光的干涉(1)

合集下载

光的干涉(第1讲)详解

光的干涉(第1讲)详解
2级明纹 1级暗纹 1级明纹 0级暗纹 0级明纹 0级暗纹 1级明纹 1级暗纹 2级明纹
S
d S2 r
r2
O
d
暗纹中心坐标: d x = (2 k +1) 2d (k=0,1,2,) 0级,1级暗纹 (11-3)
明纹 暗纹
d x = k d P ( k =0,1,2, ) d x = (2 k +1) 2d B r1 S
复色光: 具有多个波长(频率)的光。: 1~2
激光的单色性最好! 如何获得单色光?
E S
2.光的干涉条件
频率相同;E 的振动方向相同; 相差恒定。
普通光源发出的光一般不能满足干涉条件。
3. 获得相干光的方法 对实验仪器的要求: ① 两束相干光取自同一波列:“一分为二”
② 光波的波程差小于波列长度。
理论:(1) 牛顿的微粒说: 光是按照惯性定律沿直线飞行的微粒流。
u水 u空气
(2)惠更斯的波动说: u水 光是在特殊媒质“以太”中传播的机械波。 此间微粒说占据统治地位。
u空气
三.波动光学时期 (19世纪)
实验: 光的干涉(杨-英) 光的衍射(费涅耳-法)。 此间波动 理论: 麦克斯韦建立电磁场理论,指出光也是电磁波。说占主导 地位。 赫兹证实电磁波的存在;并测出光速。 确定光不是机械波 四.量子光学时期(19世纪后期——20世纪初) 普朗克提出能量量子化假说 爱因斯坦提出光量子假说 认为: 光是以光速运动的粒子流。 光到底是什麽? , 光也是物质的一种 它既具有波的性质、也具有粒子的性质。 它既非波、也非粒子、更不是两者的混合物。它就是它自己!
电磁波动说在解释“热幅射”及“光电效应”等实验时遇到困难。
在某些条件下,波动性表现突出,在另一些条件下,粒子性

第一章光的干涉习题和答案解析

第一章光的干涉习题和答案解析

λdr y 0=∆第一章 光的干涉●1.波长为nm 500的绿光投射在间距d 为cm 022.0的双缝上,在距离cm 180处的光屏上形成干涉条纹,求两个亮条纹之间的距离.若改用波长为nm 700的红光投射到此双缝上,两个亮条纹之间的距离又为多少?算出这两种光第2级亮纹位置的距离.解:由条纹间距公式λd r y y y j j 01=-=∆+ 得:cm 328.0818.0146.1cm146.1573.02cm818.0409.02cm573.010700022.0180cm 409.010500022.018021222202221022172027101=-=-=∆=⨯===⨯===⨯⨯==∆=⨯⨯==∆--y y y drj y d rj y d r y d r y j λλλλ●2.在杨氏实验装置中,光源波长为nm 640,两狭缝间距为mm 4.0,光屏离狭缝的距离为cm 50.试求:(1)光屏上第1亮条纹和中央亮条纹之间的距离;(2)若p 点离中央亮条纹为mm 1.0,问两束光在p 点的相位差是多少?(3)求p 点的光强度和中央点的强度之比.式: 解:(1)由公得λd r y 0=∆ =cm 100.8104.64.05025--⨯=⨯⨯(2)由课本第20页图1-2的几何关系可知52100.01sin tan 0.040.810cm 50y r r d d dr θθ--≈≈===⨯521522()0.8106.4104r r πππϕλ--∆=-=⨯⨯=⨯(3) 由公式2222121212cos 4cos 2I A A A A A ϕϕ∆=++∆= 得8536.042224cos 18cos 0cos 421cos 2cos42cos 422202212212020=+=+==︒⋅=∆∆==πππϕϕA A A A I I pp●3. 把折射率为1.5的玻璃片插入杨氏实验的一束光路中,光屏上原来第5级亮条纹所在的位置为中央亮条纹,试求插入的玻璃片的厚度.已知光波长为6×10-7m.解:未加玻璃片时,1S 、2S 到P 点的光程差,由公式2rϕπλ∆∆=可知为 Δr =215252r r λπλπ-=⨯⨯=现在1S 发出的光束途中插入玻璃片时,P 点的光程差为()210022r r h nh λλϕππ'--+=∆=⨯=⎡⎤⎣⎦所以玻璃片的厚度为421510610cm 10.5r r h n λλ--====⨯-4. 波长为500nm 的单色平行光射在间距为0.2mm 的双狭缝上.通过其中一个缝的能量为另一个的2倍,在离狭缝50cm 的光屏上形成干涉图样.求干涉条纹间距和条纹的可见度.解:6050050010 1.250.2r y d λ-∆==⨯⨯=mm122I I = 22122A A =12A A =()()122122/0.94270.941/A A V A A ∴===≈+5. 波长为700nm 的光源与菲涅耳双镜的相交棱之间距离为20cm ,棱到光屏间的距离L 为180cm,若所得干涉条纹中相邻亮条纹的间隔为1mm ,求双镜平面之间的夹角θ。

