换热器的发展现状及前景
换热器技术的研究与应用前景

换热器技术的研究与应用前景换热器作为一种热传递设备,广泛应用于许多工业领域,如石化、航空、核工业、制药等。
并且在日常生活中,如汽车冷却系统、空调系统和暖气等领域也有着重要的应用。
换热器的热传导能力、抗腐蚀性能、清洁性、安全性和环保性等都是近年来研究的热点问题。
本文将就换热器技术的研究与应用前景进行讨论。
一、换热器技术的研究进展1.先进的材料应用于换热器近年来,随着先进的材料技术的日益成熟,许多先进的材料如纳米复合材料、超微粉碎材料和金属无机复合材料等被应用于换热器中,大大提高了换热器的传导能力和抗腐蚀性能。
同时,由于新材料的使用,也能够提高换热器的制造工艺,降低制造成本。
2.计算机模拟技术的应用换热器的设计和制造常常需要耗费大量的时间和成本,但是,随着计算机模拟技术的不断发展,使用计算机对换热器进行模拟分析,能够有效地提高设计效率和产品质量,同时也能够减少成本和时间的浪费。
3.新型换热器的研究随着科技的发展,针对不同行业和工艺的换热器也在不断的研究和改进,比如,新型的高效换热器和紫外线杀菌换热器。
这些新型换热器的问世,将会为相关产业带来新的发展机会。
二、换热器技术的应用前景1.能源领域在当前全球能源短缺和环境污染问题日益严峻的情况下,换热器技术在能源领域的应用前景非常广阔。
例如,使用换热器协助生物质锅炉进行废物利用、提高太阳能集热器的效率等等,这些应用有利于减少不必要的能源消耗和环境污染。
2.高科技产业高科技产业对于换热器的需求也在不断增加。
如半导体和电子工业,因为需要进行高温高压处理,因此对于换热器的技术和质量要求也更高,而换热器技术的不断进步和创新,也为高科技产业的高质量发展提供了保障。
3.环保领域换热器技术在环保领域中也有着重要的应用前景。
例如,光伏板和风力涡轮机等都需要使用换热器,同时,使用换热器能够有效的减少废气排放和水污染等问题,这对于环保产业的发展,具有非常重要的意义。
综上所述,换热器技术的研究和创新,可以为不同行业和领域带来更高质量的产品和更高效的生产方式。
2023年板式换热器行业市场分析现状

2023年板式换热器行业市场分析现状板式换热器是一种重要的换热设备,广泛应用于各个行业领域,如化工、电力、石油、冶金等。
本文将从行业市场的现状、发展趋势等方面进行分析。
一、市场现状1. 市场规模:板式换热器市场规模庞大,全球市场规模约为200亿美元。
中国市场规模超过50亿元,占全球市场的四分之一以上。
2. 应用领域广泛:板式换热器广泛应用于化学工艺、冶金、石油化工、电力、钢铁等行业。
特别是在石油化工领域,板式换热器市场需求较大,且呈现逐年增长趋势。
3. 产品品质提升:随着科技进步和市场竞争的加剧,板式换热器产品的品质得到了明显提升。
高效、节能、环保的产品越来越受到市场青睐。
4. 企业竞争激烈:板式换热器市场竞争激烈,市场主要由国内外几大龙头企业瓜分。
其中,国内企业具有价格优势,但国外企业在技术、品质等方面具有较强竞争力。
二、市场发展趋势1. 高效节能需求:随着社会经济的发展和环保意识的提高,对高效节能的需求越来越大。
板式换热器具有换热效率高、节能环保等优势,这对行业发展至关重要。
2. 新型材料应用:新型材料的应用将会对板式换热器市场产生重要影响。
例如,采用耐高温、耐腐蚀的材料可以提升产品的使用寿命和适用范围。
3. 产品升级换代:随着科技进步和市场需求的变化,板式换热器产品将不断升级换代。
比如,采用自动化控制技术可以提高换热器的稳定性和安全性。
4. 提供综合解决方案:随着市场竞争的加剧,企业将会提供更加综合的解决方案,满足不同用户的需求。
例如,提供整套设备和工程项目管理服务。
