2013-2014学年高二1-2导学案:3.2复数四则运算(2)
苏教版高中数学选修1-2《复数的四则运算(第1课时)》参考学案

3.2 复数的四则运算(1)【要点梳理】1. 设di c z bi a z +=++=21,是任意两个复数(1)复数的加法法则: (2)复数的减法法则:: (3) 两个复数相加(减)就是2. 复数bi a z +=(R b a ∈,)的共轭复数记作 z ,=z3. 复数z 是实数的充要条件为 =z =±21z z4.复数的代数形式的乘法运算法则5.乘法运算律:对任何C z z z ∈321,,,*∈N n m ,有=21z z =321)(z z z =+)(321z z z =n m z z =n m z )( =n z z )(216.几个特殊结论:(1)=+14n i =+24n i =+34n i =n i 4(2)如果i 2321+-=ω,则ω= =2ω =3ω =++21ωω =ωω =2ω(3)=+2)1(i =-2)1(i【典型例题】例1. 计算:50325032i i i i ++++例2.已知复数i m m m z )(1221+++=与i m z )31(22-+= )(R m ∈是共轭复数,求实数m 的值.例3.已知,36)(,32)(i i z f i z z z f -=+-+=求)(z f -的值.例4.求i 3016+-的平方根.★ 基础训练★1.已知:,21iz -=则150100++z z 的值是 ( )A .1B .1-C .iD .i -2.=---+-6)2321)(2321)(2321(i i i ( ) A .1- B .0 C .1 D .以上全不对3. 已知复数i t z i z +=+=21,43,且21z z ⋅是实数,则实数t 等于( )A .43B .34C .34-D .43- 4.当复数+-=+=2,3121z i z i 时,=+21z z +i 8,+-=-312z z i . 5.,1)(,5,3221z z f i z i z -=-=+=则=-)(21z z f .6.已知集合}{C z z z w w P ∈+==,,{}C z z z w w Q ∈-==,,则=⋂Q P 7.(12)(23)(34)(20062007)i i i i ---+----= 8.32121232++--+++n n n n i i i i = .9.已知复数,230i z +=复数z 满足,300z z z z +=⋅则复数=z .10.复数),0(,,1321R b a ai b z bi a z z ∈>+=+==,且321,,z z z 成等比数列,则=2z11.164-x 分解成一次式的乘积为 .12.已知,,R y x ∈复数xi y x 5)23(++与复数18)2(+-i y 相等,求y x ,.13.设,R m ∈复数,)3(2,)15(2221i m m z i m m m m z -+-=-+++=若21z z +是虚数, 求m 的取值范围.。
高中数学 3.2 1复数的四则运算学案 新人教A版选修22

2013年高中数学 3.2 1复数的四则运算学案新人教A版选修2-2一、学法建议:1、在学习中,要把概念和运算融为一体,切实掌握好。
2、复数加、减法的几何意义是难点,它们与平面向量的加、减法运算法则完全相同,用类比方法可对照学习,温故而知新。
3、要会运用复数运算的几何意义去解题,它包含两个方面:(1)利用几何意义可以把几何图形的变换转化成复数运算去处理(2)反过来,对于一些复数运算式也可以给以几何解释,使复数做为工具运用于几何之中。
4、要熟练掌握复数乘法,除法的运算法则,特别是除法法则,更为重要,是考试的重点。
5、在化简运算中,如能合理的运用i和的性质,常能出奇制胜,事半功倍,所以在学习中注意积累并灵活运用。
6、性质:zz=│z│2=│z│2是复数运算与实数运算互相转化的重要依据,也是把复数看做整体进行运算的主要依据,在解题中加以认识并逐渐领会。
二、例题分析:第一阶段[例1]复数z满足│z+i│+│z-i│=2求│z+1+i│的最值。
