离散数学第二章作业

合集下载

离散数学-第二章命题逻辑等值演算习题及答案

离散数学-第二章命题逻辑等值演算习题及答案

第二章作业评分要求:1. 每小题6分: 结果正确1分; 方法格式正确3分; 计算过程2分. 合计48分2. 给出每小题得分(注意: 写出扣分理由)3. 总得分在采分点1处正确设置.一. 证明下面等值式(真值表法, 解逻辑方程法, 等值演算法, 三种方法每种方法至少使用一次):说明证1. p ⇔(p ∧q)∨(p ∧¬q)解逻辑方程法设 p ↔((p ∧q)∨(p ∧¬q)) =0, 分两种情况讨论:⎩⎨⎧=⌝∧∨∧=0)()(1)1(q p q p p 或者 ⎩⎨⎧=⌝∧∨∧=1)()(0)2(q p q p p (1)(2)两种情况均无解, 从而, p ↔(p ∧q)∨(p ∧¬q)无成假赋值, 为永真式. 等值演算法(p ∧q)∨(p ∧¬q)⇔ p ∧(q ∨¬q)∧对∨的分配率⇔ p ∧1 排中律⇔ p 同一律 真值表法2. (p→q)∧(p→r)⇔p→(q∧r)等值演算法(p→q)∧(p→r)⇔ (¬p∨q)∧(¬p∨r)蕴含等值式⇔¬p∨(q∧r)析取对合取的分配律⇔ p→(q∧r)蕴含等值式3. ¬(p↔q)⇔(p∨q)∧¬(p∧q)等值演算法¬(p↔q)⇔¬( (p→q)∧(q→p) )等价等值式⇔¬( (¬p∨q)∧(¬q∨p) )蕴含等值式⇔¬( (¬p∧¬q)∨(p∧q) )合取对析取分配律, 矛盾律, 同一律⇔ (p∨q)∧¬(p∧q)德摩根律4. (p∧¬q)∨(¬p∧q)⇔(p∨q)∧¬(p∧q)等值演算法(p∧¬q)∨(¬p∧q)⇔ (p∨q)∧¬(p∧q)析取对合取分配律, 排中律, 同一律说明: 用真值表法和解逻辑方程法证明相当于证明为永真式.等值演算法证明时每一步后面最好注明理由以加深印象, 熟练后可以不写. 由于等值演算法证明具有较强的技巧性, 平时应注意总结心得.二. 求下列公式的主析取范式与主合取范式(等值演算法与用成真赋值或成假赋值求解都至少使用一次):1.2.3.4.1. (¬p→q)→(¬q∨p)解(¬p→q)→(¬q∨p)⇔ (p∨q)→(¬q∨p)蕴含等值式⇔ (¬p∧¬q)∨(¬q∨p)蕴含等值式, 德摩根律⇔ (¬p∧¬q)∨¬q ∨ p结合律⇔ p∨¬q吸收律, 交换律⇔ M1因此, 该式的主析取范式为m0∨m2∨m32. (¬p→q)∧(q∧r)解逻辑方程法设 (¬p→q)∧(q∧r) =1, 则¬p→q=1且 q∧r=1,解得q=1, r=1, p=0 或者 q=1, r=1, p=1, 从而所求主析取范式为 m3∨m7, 主合取范式为M0∧M1∧M2∧M4∧M5∧M6等值演算法(¬p→q)∧(q∧r)(p q)(q r) 蕴含等值式(p q r)(q r) 对分配律, 幂等律(p q r) (p q r)(p q r) 同一律, 矛盾律, 对分配律m7 m3主合取范式为M0∧M1∧M2∧M4∧M5∧M63. (p↔q)→r解逻辑方程法设 (p↔q)→r =0, 解得 p=q=1, r=0 或者 p=q=0, r=0, 从而所求主合取范式为M0∧M6, 主析取范式为m1∨m2∨m3∨m4∨m5∨m7等值演算法(p↔q)→r((p q)(q p))r 等价等值式((p q)(q p))r 蕴含等值式(p q)(q p)r 德摩根律, 蕴含等值式的否定(参见PPT)(p q r)(q p r) 对分配律, 矛盾律, 同一律M0 M6主析取范式为m1∨m2∨m3∨m4∨m5∨m74. (p→q)∧(q→r)解等值演算法(p→q)∧(q→r)(p q)(q r) 蕴含等值式(p q)(p r)(q r) 对分配律, 矛盾律, 同一律(p q r)(p q r) (p q r)(p q r)(p q r)(p q r)m1 m0 m3 m7主合取范式为M2 M4 M5 M6.解逻辑方程法设 (p q) (q r) = 1, 则p q =1 且 q r =1.前者解得: p=0, q=0; 或者 p=0, q=1; 或者 p=1, q=1.后者解得: q=0, r=0; 或者 q=0, r=1; 或者 q=1, r=1.综上可得成真赋值为 000, 001, 011, 111, 从而主析取范式为m0m1m3m7, 主合取范式为M2 M4 M5 M6.真值表法公式 (p q) (q r) 真值表如下:p q r(p q) (qr)00010011010001111000101011001111013724 M5 M6.。