5. 国内市场潜力巨大:中国是世界上板式换热器市场需求最大的国家之一,但产品技术水平与国际先进水平仍有差距。
因此,国内企业应加强技术创新和产品提升,提高市场竞争力。
三、市场机遇与挑战1. 市场机遇:随着国家经济的发展和产业结构的升级,板式换热器市场需求将呈现稳步增长趋势。
同时,相关政策的支持也将为行业带来更多机遇。
2. 市场挑战:市场竞争激烈,企业需要提升自身技术实力和品牌影响力,方能在市场中立于不败之地。
2024年高通量换热器市场发展现状

2024年高通量换热器市场发展现状摘要本文就高通量换热器市场的发展现状进行了概述。
首先介绍了高通量换热器的定义和作用。
随着工业发展和需求的增加,高通量换热器市场呈现出良好的发展势头。
进一步探讨了高通量换热器市场的主要应用领域和行业动态。
然后,分析了高通量换热器市场的现状和发展趋势。
最后,提出了高通量换热器市场的发展前景和市场潜力。
引言高通量换热器是一种重要的工业设备,用于加热、冷却和回收能量。
它具有高效、节能的优势,被广泛应用于石化、电力、冶金、化工等领域。
随着能源需求的增加和环保意识的提高,高通量换热器市场正经历着快速发展。
高通量换热器的定义和作用高通量换热器是一种能够以高流速输送流体的换热设备。
它通过将热量从一个流体传递给另一个流体,实现冷却或加热的目的。
高通量换热器的主要作用是提高热能利用率,实现能源的有效利用。
高通量换热器市场的应用领域高通量换热器广泛应用于各个领域,包括石化、电力、冶金、化工等。
在石化行业中,高通量换热器用于炼油、裂解和气化等过程中的冷却和加热。
在电力行业中,高通量换热器用于发电过程中的冷却和热回收。
在冶金行业中,高通量换热器用于金属熔炼和冷却过程中的能量回收。
在化工行业中,高通量换热器用于各种化学反应的温度控制和能量回收。
高通量换热器市场的行业动态高通量换热器市场正处于快速发展阶段。
目前,市场上存在着多个供应商竞争激烈的局面。
随着技术的进步和创新,高通量换热器的性能不断提高。
同时,市场上出现了一些新的材料和设计,为高通量换热器的应用提供了更多选择。
高通量换热器市场的现状和发展趋势目前,高通量换热器市场呈现出快速增长的趋势。
据市场调查数据显示,预计在未来几年内,高通量换热器市场将继续保持良好的增长势头。
主要推动因素包括能源需求的增加、环保压力的增大以及工业节能的需求。
高通量换热器市场的发展前景和市场潜力高通量换热器市场具有广阔的发展前景和巨大的市场潜力。
随着技术的不断创新和应用领域的拓展,高通量换热器市场有望进一步发展壮大。
换热器的发展现状及前景

换热器的发展现状及前景
换热器作为一种特殊加工设备,是指被换热的流体之间进行热量交换
的设备,在化工行业有着重要的地位。
随着现代社会的发展,换热器的发
展潜力越来越大,能够为各行各业、各实际应用提供全方位的技术支持。
首先,换热器在使用上具有非常广泛的应用范围,主要用于化工、石油、建材、冶金、电力、轻工等行业的换热设备,能够满足各行各业的不
同需求。
其次,换热器在技术上也有着很大的进步,从安装结构及其传热效能
来看,将在未来更加不断的提高。
传统的换热设备只能满足一定的换热传
热条件,而现在换热器设备已经能够处理更复杂的换热传热条件,从而真
正达到了热效率的标准化,使得换热设备在技术上得到了极大提高。
此外,目前换热器的研发速度也是比较快的,可以满足各种技术要求。
比如,现在已经可以生产出能够满足各种技术要求的特殊型换热器,同时
也可以满足复杂工况下的高效换热要求。
在这些特殊的环境条件下,换热
器的性能也有了很大的提高。
换热器发展的研究综述及未来发展预测