光学中的干涉原理

光学中的干涉原理

光学中的干涉原理光学是研究光的传播、反射、折射、干涉、衍射等现象的科学。

干涉是光学中的一个重要现象,指两束或多束光线相遇时互相影响的现象。

光的干涉是利用光波的波动性质,通过相消或者相长等运动状态,实现对光强度或者相位的调节。

在光学中,干涉原理是重要而基础的概念之一。

一、光的干涉原理(一)干涉光束形成条件在光的干涉现象中,需要满足两束或多束光线相遇时,其光程差相等的条件,才能达到扰动的合成或抵消。

光程差是指两束光线从不同的发射点到达相遇点所走的路径长度之差。

(二)厚膜干涉原理当一个薄膜或者透明介质被光照射时,光线在薄膜两侧的介质中传播时,波长和速度的差异导致了光程差,从而引起干涉现象。

对于平行垂直于入射面的两束光线,其光程差可以用以下公式表示:d=2tcosθ其中,d是光程差,t是薄膜的厚度,θ是两束光线入射角。

(三)牛顿环干涉原理牛顿环是一种环形干涉条纹图案,由牛顿于17世纪利用两片光学仪器中的透镜与凸面镜制作而成。

在这种干涉现象中,通过一个凸透镜和一个玻璃平面之间留下的空气隙,光线在空气与玻璃之间的反射和透射过程中产生干涉现象,从而形成环形条纹。

二、干涉现象在实际应用中的意义(一)光学干涉仪光学干涉仪是一种利用光的干涉现象测量物体表面形状的仪器。

光学干涉仪利用干涉仪对光的相位及其变化进行检测,利用光程差的变化,可以测量物体表面形状、薄膜厚度、光学元件的表面形态等。

(二)激光干涉测量激光干涉测量是一种利用激光的光波干涉原理,对物体表面上形状及表面透明度的变化进行测量的科学方法。

由于激光光源具有高亮度、单色性等特点,能够在远距离进行高精度的测量,因此在工业生产领域得到广泛应用。

(三)衍射干涉衍射干涉是女士光学中的一种重要的干涉现象,指光线通过物体出现衍射现象并且发生干涉。

这种干涉现象在显微镜、分光镜等装置中得到了广泛应用。

三、结语在现代光学中,干涉现象已经被广泛应用在各种领域,例如测量、显微镜、光学元件、激光制造等方面。

《光的干涉》参考教案1

《光的干涉》参考教案1

第十三章第3节光的干涉【教学目标】(一)知识与技能1、知道光的干涉现象及由此说明光是一种波。

知道杨氏双缝干涉实验设计的巧妙之处。

2、理解何处出现亮条纹,何处出现暗条纹,知道其它条件相同时,不同色光产生干涉条纹间距与波长的关系。

(二)过程与方法通过观察、实验、并能将观察到的现象跟以前学过的机械波的干涉进行类比,进行自主学习,培养学生观察、表达、分析及概括能力。

情感态度与价值观通过光干涉图样的观察,再次提高学生在学习中体会物理知识之美;另外通过渗透科学家认识事物的科学态度和巧妙思维方法,渗透辩证唯物主义观点。

【教学重点与难点】重点是光的干涉现象、理解干涉条纹的成因,光的双缝干涉条纹间距的大小的决定式及其物理意义;难点是光的干涉现象的成因及如何引导学生寻找获得相干光源的其他方法。