离散数学课后习题答案(第二章)

离散数学课后习题答案(第二章)
习题 2-1,2-2 (1) 用谓词表达式写出下列命题。 a) 小张不是工人。 解:设 W(x) :x 是工人。c:小张。 则有 ¬W ( c )
b) 他是田径或球类运动员。 解:设 S(x) :x 是田径运动员。B(x) :x 是球类运动员。h:他 则有 S(h)∨B(h) c) 小莉是非常聪明和美丽的。 解:设 C(x) :x 是聪明的。B(x) :x 是美丽的。l:小莉。 则有 C(l)∧ B(l) d)若 m 是奇数,则 2m 不是奇数。 解:设 O(x) :x 是奇数。 则有 O(m)→¬ O(2m) 。 e)每一个有理数是实数。 解:设 R(x) :x 是实数。Q(x) :x 是有理数。 则有 (∀x) (Q(x)→R(x) ) f) 某些实数是有理数。 解:设 R(x) :x 是实数。Q(x) :x 是有理数。 则有 (∃x) (R(x)∧Q(x) ) g) 并非每个实数都是有理数。 解:设 R(x) :x 是实数。Q(x) :x 是有理数。 则有 ¬(∀x) (R(x)→Q(x) ) h)直线 A 平行于直线 B,当且仅当直线 A 不相交于直线 B。 解:设 P(x,y) :直线 x 平行于直线 y,G(x,y) :直线 x 相交于直线 y。 则有 P(A,B)�¬G(A,B) (2) 找出以下十二个句子所对应的谓词表达式。 a) 所有的教练员是运动员。 (J(x),L(x)) 解:设 J(x):x 是教练员。L(x):x 是运动员。 则有 (∀x) (J(x)→L(x) ) b) 某些运动员是大学生。 (S(x)) 解:设 S(x):x 是大学生。L(x):x 是运动员。 则有 (∃x) (L(x)∧S(x) ) c) 某些教练是年老的,但是健壮的。 (O(x),V(x) ) 解:设 J(x):x 是教练员。O(x):x 是年老的。V(x) :x 是健壮的。 则有 (∃x) (J(x)∧O(x)∧V(x) ) d) 金教练既不老但也不健壮的。 (j) 解:设 O(x):x 是年老的。V(x) :x 是健壮的。j:金教练 则有 ¬ O(j)∧¬V(j) e) 不是所有的运动员都是教练。 解:设 L(x):x 是运动员。J(x):x 是教练员。 则 ¬(∀x) (L(x)→J(x) ) f) 某些大学生运动员是国家选手。 (C(x) )

离散数学第二章练习题

离散数学第二章练习题

第二章习题1 填空题(每小题5,共30分)⑴设A 为含命题变项p、q、r 的重言式,则公式A Ú((p∧q)®r)的类型为__________⑵设B为含命题变项p、q、r 的矛盾式,则公式B∧((p«q)®r)的类型为_________⑶设p、q为命题变项,则有(Øp«q)的成真赋值为________⑷设p、q为真命题,r、s为假命题,则复合命题(p«r)«(Øq®s)的真值为_________⑸矛盾式的主析取范式为_________⑹设公式A含命题变项p、q、r,又已知A的主合取范式为M O∧M2∧M3∧M5,则A的主析取范式为_________2 用等值演算法求公式的主析取范式或主合取范式(每小题10,共30分)⑴求公式p®((q∧r)∧(pÚ(Øq∧Ør)))的主析取范式⑵求公式Ø(Ø(p®q)) Ú(Øq®Øp)的主取合范式⑶求公式((pÚq) ∧(p®q)) «(q®p)的主析取范式,再由主析取范式求出主合取范3 用真值表求公式(p®q) «r的主析取范式(10分)4 将公式p®(q®r)化成与之等值且仅含{Ø,∧}中的联结词的公式(10分)5 用主析取范式判断Ø(p «q)与((pÚq) ∧Ø (p∧q))是否等值(10分)6 用消解原理证明p∧(ØpÚq) ∧(Ør) ∧(ØpÚØqÚr)是矛盾式(10分)。