思路分析:利用复数的几何意义对条件和所求结论分别给以几何解释,如能判断满足条件的z点在一条线段上,所求结论为线段上的点到点(-1,-1)的距离的最值.解答:│z+i│+│z-i│=2表示复数z的对应点Z与点A(0,-1)B(0,1)距离之和为2,而│AB│=2∴条件表示以A、B为端点的线段,而│z+1+i│=│z-(-1-i)│表示点Z到点C(-1,-1)的距离,因而,问题的几何意义是求线段AB上的点到C点距离的最大值与最小值,如图易见│z+1+i│max=│BC│=,│z+1+i│min=│AC│=1,[例2]思路分析:题目涉及共轭复数、模以及复数的加、减运算,把Z表示成代数形式,依复数相等的充要条件求出Z的值。
解答:第二阶段[例3]思路分析:题目是用集合的语言表述的,由两点间距离公式d=│z1-z2│联想│z-2│≤2的几何意义,再结合条件AB=B来建立关于b的等式,这里需要对集合B作深入理解。
数学:《3.2复数的四则运算(1)》(选修2-2)

3.2复数的四则运算复习:我们引入这样一个数/ J把/叫做虚数单位"并且规定:*=-1;形如尹bid, bWR)的数叫做复数.全体复数所形成的集合叫做复数集,一般用字母C表示•复数的代数形式^通常用字母运表示,即i (a w R.b e R)。
复数集C 和实数集R 之间有什么关系?「实数b = o纯虚数o = 0, b 工0 非纯虚数QH O, b^O实部 虚部 其中「称为虚数单位。
复数a+bi< 虚数b 工0 Z = Q 讨如果两个复数的实部和虚部分别相等,那么我们就说这两个复数相等.若a,b,c,d e R,a+bi = c + di 特别地,a=b=Oa+b i二Do问题:a=0是z二a+b i (a、bwR)为纯虚数白勺必要不充分条件注意:一般地,两个复数只能说相等或不相等,而不能比较大小.思考:对于任意的两个复数到底能否比较大小?答案:当且仅当两个复数都是实数时,才能比较大小.1 •复数加减法的运算法则:(1)运算法则:设复数G二a+b i, z2=c+d i,那么:z1+z2=(a+c) + (b+d) i ;z〔-Z2二(a-c) + (b-d) i. 即:两个复数相加(减)就是实部与实部,虚部与虚部分别相加(减)•⑵复数的加法满足交换律、结合律,即对任何Z” Z2, Z3ec,有z1+z2=z2+z1,(z1+z2) +Z3二Z[+(Z2+Z3)-二二寸 — I —— 9—) + (T Z —「)H(Z寸+E)— — +—2 •复数的乘法(1)复数乘法的法则复数的乘法与多项式的乘法是类似的,但必须在所得的结果中把i 2换成T, 并且把实部合并•即:(a+b i) (c+d i)二ac+bc i +ad i +bd i2=(ac-bd)+(bc+ad)i.(2)复数乘法的运算定理复数的乘法满足交换律、结合律以及乘法对加法的分配律.即对田可Z2, Z3有Z1Z2=Z2Z1:Z1Z2)Z3=Z1 Z2Z3)Zl(z2+z3)=z1z2+z1z3-例2:计算(1)(。
人教课标版高中数学选修1-2:《复数代数形式的四则运算》教案-新版

3.2 复数代数形式的四则运算一、教学目标 1.核心素养通过学习复数代数形式的四则运算,初步形成基本的数学抽象和数学运算能力. 2.学习目标(1)掌握复数代数形式的加法、减法运算法则,能进行复数代数形式加法、减法运算,理解并掌握复数加法与减法的几何意义.(2)理解并掌握复数的代数形式的乘法与除法运算法则,熟练进行复数的乘法和除法的运算.理解复数乘法的交换律、结合律、分配律;了解共轭复数的定义及性质.(3)培养学生参透转化、数形结合的数学思想方法,提高学生分析问题、解决问题以及运算的能力. 3.学习重点复数代数形式四则运算法则. 4.学习难点复数加减法运算的几何意义,对复数除法法则的运用. 二.教学设计 (一)课前设计 1.预习任务任务1 预习教材P 56---P 60,完成P 58和P 60相应练习题 任务2 掌握复数加、减、乘、除四则运算法则 任务3 利用复平面理解复数加减法的几何意义 2.预习自测1.设z 1=2+bi ,z 2=a +i ,当z 1+z 2=0时,复数a +bi 为( ) A.1+i B.2+i C.3 D.