范围包括视频分层、视频数据分割、UEP和分优先级的多重载体的视频传输,然而在移动无线网络中,在应用层优先级机制的应用将使所有网络和传输层报头失去保护,高差错比特率也会导致分组附件重要部分的损坏,例如敏感载荷数据的报头等。

而且,在应用层使用
优先级机制会对各种应用的共同运行产生限制,这意味着系统提高服务质量需要修改所有运行的网络协议。

第三代移动通信多媒体应用协议正在研究制订之中,现在基本有3种方案:H. 324适应无线协议的扩展;H. 324的复接部分为无线应用做的改良;采用H. 323的IP / UDP / RTP 的传输协议。

如果采用IP/UDP/RTP协议,所采用的物理和链路层协议必须保证误码率很低、基本没有比特错,只有包丢失。

3结语
通信系统的特点决定了图像通信只能建立在现有的通信网络的根底上。

因此,图像通信所面临的问题有2个方面:一方面,对图像信息开展适当的处理使他尽可能地适应现有的通信设施和通信方式;另一方面,改造现有的通信系统使他尽可能地适应图像信息的特点。

所以,我们必须看到,要真正实现无线视频通信,在相关标准的制定、网络协议的研究等方面还有很多工作要做,相信在大家的努力下,无线网络的明天会更好,也一定会成为多媒体应用的主流网络。

相关文档
最新文档