换热器发展的研究综述及未来发展预测换热器发展的研究综述及未来发展预测摘要:本文主要探讨了换热器的发展历程以及当前的研究热点,同时对未来换热器的发展进行了一些预测。
文章从简单的换热器原理讲起,逐渐深入探讨了不同类型的换热器及其应用。
文章总结了当前的研究热点,并提出了一些未来可能的发展方向。
1. 引言换热器作为热能转换和能源利用领域中不可或缺的设备,其发展已经经历了几个世纪。
在过去的几十年中,人们对换热器的研究取得了显著的进展,促使了换热器在工业、建筑和汽车等领域的广泛应用。
然而,随着能源需求的不断增长和环境保护意识的提高,对更高效、更节能的换热器的需求也越来越迫切。
了解换热器发展的历史、当前的研究进展以及未来的发展方向对于推动能源转型和可持续发展具有重要意义。
2. 换热器原理及分类2.1. 换热器原理换热器是通过不同的工质流体之间进行传热的设备。
其基本原理是利用热传导来实现热量的转移。
换热器一般由热源侧和冷却侧组成,通过这两侧的工质流体之间进行热量交换。
2.2. 换热器分类根据换热器的结构和工作原理,可以将其分为很多不同的类型,如壳管式换热器、板式换热器、管线式换热器等。
每种类型的换热器都有其特定的优缺点和适用范围。
3. 换热器发展历程3.1. 早期换热器的发展最早的换热器可以追溯到18世纪末,当时人们开始关注蒸汽机的性能改进。
通过改进锅炉的设计和增加传热表面积,人们成功地提高了蒸汽机的效率。
在19世纪初,壳管式换热器问世,这种换热器采用了壳程和管程的结构,成为当时最常用的换热器类型之一。
3.2. 现代换热器的发展随着科学技术的进步,尤其是计算机技术的发展,人们对换热器的设计和优化能力得到了显著提升。
现代换热器的设计不再局限于经验公式和试错方法,而是可以通过数值模拟和优化算法来得到更加精确和高效的设计结果。
另外,在材料科学和制造技术方面的进步也为换热器的发展提供了更多的可能性。
4. 当前的研究热点4.1. 新材料的应用随着材料科学的发展,一些新型材料如纳米材料、石墨烯等被引入到换热器的设计中。
2024年换热器市场分析现状

换热器市场分析现状一、市场概述换热器作为热交换领域的重要设备,广泛应用于工业、建筑、能源等领域。
换热器市场呈现出蓬勃发展的态势。
本文将对换热器市场的现状进行详细分析。
二、市场规模换热器市场近年来呈现稳步增长的趋势。
根据市场调研数据显示,2019年全球换热器市场规模达到XX亿美元,预计在未来几年内将持续增长。
其中,工业领域是换热器市场的主要应用领域,占据了市场总规模的XX%。
三、市场竞争格局目前,全球换热器市场竞争格局较为分散,市场上存在着众多的换热器生产企业。
这些企业在产品技术、品牌知名度、市场份额等方面存在差异。
在全球市场中,一些大型跨国公司占据主导地位,比如艾默生电气、西门子、阿尔斯通等,这些企业以其雄厚的技术实力和全球化经营优势在市场中具有竞争优势。
此外,一些地区性的换热器企业也在市场中扮演着重要角色,例如中国的海螺集团、美国的卡特彼勒公司等。
四、市场发展趋势1. 技术创新驱动市场增长随着工业生产的不断发展和能源效率要求的提高,换热器市场面临着日益严峻的挑战。
技术创新成为推动市场发展的主要驱动力。
目前,高效节能换热器、全焊式换热器、螺旋板换热器等新型产品逐渐崭露头角,成为市场的热门产品。
这些产品具有换热效率高、结构紧凑、占用空间小等优势,受到市场的广泛认可。
2. 环保节能需求促进市场增长环保节能已成为全球关注的热点议题,换热器是提高能源利用效率的重要设备。
随着国家对环保节能政策的不断加强,换热器市场得到进一步推动。
新型换热器产品的问世,进一步满足了环保节能需求。
例如,采用高效传热材料和节能设计的换热器、提高传热效率的改进型换热器等,受到市场的广泛关注和需求。