离散数学作业

离散数学作业

-离散数学 专业班级 学号 姓名 第一章 命题逻辑的基本概念一、单项选择题1.下列语句中不是命题的有( ).A 9+5≤12 B. 1+3=5 C. 我用的电脑CPU 主频是1G 吗?D.我要努力学习。

2. 下列语句是真命题为( ).A. 1+2=5当且仅当2是偶数B. 如果1+2=3,则2是奇数C. 如果1+2=5,则2是奇数D. 你上网了吗?3. 设命题公式)(r q p∧→⌝,则使公式取真值为1的p ,q ,r 赋值分别是( ) 0,0,1)D (0,1,0)C (1,0,0)B (0,0,0)A ( 4. 命题公式q q p →∨)(为 ( )(A) 矛盾式 (B) 仅可满足式 (C) 重言式 (D) 合取范式5. 设p:我将去市里,q :我有时间.命题“我将去市里,仅当我有时间时”符号化为为( )q p q p q p p q ⌝∨⌝↔→→)D ()C ()B ()A (6.设P :我听课,Q :我看小说. “我不能一边听课,一边看小说”的符号为( )A. Q P ⌝→ ;B. Q P →⌝;C. P Q ⌝∧⌝ ;D. )(Q P ∧⌝二、判断下列语句是否是命题,若是命题是复合命题则请将其符号化(1)中国有四大发明。

(2)2是有理数。

(3)“请进!”(4)刘红和魏新是同学。

(5)a+b(6)如果买不到飞机票,我哪儿也不去。

(8)侈而惰者贫,而力而俭者富。

(韩非:《韩非子∙显学》)(9)火星上有生命。

(10)这朵玫瑰花多美丽啊!二、将下列命题符号化,其中p:2<1,q:3<2(1)只要2<1,就有3<2。

(2)如果2<1,则3≥2。

(3)只有2<1,才有3≥2。

(4)除非2<1,才有3≥2。

(5)除非2<1,否则3≥2。

(6)2<1仅当3<2。

离散数学专业班级学号姓名三、将下列命题符号化(1)小丽只能从筐里拿一个苹果或一个梨。

离散数学(屈婉玲版)第二章习题答案培训资料

离散数学(屈婉玲版)第二章习题答案培训资料

离散数学(屈婉玲版)第二章习题答案2.13 设解释I为:个体域D I ={-2,3,6},一元谓词F(X):X≤3,G (X):X>5,R(X):X≤7。

在I下求下列各式的真值。

(1)∀x(F(x)∧G(x))解:∀x(F(x)∧G(x))⇔(F(-2) ∧G(-2)) ∧(F(3) ∧G(3)) ∧(F(6) ∧G(6))⇔((-2≤3) ∧(-2>5)) ∧((3≤3) ∧(3>5)) ∧((6≤3) ∧(6<5))⇔((1 ∧0))∧((1 ∧0)) ∧((0 ∧0))⇔0∧0∧0⇔0(2) ∀x(R(x)→F(x))∨G(5)解:∀x(R(x)→F(x))∨G(5)⇔(R(-2)→F(-2))∧ (R(3)→F(3))∧ (R(6)→F(6))∨ G(5)⇔((-2≤7) →(-2≤3))∧ (( 3≤7) →(3≤3))∧ (( 6≤7) →(6≤3)) ∨ (5>5)⇔(1 →1)∧ (1 →1)∧ (1→0) ∨ 0⇔1∧ 1∧ 0 ∨ 0⇔0(3)∃x(F(x)∨G(x))解:∃x(F(x)∨G(x))⇔(F(-2) ∨ G(-2)) ∨ (F(3) ∨G(3)) ∨ (F(6) ∨G(6))⇔((-2≤3) ∨ (-2>5)) ∨ ((3≤3) ∨ (3>5)) ∨ ((6≤3) ∨ (6>5))⇔(1 ∨ 0) ∨ (1 ∨ 0) ∨ (0 ∨ 1)⇔1 ∨ 1 ∨ 1⇔12.14 求下列各式的前束范式,要求使用约束变项换名规则。