-2-i 答案:D解析:∵z 1+z 2=(2+bi )+(a +i )=(2+a )+(b +1)i =0, ∴⎩⎨⎧ 2+a =0b +1=0,∴⎩⎨⎧a =-2b =-1,∴a +bi =-2-i .2.已知z 1=2+i ,z 2=1-2i ,则复数z =z 2-z 1对应的点位于( ) A.第一象限 B.第二象限 C.第三象限 D.第四象限 答案:C解析:z =z 2-z 1=(1-2i )-(2+i )=-1-3i .故z 对应的点为(-1,-3),在第三象限. 3.若复数z 满足z +(3-4i )=1,则z 的虚部是( ) A.-2 B.4 C.3 D.-4 答案:B解析:z =1-(3-4i )=-2+4i ,所以z 的虚部是4. (二)课堂设计 1.知识回顾1. 复数通常用小写字母z 表示,即z =a +b i(a,b ∈R ),这一表示形式叫做复数的代数形式,其中a 叫做复数z 的实部,b 叫做复数z 的虚部.2. 两个复数相等,即实部和虚部分别相等即a +b i =c +di ⇔a =c 且b =d (a ,b ,c ,d ∈R )3. 复数z =a +bi (a,b ∈R )的模为22z a b =+2.问题探究问题探究一:复数的加减法●活动一 怎样计算复数的加法与减法?设12i,i(,,,)z a b z c d a b c d R =+=+∈,是任意两个复数,那么(1)复数1z 与2z 的和的定义:12(i)(i)()()i z z a b c d a c b d +=+++=+++ (2)复数1z 与2z 的差的定义:12(i)(i)()()i z z a b c d a c b d -=+-+=-+-. ●活动二 从复数的加法和减法法则我们可以得到一个怎样的结论?事实上,两个复数相加(减)就是把实部与实部、虚部与虚部分别相加(减). ●活动三 复数的和与差还是一个复数吗? 显然,复数的和与差仍然是一个唯一确定的复数.●活动四 我们以前学过的运算律还能在复数中使用吗? 对任意123,,z z z C ∈.(1)交换律:1221z z z z +=+;(2)结合律:123123()()z z z z z z ++=++.●活动五 复数代数形式的加减运算的几何意义是什么?(1)复平面内的点(,)Z a b OZ ←−−−→uu u r 一一对应平面向量(2)复数i z a b OZ =+←−−−→uu u r一一对应平面向量 (3)复数的加减法的几何意义复数的加、减法的几何意义,即为向量的合成与分解:平行四边形法则,可简化成三角形法则,如图,OZ uu u r 表示复数12z z +所对应的向量,12Z Z uuuu r 表示复数12z z -所对应的向量,即OZuu u r表示复数()()i a c b d +++所对应的向量,12Z Z uuuu r表示复数()()i a c b d -+-所对应的向量注: 两个复数的差12z z -表示与连接两个终点12,z z 且指向被减数的向量对应. 问题探究二:复数的乘除法●活动一 复数的乘法怎么算?复数的乘法是否有似曾相识的感觉?设1z =a +b i ,2z =c +d i (a,b,c,d ∈R )是任意两个复数,则1z ·2z =(a +b i )(c +d i )=_________________.从上面可以看出,两个复数相乘,类似两个多项式相乘,在所得的结果中把实部与虚部分别合并.两个复数的积仍然是一个复数. ●活动二 复数的乘法是否也满足运算律呢? 对任意123,,z z z C ∈. (1)交换律:2121z z z z ⋅=⋅(2)结合律:123123()()z z z z z z ⋅⋅=⋅⋅ (3)分配律:1231213()z z z z z z z ⋅+=⋅+⋅1z●活动三 复数的除法又该如何计算呢?