3. 区域市场发展不平衡尽管全球换热器市场总体呈现增长态势,但不同地区市场发展却存在不平衡现象。
发达经济体市场规模相对较大,换热器产品更新换代较快,市场上消费者对高端技术、高品质产品的需求较大。
而发展中国家市场规模较小,由于资金和技术条件限制,换热器产品较多依赖进口。
2024年高通量换热器市场前景分析

2024年高通量换热器市场前景分析引言高通量换热器是一种关键的热交换设备,被广泛应用于化工、石油、能源等领域。
本文将对高通量换热器市场的前景进行分析,包括市场规模、增长趋势、竞争格局等方面。
市场规模高通量换热器市场在过去几年里保持了稳定增长。
据市场调研公司的数据显示,2019年全球高通量换热器市场规模达到XX亿美元,预计到2025年将增长至XX亿美元。
这一增长主要受到能源需求的增加以及工业自动化的推动。
区域方面,亚太地区是全球高通量换热器市场最大的消费地区,占据了全球市场份额的XX%。
其次是欧洲和北美地区,分别占据了XX%和XX%的市场份额。
在可预见的未来,亚太地区仍然将保持较高的增长率。
增长趋势高通量换热器市场的增长趋势主要受到以下几个因素的影响:1. 节能环保要求的提高随着全球能源需求不断增加和环境污染的加剧,节能环保已成为各行业的共同追求。
高通量换热器作为一种能够有效提高能源利用率的设备,受到了广泛关注。
未来,随着环保标准的提高和市场需求的增加,高通量换热器市场将迎来更多机遇。
2. 工业自动化的发展工业自动化在许多行业中得到了广泛应用,其中包括化工、石油、制药等领域。
高通量换热器作为自动化生产过程中的必备设备,市场需求也随之增加。
随着工业自动化程度的提高,高通量换热器市场将继续蓬勃发展。
3. 新技术的应用随着科技的进步,高通量换热器的设计和制造技术也在不断创新。
例如,基于计算流体力学(CFD)的仿真技术正在广泛应用于高通量换热器的设计中,能够提高换热效率和降低能耗。
此外,新材料的应用也将进一步改善高通量换热器的性能和耐久性。
竞争格局目前,全球高通量换热器市场竞争激烈,主要厂商包括阿尔法拉瓦尔、GEA集团、斯旺森等。
这些厂商在市场上占据了较大的份额,通过不断创新和产品升级来保持竞争优势。
另外,一些新兴厂商也在逐渐崭露头角。
它们通过提供定制化解决方案、降低产品成本以及加强售后服务等方式来吸引客户。
换热器前景

换热器前景近年来,随着人们对环保意识的增强和能源资源的逐渐减少,节能减排成为了一个热门话题。
换热器作为一种能够高效利用能源的装置,其前景十分广阔。
首先,换热器的应用范围非常广泛。
它可以用于各种工业过程中,包括发电、化工、石油、钢铁、建筑等领域。
无论是传统能源行业还是清洁能源行业,都可以通过使用换热器来提高能源利用效率,减少能源损耗。
特别是在清洁能源发展的背景下,换热器的需求量会越来越大。
其次,换热器具有节能减排的显著效果。
它可以实现能量的长距离传输,将高温热源的多余热量传递给低温热源,从而减少了能源的浪费。
根据统计数据显示,目前能源消耗的40%左右都被用于加热和冷却过程,因此换热器的应用可以帮助企业降低能源消耗,减少温室气体的排放,促进可持续发展。
再次,随着科技的进步和材料的不断发展,换热器的性能和效率不断提升。
传统的换热器结构相对简单,换热效率有限。
而现在的换热器采用了一些新的技术和材料,例如管式换热器、板式换热器、壳管换热器等,在体积和换热效率方面都有了明显的改进,能够更好地满足不同行业的需求。
最后,随着国内环境法规的不断加强,企业对节能减排的要求也越来越高。
换热器作为一种高效节能的装置,将会逐渐成为企业用能的标配。
在政策的推动下,换热器行业将迎来快速发展的机遇,市场需求量将进一步增加。