(1)⌝∃xF(x)→∀yG(x,y)(2) ⌝(∀xF(x,y) ∨∃yG(x,y) )解:(1)⌝∃xF(x)→∀yG(x,y)⇔⌝∃xF(x)→∀yG(z,y) 代替规则⇔∀x⌝F(x)→∀yG(z,y) 定理2.1(2 )⇔∃x(⌝F(x)→∀yG(z,y) 定理2.2(2)③⇔∃x∀y(⌝F(x)→G(z,y)) 定理2.2(1)④(2)⌝(∀xF(x,y) ∨∃yG(x,y) )⇔⌝(∀zF(z,y) ∨∃tG(x,t)) 换名规则⇔⌝(∀zF(z,y) )∧⌝(∃tG(x,t) )⇔∃z⌝F(z,y) ∧∀t⌝G(x,z)⇔∃z (⌝F(z,y) ∧∀t⌝G(x,z))⇔∃z ∀t(⌝F(z,y) ∧⌝G(x,t))2.15 求下列各式的前束范式,要求使用自由变项换名规则。

离散数学 杨圣洪等著第二章习题三解答

离散数学 杨圣洪等著第二章习题三解答

第二章习题三一、证明如下推理式1、∃xF(x)→∀y((F(y)∨G(y))→R(y)),∃xF(x) ⇒∃xR(x)(1)∃xF(x) 前提条件(2)∃xF(x) →∀y((F(y) ∨G(y)) →R(y)) 前提条件(3)∀y((F(y) ∨G(y)) →R(y)) (1)(2)假言推理(4)F(c) (1)存在量词指定(5)F(c) ∨G(c) (4)及析取的定义(6)(F(c) ∨G(c)) →R(c) (3)全称量词指定(7)R(c) (5)(6)假言推理(8)∃xR(x) (7)存在推广2、∀x(F(x)→(G(a) ∧R(x))),∃xF(x) ⇒∃x(F(x) ∧R(x))(1)∃xF(x) 前提条件(2)F(c) (1)存在量词指定(3)∀x(F(x)→G(a) ∧R(x))) 前提条件(4)F(c)→G(a)∧R(c)) (3)全称指定,尤其x=c应成立(5)G(a)∧R(c) (2)(4)假言推理或分离原则(6)R(c) (5)与合取的定义(2)(6)与合取的定义(7)F(c)∧R(c)(8)∃x(F(x)∧R(x) (7)存在推广3、∀x(F(x)∨G(x)),¬∃xG(x) ⇒∃xF(x)(1)¬∃xG(x) 前提条件(2)∀x¬G(x) (1)的等值(3)¬G(x0) (2)全称指定,x0为任意变元(4)∀x(F(x) ∨G(x)) 前提条件(4)全称指定为x0(5)(F(x0) ∨G(x0))(6)¬G(x0) →F(x0) (5)等值变换(7)F(x0) (3)(6)分离原则或假言推理(8)∃xF(x) (7)存在推广4、∀x(F(x) ∨G(x)),∀x(¬R(x) ∨¬G(x)),∀xR(x) ⇒∃xF(x)(1)∀x(F(x) ∨G(x)) 前提条件(2)(F(x0) ∨G(x0)) (1)全称指定,x0为任意变元(3)∀x(¬R(x) ∨¬G(x)) 前提条件(4)(¬R(x0) ∨¬G(x0)) (3)全称指定,变元x指定为(2)中确定的变元x0,即是同一个x0(5)∀xR(x) 前提条件(6)R(x0) (5)全称指定,与(2)中的x0为同一个(4)的等值变换(7)R(x0) →¬G(x0)(8)¬G(x0) (6)(7)分离原则或假言推理(9)¬G(x0) → F(x0) (2)的等值变换(10)F(x0) (8)(9)分离原则或假言推理(11)∃xF(x) (10)存在推广。