【教学过程】(一)引入1、什么是波的干涉?产生干涉的一个必要的条件是什么?2、干涉现象是波特有的现象。

光具有波动性吗?你如何用实验去验证?生:若光是一种波,就必然会观察到光的干涉现象,观察光的干涉现象可以用屏幕,在屏幕上会得到明暗相间的条纹。

因此精心设置实验,寻找光的干涉现象。

演示两个通有同频率交流电单丝灯泡(或蜡烛)作为两个光源,移动屏与它们之间的距离,屏幕上看不到明暗相间的现象。

设疑:为什么不能观察到干涉图样?是光没有波动性,还是没有满足相干的条件?引导学生讨论得到:两个独立热光源的光波相遇得不到干涉现象,是实验设计有错误,没有满足相干条件。

在物理学史上曾很长一段时间内人们一直认为光不是波,所以没有波动性,也不会产生干涉现象。

直到19世纪,英国物理学家托马斯·扬改进实验设计,在历史上第一次得到了相干光源。

(二)新课教学一、光的双缝干涉——扬氏干涉实验。

介绍英国物理学家托马斯·扬.如何认识光,如何获得相干光源——展示扬氏实验挂图鼓励学生在认识事物或遇到问题时,学习扬氏的科学态度,巧妙的思维方法.1、介绍实验装置——双缝干涉仪.说明双缝很近0.1mm,强调双缝S1、S2与单缝S的距离相等。

第22章-光的干涉1(杨氏双缝)

第22章-光的干涉1(杨氏双缝)

430
可见光七彩颜色旳波长和频率范围
5
一. 光源
§22.2 光旳单色性和相干性
(1) 热辐射 (2) 电致发光 (3) 光致发光 (4) 化学发光
自 发 辐 射
(5) 同步辐射光源 受
(6) 激光光源



自发辐射 E2 能级跃迁 E1
波列
E2 E1/ h
波列长 L = c
6
.
.
非相干(不同原子发旳光)
S2
r2 P n2
相位差与光程差关系:

光在真空中旳波长 0
12
例:两种介质,折射率分别为 n 和 n’
S1 n’
S2
n
d
r2
两个光源发出旳光到达P点所经过旳光 程分别为:
P L1 nr1
L2 nr2 d nd
∴它们旳光程差为:
L2 L1 nr2 d nd nr1
由此引起旳相位差就是:
措施一: xd
kD
措施二: (x) d
D
20
二. 劳埃德镜(洛埃镜)
x

·O
O
S ·
干涉旳实现:
接触处, 屏上O 点出现暗条纹
半波损失.
n1 n2 反射波有半波损失. 入射波 n1
n1 n2
无半波损失.
透射波没有半波损失
反射波
n2 透射波
21
讨论:
1)用一块平面
光栏
p
镜实现了光旳干
I 0
结论
k 1,2,3,
相干条件:(1) 频率相同; (2) 相位差恒定; (3) 光矢量振动方向平行.
10
§22.3 光程与光程差