综上所述,换热器前景广阔。
它不仅可以提高能源利用效率,减少能源损耗,还能够降低企业的运行成本,减少环境污染。
在工业发展和环境保护的双重需求下,换热器将成为一个具有巨大市场潜力的产业。
同时,不断创新和技术升级也将推动换热器行业迎来新的发展机遇。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
换热器的研究发展现状及前景摘要:随着现代工业的迅速发展,以能源为中心的环境、生态等问题日益加剧。
世界各国在寻找新能源的同时,也更加注重了节能新途径的研发。
强化传热技术的应用不但能节约能源、保护环境,而且能大大节约投资成本。
换热器由于其在化工、石油、动力和原子能等工业部门的广泛应用,使得换热器的强化传热技术一直以来受到研究人员的重视,各种研究成果不断涌现。
随着经济的发展,各种不同结构和种类的换热器发展很快,新结构、新材料的换热器不断涌现。
换热器又称热交换器,是一种将热流体的部分热量传递给冷流体的设备,也是实现化工生产过程中热量交换和传递不可缺少的设备。
换热器既可是一种单独的设备,如加热器、冷却器和凝汽器等;也可是某一工艺设备的组成部分,如石化、煤炭工业中的余热回收装置等。
本文主要介绍了现有换热器的分类,各种换热器的特点工作原理及应用情况,对目前换热器的存在问题和发展趋势进行分析。
关键词:换热器;强化换热;研究现状随着现代工业的迅速发展,以能源为中心的环境、生态等问题日益加剧。
世界各国在寻找新能源的同时也更加注重了节能新途径的研发。
强化传热技术的应用不但能节约能源、保护环境,而且能大大节约投资成本。
换热器由于其在化工、石油、动力和原子能等工业部门的广泛应用,使得换热器的强化传热技术一直以来受到研究人员的重视,各种研究成果不断涌现1换热器的分类方式随着科学和生产技术的发展,各种换热器层出不穷,难以对其进行具体、统一的划分。
虽然如此,所有的换热器仍可按照它们的一些共同特征来加以区分,具体如下。
按照用途来分:预热器(或加热器)、冷却器、冷凝器、蒸发器等。
按照制造热交换器的材料来分:金属的、瓷的、塑料的、石墨的、玻璃的等。
按照温度状况来分:温度工况稳定的热交换器,热流大小以及在指定热交换区域的温度不随时间而变;温度工况不稳定的热交换器,传热面上的热流和温度都随时间改变。
按照热流体与冷流体的流动方向来分:顺流式、逆流式、错流式、混流式。
按照传送热量的方法来分:间壁式、混合式、蓄热式等三大类。
其中间壁式换热器的冷、热流体被固体间壁隔开,并通过间壁进行热量交换的换热器,因此又称表面式换热器,这类换热器应用最广。
间壁式换热器根据传热面的结构不同可分为管式和板面式。
管式换热器以管子表面作为传热面,包括套管式换热器和管壳式换热器等;板面式换热器以板面作为传热面,包括板式换热器、螺旋板换热器、板翅式换热器、板壳式换热器和伞板换热器等。
2 管式换热器管式换热器主要有套管式换热器和管壳式换热器两种。
2.1 套管式换热器套管式换热器是将不同直径的两根管子套成的同心套管作为元件、然后把多个元件加以连接而成的一种换热器,工作时两种流体以纯顺流或纯逆流方式流动。
套管式换热器的优点是:结构简单,适用于高温、高压流体,特别是小容量流体的传热。
另外,只要做成管可以抽出的套管,就可清除污垢,所以它也使用于易生污垢的流体。
他的主要缺点是流动阻力大;金属消耗量多;管间接头较多,易发生泄露;而且体积大,占地面积大,故多用于传热面积不大的换热器2.2 管壳式换热器管壳式换热器又称为列管式换热器,是以封闭在壳体中管束的壁面作为传热面的间壁式换热器,结构一般由壳体、传热管束、管板、折流板(挡板)和管箱等部件组成。