设1z =a +b i , 2z =c +d i (a,b,c,d ∈R ,且c +d i≠0),122222i i(i 0)i z a b ac bd bc ad c d z c d c d c d+++==++≠+++ 几个运算性质:①i 的幂的周期性:i 4n =1,i 4n +1=i ,i 4n +2=-1,i 4n +3=-i(n ∈N ). ②(1±i)2=±2i ,1i i 1i +=-,1i i 1i -=-+,1i i=-. ③设13i 22ω=-+,则ω2=ω,ω3=1,1+ω+ω2=0.●活动四 什么叫做共轭复数?一般地,当两个复数的实部相等,虚部互为相反数时,这两个复数叫做互为共轭复数. 通常记复数i(,)z a b a b R =+∈的共轭复数为i(,)z a b a b R =-∈.共轭复数有如下性质:①z R z z ∈⇔=;②22z z z z ⋅==;③2z z a +=,2i z z b -=;④1212z z z z +=+,1212z z z z -=-;⑤1212z z z z ⋅=⋅,1122z zz z ⎛⎫= ⎪⎝⎭(z 2≠0).例 1 计算下列各题: (1)3(2-3i)(2i)12+-++; (2)i 1i 1()()i 2332----+;(3)(5-6i)+(-2-2i)-(3+3i).(4)已知复数z 满足z +1+2i =10-3i ,求z . 【知识点:复数的四则运算】详解:33=(22)(3)i 11i 22-+-++=-(1)原式 111111=()(1)i i 322366-++--+=+(2)原式.(3)原式=(5-2-3)+[-6+(-2)-3]i =-11i. (4)z +1+2i =10-3i ,∴z =(10-3i)-(2i +1)=9-5i.点拔:复数的加减法运算就是把复数的实部与实部,虚部与虚部分别相加减.例2 设及分别与复数z 1=5+3i 及复数z 2=4+i 对应,试计算z 1+z 2,并在复平面内作出复数z 1+z 2所对应的向量.【知识点:复数的四则运算,复数加减法的几何意义】 【思路探究】利用加法法则求z 1+z 2详解:∵z 1=5+3i ,z 2=4+i ,∴z 1+z 2=(5+3i)+(4+i)=9+4i ∵15,3OZ =uuu r (),24,1OZ =uuu r (),由复数的几何意义可知,12OZ OZ +uuu r uuu r 与复数z 1+z 2对应, ∴12OZ OZ +uuu r uuu r =(5,3)+(4,1)=(9,4).作出向量12OZ OZ OZ +=uuu r uuu r uu u r如图所示.点拔:1.根据复数加减运算的几何意义可以把复数的加减运算转化为向量的坐标运算.2.利用向量进行复数的加减运算时,同样满足平行四边形法则和三角形法则.3.复数加减运算的几何意义为应用数形结合思想解决复数问题提供了可能.变式:在题设不变的情况下,计算z 1-z 2,并在复平面内作出复数z 1-z 2所对应的向量. 解:z 1-z 2=(5+3i)-(4+i)=(5-4)+(3-1)i =1+2i.复数z 1-z 2所对应的向量为21Z Z uuuu r.例3 (1)设z 1,z 2∈C ,已知|z 1|=|z 2|=1,|z 1+z 2|=2,求|z 1-z 2|. (2)已知|z +1-i|=1,求|z -3+4i|的最大值和最小值.【知识点:复数的模,复数的模的几何意义,复数加减法的几何意义;数学思想:数形结合】(1)设z 1=a +b i ,z 2=c +d i(a ,b ,c ,d ∈R ).由题意,知a 2+b 2=1,c 2+d 2=1.(a +c )2+(b +d )2=2,∴2ac +2bd =0. ∴|z 1-z 2|2=(a -c )2+(b -d )2=a 2+c 2+b 2+d 2-2ac -2bd =2.∴|z1-z2|=2.(2)【思路探究】利用复数加减法的几何意义,以及数形结合的思想解题.解法一:设w=z-3+4i,∴z=w+3-4i,∴z+1-i=w+4-5i.又|z+1-i|=1,∴|w+4-5i|=1.可知w对应的点的轨迹是以(-4,5)为圆心,1为半径的圆.如图(1)所示,∴|w|max=41+1,|w|min=41-1.