光的干涉现象

光的干涉现象

光的干涉现象光的干涉现象是光学中重要而又有趣的现象之一。

它揭示了光的波动性质,并深化了人们对光的理解。

本文将通过对光的干涉现象的介绍和实例分析,探讨其原理、应用以及对科学研究和技术发展的影响。

一、光的干涉现象简介光的干涉现象指的是两束或多束光波相互叠加产生的干涉条纹现象。

当两束光波的相位差满足某一特定条件时,它们在空间中会相互干涉。

干涉的结果是光的强弱发生变化,形成了明暗相间的条纹。

在光的干涉现象中,存在两种类型的干涉:同态干涉和非同态干涉。

同态干涉是指两束来自同一光源的光波相互叠加产生的干涉现象,如杨氏双缝干涉和牛顿环等。

非同态干涉是指两束或多束不同光源的光波相互叠加产生的干涉现象,如薄膜干涉和透明薄板干涉等。

二、光的干涉现象原理光的干涉现象可以用波的叠加原理解释。

当两束光波相遇并叠加时,它们的电场强度相互叠加,形成一个新的电场强度分布。

而光的亮暗程度与电场强度的平方成正比,因此,新的电场强度分布也决定了光的亮暗程度。

在同态干涉中,双缝干涉是最典型的实例。

当一束光通过一个有两个细缝的屏幕时,射到屏幕后,光波会分成两束继续传播。

这两束光波在屏幕后再次相遇并叠加,产生干涉现象。

干涉的结果是在屏幕上形成一系列明暗相间的条纹,称为干涉条纹。

三、光的干涉现象应用光的干涉现象在科学研究和技术应用中具有重要意义。

以下是一些常见的应用。

1. 干涉测量:利用光的干涉现象,可以进行高精度的测量。

例如,通过测量干涉条纹的间距和光波的波长,可以计算出被测物体的长度或形状。

2. 光学薄膜:通过在透明介质表面上涂敷一层薄膜,可以利用薄膜的干涉现象来改变光的反射和透射性质。

这在光学元件的设计和制造中有广泛的应用。

3. 涡旋光:涡旋光是一种具有自旋角动量的光。

通过制造特殊形状的相位板,可以实现光的幅度和相位的分离,产生具有涡旋光性质的光束。

涡旋光在光学通信和光学显微镜等领域有重要应用。

4. 光学干涉仪器:干涉仪器是利用光的干涉现象设计和制造的仪器。

第12章(1) 光的干涉答案

第12章(1) 光的干涉答案

图中数字为各处的折射率图16-23一、选择题【C 】1.(基础训练2)如图16-15所示,平行单色光垂直照射到薄膜上,经上下两表面反射的两束光发生干涉,若薄膜的厚度为e ,并且 n 1 < n 2 > n 3,则两束反射光在相遇点的相位差为(A ) 2πn 2e /(n 1λ1) (B )[4πn 1e / ( n 2λ1)] + π(C ) [4πn 2e / ( n 1λ1)] + π (D )4πn 2e /( n 1λ1) 解答:[C]根据折射率的大小关系n 1 < n 2 > n 3,判断,存在半波损失,因此光程 差2/2λδ+=e n 2,相位差πλπδλπϕ∆+==en 422。

其中λ为光在真空中的波长,换算成介质1n 中的波长即为11λλn =,所以答案选【C 】。

【B 】2.(基础训练6)一束波长为 λ 的单色光由空气垂直入射到折射率为n 的透明薄膜上,透明薄膜放在空气中,要使反射光得到干涉加强,则薄膜的最小厚度为(A ) λ/4 (B ) λ/(4n) (C ) λ/2 (D ) λ/(2n) 解答:[B]干涉加强对应于明纹,又因存在半波损失,所以光程差()()()2/221/4()/4nd k d k n Min d n λλλλ∆=+=⇒=-⇒=【B 】3.(基础训练8)用单色光垂直照射在观察牛顿环的装置上。

当平凸透镜垂直向上缓慢平移而远离平面玻璃时,可以观察到这些环状干涉条纹(A ) 向右平移 (B ) 向中心收缩(C ) 向外扩张 (D ) 静止不动 (E ) 向左平移 解答:[B]中央条纹级次最低,随着平凸镜缓慢上移,中央条纹的级次增大即条纹向中心收缩。