离散数学 第2章习题答案

离散数学 第2章习题答案

第2章习题答案1. 解 (1)设F(x)表示“x犯错误”,N(x)表示“x为人”,则此语句符号化为:⌝∃x(N(x)∧⌝F(x))。

(2)设F(x)表示“x是推理”,M(x)表示“x是计算机”,H(x,y)表示“x能由y完成”,则此语句符号化为:⌝∀x(F(x)→∃ y M(y)∧H(x,y))。

(3)设C(x)表示“x是计算机系的学生”,D(x)表示“x学习离散数学”,则此语句符号化为:∀x(C(x)→D(x))。

(4)因原语句与“一切自然数x,都有一个自然数y,使得y是x的后继数;并且对任意自然数x,当y 和z都是x的后继时,则有y=z”的意思相同,所以原语句可符号化为:∀x(N(x)→∃ y(N(y)∧M(x,y)))∧∀x∀y∀z(N(x)∧N(y)∧N(z)→(M(x,y)∧M(x,z)→( y=z))) 其中N(x)表示x是自然数,M(x,y)表示y是x的后继数。

(5)设S(x,y,z)表示“x+y=z”,则此语句符号化为:∀x∀y∃z S(x,y,z)。

(6)设Z(x)表示“x是整数”,S(x,y)表示“xy=0”,T(x,y)表示“x=y”,则此语句符号化为:∀x∀y(Z(x)∧Z(y)→(S(x,y)→ T(x,0)∨T(y,0)))。

(7)设E(x)表示“x是偶数”,P(x)表示“x是素数”,S(x,y)表示“x=y”,则此语句符号化为:∀x(E(x)∧P(x)→∀y(E(y)∧P(y)→ S(x,y)))。

(8)设E(x)表示“x是偶数”,O(x)表示“x是奇数”,N(x)表示“x是自然数”,则此语句符号化为:⌝∃x(E(x)∧O(x)∧N(x))。

(9)设R(x)表示“x是实数”,Q(x)表示“x是有理数”,Z(x)表示“x是整数”,则此语句符号化为:∃x(R(x)∧Q(x)∧⌝Z(x))。

(10)设R(x)表示“x是实数”,Q(x,y)表示“y大于x”,则此语句符号化为:∀x(R(x)→∃⌝y(R(y)∧Q(x,y)))。

离散数学答案第二章习题解答

离散数学答案第二章习题解答

离散数学答案第二章习题解答第二章谓词逻辑习题与解答1、将下列命题符号化:(1) 所有的火车都比某些汽车快。

(2) 任何金属都可以溶解在某种液体中。

(3) 至少有一种金属可以溶解在所有液体中。

(4) 每个人都有自己喜欢的职业。

(5) 有些职业就是所有的人都喜欢的。

解 (1) 取论域为所有交通工具的集合。

令x x T :)(就是火车, x x C :)(就是汽车, x y x F :),(比y 跑得快。

“所有的火车都比某些汽车快”可以符号化为))),()(()((y x F y C y x T x ∧?→?。

(2) 取论域为所有物质的集合。

令x x M :)(就是金属, x x L :)(就是液体, x y x D :),(可以溶解在y 中。

“任何金属都可以溶解在某种液体中” 可以符号化为))),()(()((y xD y L y x M x ∧?→?。

(3) 论域与谓词与(2)同。

“至少有一种金属可以溶解在所有液体中” 可以符号化为))),()(()((y x D y L y x M x →?∧?。

(4) 取论域为所有事物的集合。

令x x M :)(就是人, x x J :)(就是职业, x y x L :),(喜欢y 。

“每个人都有自己喜欢的职业” 可以符号化为))),()(()((y x L y J y x M x ∧?→?(5)论域与谓词与(4)同。

“有些职业就是所有的人都喜欢的”可以符号化为))),()(()((x y L y M y x J x →?∧?。

2、取论域为正整数集,用函数+(加法),?(乘法)与谓词<,=将下列命题符号化:(1) 没有既就是奇数,又就是偶数的正整数。

(2) 任何两个正整数都有最小公倍数。

(3) 没有最大的素数。

(4) 并非所有的素数都不就是偶数。

解先引进一些谓词如下:x y x D :),(能被y 整除,),(y x D 可表示为)(x y v v =??。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
相关文档
最新文档