目前,国外工业生产中所用的换热设备中,管壳式换热器仍占主导地位,虽然它在换热效率、结构紧凑性和金属材料消耗等方面,不如其它新型换热设备,但它具有结构坚固,操作弹性大,适应性强,可靠程度高,选材围广,处理能力大,能承受高温高压等特点,所以在工程中仍得到广泛应用。
以下是几种常见的管壳式强化换热器。
2.2.1螺旋槽管换热器螺旋槽管是一种管壁上具有外凸和凹的异形管,流体流出管壁时在管壁附近诱发螺旋流动。
层流层减薄,同时壁表面起伏强化了流体湍流,加快了由壁面至流体主体的热量传递,强化了传热过程。
早期进行螺旋槽管研究的主要有美国、英国、日本,从1970~1980年进行了大量的研究。
我国对螺旋槽管的实验研究起步也是较早的,华南理工大学、理工大学和大学都对螺旋槽管进行了试验研究,而且都取得显著的成效。
目前,无论是从传热、流阻、阻垢性能,还是从无相变对流换热和有相变凝结换热,对螺旋槽管的强化传热研究从理论到实际已达到较高水平。
2.2.2横纹管换热器1974年前联首先提出横纹管,它是一种用普通圆管作毛胚,在管外壁经简单滚轧出与轴线垂直的凹槽,同时在管形成一圈突起的环肋。
流体流经横纹管环槽处能频频发生边界层分离而产生轴向旋涡,强化了流体湍流,旋涡不断生成,保持了连续而稳定的强化作用。
横纹管在我国研究较少,只有华南理工大学对此进行了试验研究,研究发现在相同流速下,横纹管流阻比单头螺旋槽管的小。
化工学院与冷热设备制造公司对横槽纹管进行了开发研制,从而使横槽纹管与螺旋槽管换热器的应用得到同步发展。
2.2.3螺旋扁管换热器螺旋扁管是瑞士Allares公司首先提出、美国Brown公司经过改进的一种换热管。
这种传热管由压扁和扭转两个过程制成,管子截面和形状都发生了变化,因而流体也随之不断改变方向和速度,使湍流加强,边界层减薄,传热加强。
我国梁龙虎经实验研究表明,螺旋扁管管膜传热系数通常比普通圆管大幅度提高,在低雷诺数时最为明显,达2~3倍;随着雷诺数的增大,通常也可提高传热系数50%以上。
2.2.4螺旋扭曲管换热器近年来,螺旋式扭曲管的研制引起了国外学者的关注。
XYKAYCKARA报道过一种高效换热器,其换热管是螺旋式扭曲管,两端为圆形,管子与管子在椭圆长轴处相接触,相互支撑而取消了支撑折流板,这样能保证装置的抗震性,且流体在管程和壳程都发生旋流。
我南理工大学化机所和化工学院化机系也开发了变截面扭曲管和混合管束。
2.2.5波纹管换热器波纹管换热器强化传热机理与螺旋扁管相一致。
波纹管能起到温差补偿作用,省掉壳体膨胀节;由于温差应力的作用,换热管能自动去掉表面污垢,使管表面不易产生污垢,具有强化传热和除垢的双重功效,且结构简单紧凑,容易制造,投资少,热率高,故广泛应用于汽-水、水-水换热领域。
2.2.6翅片管换热器翅片管是一种带肋的壁面,1971年美国首先提出翅片管,用于强化管单相流体的传热。
日本、前联等国也进行大量的研究工作。
20世纪80年代初,日本日立电缆研制的翅片管冷凝器,其冷凝效率和螺纹管相比提高3倍以上,同时实验表明这种管子抗油污能力也比较强。
翅片管换热器无论对单相对流换热还是对相变对流换热都有很大价值,尤其是当两侧换热系数相差10倍以上,用于卧式冷凝器强化有机蒸汽的冷凝最为优越,翅片管换热器已广泛用于制冷、动力、能源中的冷凝器、空冷器、油冷却器。
2.2.7缩放管换热器缩放管是由依次交替的收缩段和扩段组成的波形管道,在扩段中流速降低、静压增加;而在收缩段中流速增加,静压减小,流体是在方向反复改变的轴向压力梯度下流动,扩段产生的漩涡在收缩段中能有效地被利用,且冲刷了流体边界层,边界层减薄,强化了传热。
我南理工大学提出一种改型缩放管,将每个缩放单元段中的扩段减到最小,并采用外凸圆弧、凹弧和直线相连接的方式。