【A 】4.(基础训练9)两块平玻璃构成空气劈形膜,左边为棱边,用单色平行光垂直入射。

若上面的平玻璃以棱边为轴,沿逆时针方向作微小转动,则干涉条纹的()。

(A )间隔变小,并向棱边方向平移; (B )间隔变大,并向远离棱边方向平移; (C )间隔不变,向棱边方向平移; (D )间隔变小,并向远离棱边方向平移。

第三章光的干涉1

第三章光的干涉1

2.两个频率、振动方向相同,传播方向相反的光波的迭加 设这两个标量波的振幅相同,其波函数为:
E1(z, t) E0 exp[ j(kz t 10)] E2(z, t) E0 exp[ j(kz t 20 )]
叠加后的波函数为:
E(z,t) E1(z,t) E2(z,t)
2E0
cos(kz
sin
2
2
sin
2
当考察点沿f方向移动一个距离p时,恰好使m所改变量为1, 则称p为等强度面的空间周期。
由前式知:
p 1 f 2sin( / 2)
显然:p的物理意义是:两个强度相度相同的相邻等强度面之 间的距离。
(4).接收屏上的强度分布——干涉图形
考虑在干涉场中放入平面状观察屏П ,则其上将呈现辐照度按 余弦规律变化的直线型干涉条纹如图示:
干涉场强度在空间呈周期性分布,可以用空间频率和空间 周期来描述。
在最大强度处:
(k2
k1)
r
(20
10
)
2m
知:当考察点在空间移动距离r 时,干涉级m的改变量为:
m
1
2
(k2
k1 )
r
由此,我们定义两束平面波干涉场强度分布的空间频率:
f
1
2
(k2
k1)
则 m f r
显然:f 的方向 取决于两光波传播矢量之差 k2 k1的方向,
则干涉场强度:
I(r)
(E1
E2
)
(E1*
E2*
)
E1 E1* E2 E2* E1 E2* E1* E2
E1 E1* E2 E2* E1 E2* E1* E2
2 2
E10
E20
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。



1、条纹特点: 明暗相间,相互平行,等间距的条纹。
光的干涉
S1 S2 △s
相干光源
P1
P P1 P2
P 相干波源是 哪两个?
S1、S2
2、相干光源:①振动方向相同; ②振动频率相同;
③相位相同或相位差保持恒定
相干光
光的干涉
双缝干涉
请问(1)什么情况下出现明条纹?
光屏上某点到双缝的路程差(光程差)为波长的 整数倍时,该点出现亮条纹。
条纹间距
解:由 x L
d 可知A正确,BCD错误。
例二、
激光散斑测速是一种崭新的测速技术,它应用了光的干涉原理,
其二次曝光照相所获得的“散斑对”相对于双缝干涉中的双缝,
待测物体的速度v与二次曝光的时间间隔△t的乘积等于双缝的间
距,试验中可测的第二次曝光的时间间隔△t、双缝到屏的距离l
以及相邻两条亮条纹间距△X,若所用的激光的波长为λ,则该实
水波的干涉
一、光的干涉
干涉现象是波动独有的特征, 两列频率相同的波在相遇的区域里 叠加,出现了某些区域的振动总是加 强,某些区域的振动总是减弱的相 互间隔的干涉现象。
请问:如果光真的是一种波,就必然会 观察到光的干涉现象,干涉图样将是怎 样的?
二、杨氏双缝的干涉 实验
剖面图 X
r1 I
r2

缝双
(2)什么情况下出现暗条纹?
光屏上某点到双缝的 路程差(光程差)为半 波长的奇数倍时,该点 出现暗条纹.
P1
S1 P
S2 △s
光程差
△s=P1S2-P1S1
探究2: 出现明暗相间条纹的条件
S1
S2
亮条纹 亮条纹
出现亮条纹的条件 s 2n • ( n=0,1,2,3…)
2
探究2: 出现明暗相间条纹的条件
紫光
各色光在真空中的波长和频率
光的 颜色

波长 nm 770-620

600

600-580
v=λf
光的 颜色
绿
蓝-靛

红光波长最大,频率最小, 红光干涉条纹最宽;
紫光波长最小,频率最大 紫光的干涉条纹宽度最窄。
波长 nm 580-490
490-450
450-400
屏到光源距离、双缝的间距改变,条纹 宽度会改吗?
2、应用
(1)、增透膜:在透镜表面涂上一层薄膜,当 薄膜的厚度等于入射光的在薄膜中的波长的1/4 时,从薄膜前后两表面反射回来的光的路程差恰 好等于半个波长,它们干涉相消,减小了反射光 的能量,增强了透射光的能量,称为增透膜。
光的干涉的应用 (2).检查物体表面的平整程度
课堂小结: 1.扬氏双缝干涉实验 ①光的干涉条件: 相干光 ②干涉图样的特点
相邻两条亮条纹的间距Δx=3.50mm
则此单色光的波长为多大?
三、薄膜干涉 1、定义:由薄膜前后表面反射的两列光波叠加而成
现象解释
光程差为波长的 整数倍,形成黄 色的亮条纹。
光程差为半波长 的奇数倍,形成 暗条纹。
白光照射时是彩 色条纹
在重力的作用下,薄膜随着时间越来越薄, 条纹间距 变稀疏。
薄膜干涉
③产生明暗条纹的条件
亮纹:光程差 △s = nλ 暗纹:光程差 △s=(2n+1)λ/2
④亮(暗)纹间距的公式
L
△x= λ
d
单色光照射时: 白光照射时:
知识巩固
例一、 用单色光作双缝干涉实验,下列说法正确的是( A ) A乡邻干涉条纹之间的距离相等 B中央明条纹宽度是两边明条纹宽度的2倍 C屏与双缝之间的距离减小,则评屏上条纹距离增大 D在实验装置不变的条件下,红光的条纹间距小于蓝光的
光到底是什么?……………
17世纪明确形成了 两大对立学说
由于波动说没有 数学基础以及牛 顿的威望使得微 粒说一直占上风
牛顿
19世纪初证明了 波动说的正确性
惠更斯
微粒说
19世纪末光电效应现象使得 爱因斯坦在20世纪初提出了 光子说:光具有粒子性
波动说
这里的光子完全不同于牛顿所说的“微粒”
复习:波的干涉
验确定物体运动的速度表达式是

B)
A v x
lt
B v l
xt
C v lx
t
解:由题意可得
D v lt
x
v d ,又x= l 可得
t
d
v l
tx
S1
S2
暗条纹
3、出现亮条纹和暗条纹的条件
亮条纹 暗条纹
s 2n • ( n=0,1,2,3…)
2
s 2n 1• ( n=0,1,2,3…)
2
请问:(1)改用不同颜色的光做该实验,条纹宽 度是否相同?什么颜色的光条纹宽度最大?
不同色光双缝干涉光的干涉
红光
红光干涉条纹最宽、紫 蓝光 光的干涉条纹宽度最窄
Δ
随屏条双纹缝宽的度间随距屏d越到小光而源增的大距。离公L的式增:大而增x大,L
d
你能否根据所学的知识,设计一测量某种可见光波长的方案?
x L
d
d
L
测量(1)双缝的间距d
(2)光屏到挡板间的距离L (3)相邻两条亮条纹的间距Δx
实例:双缝的间距d=0.18mm 光屏到挡板间的距离L=90cm
这 的减波在两
种 区弱谷某列
现 象 叫
波 的 干 涉
.
域 与 振 动 减 弱 的 区 域 相 互 间 隔
);
(
波 峰 与 波 谷 叠 加 且 振 动 加 强
),
与 波 谷 叠 加 而 在 某 些 区 域 振 动
(
些 区 域 振 动 加 强 波 峰 与 波 峰 、
,
)
(
频 率 相 同 的 波 相 干 波 相 遇 时
相关文档
最新文档