同时还对该改进型管进行自然对流沸腾换热特性的实验研究,表明了改进型缩放管的自然对流沸腾换热性能优于普通缩放管。
缩放管换热器已在空气预热器、油冷却器、冷凝器、废热锅炉中广泛使用。
3 板面式换热器板面式换热器不同于一般传热面用管做的管式换热器。
它们的共同特点是被用作传热面的板是平板或稍带锥度的伞板,其上有各种凹凸条纹,或有各种不同断面形状的翅片当流体流过板面时就会产生扰动,使边界层减薄造成湍流,从而获得较高的传热效率。
相对于管壳式换热器来说,它们具有传热效率高,结构紧凑,重量轻等优点。
又由于流体在换热器中无论进行并流、逆流、错流都可以,板片还可以根据传热面积的大小而增减,因此适应性较大,应用日趋广泛。
随着对板式换热器研究的不断深入,其形式也越来越多。
3.1板式换热器3.1.1可拆式板式换热器可拆式板式换热器是将薄的金属板片冲压成为凸凹状,周边贴合成橡胶类的密封垫片。
Laval公司的“按扣”式垫片,垫片直接扣压在板片上;GEA公司的板片,板片槽口上窄底宽呈梯形,垫片与板片槽过盈配合将垫片压紧。
开发无粘接剂连接垫片的技术,使板式换热器安装和维修的时间节约80%。
我国板式换热器在20世纪80年代得到较大的发展,继板式换热器总厂、板式换热器厂开发单片面积2m2后,1992年板式换热器工贸公司试制成功国最大的300MN板片专用压机,单片面积已达2.7m2。
可拆式板式换热器便于拆卸清洗,增减换热器面积灵活,在供热工程中使用较多。
但是,一般的可拆卸式板式换热器由于本身结构的局限性,使用压力不超过2.5MPa,使用温度不超过250℃,此外还存在流体与密封垫片的相容性问题。
3.1.2焊接式板式换热器用焊接结构替代橡胶垫密封,消除了由于垫片材料耐温、耐腐蚀、耐压方面的限制。
焊接式板式换热器的组焊板片部不能用机械方法清洗,且全焊式只能用于不易结垢的介质进行换热,其最大优点是可承受较高温度和压力,没有垫片泄漏的顾虑。
焊接式板式换热器近年来得到很大发展,德国与日本合作的千代田BAVARIA混合焊接板式换热器,操作压力可从真空到6MPa,单元换热面积可达1480m2以上。
Nouvelles应用技术公司发明的Packinox换热器,代替列管式换热器用作炼油厂催化重整装置混合料换热器,并且得到了推广应用,紧凑、轻型的Packinox换热器可用各种合金制成,能提供的表面积为1000~10 000 m2。
3.2 板壳式换热器欧美发达国家于20世纪80年代起开始竞相开发、研制各种型式的板壳式换热器。
板壳式换热器的基本结构与板式换热器相似,但板间距增大,取消了垫片,改用焊接法连接各板,形成通道。
板壳式换热器最适合于介质清沽、换热量大和压降小的场合。
法国Packinox 公司于20世纪80年代首次在催化重整装置中用一台大型板壳式换热器替代传统的管壳式换热器组。
20世纪90年代末期,Packinox公司又将大型板壳式换热器用于加氢装置,该公司的产品得到UOP(美国联合油)的认证。
而板壳式换热器在中国起步比较晚,1999年石油机械研究所研制成功大型板壳式换热器,并于1999年5月8日通过总公司鉴定。
3.3螺旋板式换热器螺旋板式换热器在国外较早使用在回收废液和废气中的能量等,螺旋板式换热器的构造包括螺旋形传热板、隔板、头盖和连接管等基本部件。
流体在螺旋形流道的流动所产生的离心力,使流体在流道外侧之间形成二次环流,增加扰动。
螺旋板式换热器具有体积小、效率高、制造简单、成本较低、能进行地温差换热等优点,目前的问题是如何能进一步提高该换热器的承压能力。
我国从20世纪60年代开始生产螺旋板式换热器,当时主要用于烧碱厂中的电解液加热和浓碱液冷却。