(1)(2)解法二:由条件知复数z对应的点的轨迹是以(-1,1)为圆心,1为半径的圆,而|z-3+4i|=|z-(3-4i)|表示复数z对应的点到点(3,-4)的距离,在圆上与(3,-4)距离最大的点为A,距离最小的点为B,如图(2)所示,所以|z-3+4i|max=41+1,|z-3+4i|min=41-1.点拔:|z1-z2|表示复平面内z1,z2对应的两点间的距离.利用此性质,可把复数模的问题转化为复平面内两点间的距离问题,从而进行数形结合,把复数问题转化为几何图形问题求解.例4 (1)计算61i23i 1i32i ++⎛⎫+⎪--⎝⎭.(2)计算:2013 23i21i123i⎛⎫-++ ⎪⎪-+⎝⎭;(3)若复数1i1iz+=-,求1+z+z2+…+z2 013的值.【知识点:复数的四则运算】(1)分析:先计算1i1i+-再乘方,且将23i32i+-的分母实数化后再合并.详解:626(1i)23i32i62i3i6 =i1i 255⎡⎤+++++-+=+=-+⎢⎥⎣⎦()()原式又解:626(1i)23i i23i i =i1i 232i i23i⎡⎤++++=+=-+⎢⎥-+⎣⎦()()原式().(2)【思路探究】将式子进行适当的化简、变形,使之出现i n 的形式,然后再根据i n 的值的特点计算求解.详解:10062i(123i)22(2)=1i 1i 123i ⎡⎤⎛⎫⎛⎫+⎢⎥+⋅ ⎪ ⎪ ⎪ ⎪--+⎢⎥⎝⎭⎝⎭⎣⎦原式 100622(1i)=i 2i 2+⎛⎫+⋅⎪-⎝⎭10062(1i)=i i 2++⋅222=i 22--+(3)201422013111z z z zz-++++=-L , 而21i (1i)2i =i 1i (1i)(1i)2z ++===--+,所以201422201311i 11i 11iz z z zz --++++===+--L 点拔:1.要熟记i n 的取值的周期性,要注意根据式子的特点创造条件使之与i n 联系起来以便计算求值.2.如果涉及数列求和问题,应先利用数列方法求和后再求解.例5 已知z ∈C ,z 为z 的共轭复数,若3i 13i z z z ⋅-⋅=+,求z .【知识点:复数的四则运算,共轭复数】详解:设z =a +b i(a ,b ∈R ),则z =a -b i(a ,b ∈R ),由题意得(a +b i)(a -b i)-3i(a -b i)=1+3i ,即a 2+b 2-3b -3a i =1+3i ,则有⎩⎨⎧ a 2+b 2-3b =1-3a =3,解得⎩⎨⎧ a =-1b =0或⎩⎨⎧a =-1b =3,所以z =-1或z =-1+3i.点拔:1.22z z z z ⋅==是共轭复数的常用性质.2.实数的共轭复数是它本身,即z ∈R ⇔ z =z ,利用此性质可以证明一个复数是实数.3.若z ≠0且z +z =0,则z 为纯虚数,利用此性质可证明一个复数是纯虚数. 3.课堂总结 【知识梳理】1.两个复数相加(减)就是把实部与实部、虚部与虚部分别相加(减),即(a +b i)±(c +d i)=(a ±c )+(b ±d )i.2.复数加减法的几何意义3.复数代数形式的乘法类似于多项式乘以多项式,满足交换律、结合律以及乘法对加法的分配律.4.复数代数形式的除法运算时,通常先将除法写成分式的形式,再把分子、分母都乘以分母的共轭复数,化简后可得,类似于以前学习的分母有理化. 【重难点突破】(1)复数的加减法,可模仿多项式的加减法法则计算,实质上是合并同类项,不必死记公式.(2)复数加法的几何意义:如果复数12z z ,分别对应于向量12OP OP uuu r uuu r、,那么,以12OP OP 、为两边作平行四边形,对角线OS 表示的向量OS uu r就是12z z +的和所对应的向量.复数减法的几何意义:两个复数的差12z z -与连接这两个向量终点并指向被减数的向量对应. (3)复数的乘法,也可按照多项式的乘法法法则计算,实质上也是合并同类项,同样不必死记公式.(4)两个复数相除较简便的方法是把它们的商写成分式的形式,然后把分子与分母都乘以分母的共轭复数,再把结果化简 .(5)复数除法的核心是分母实数化,类似分母有理化. 4.随堂检测 1.21i=+( ) A.22 B.2 C.2 D.1 答案:C解析:【知识点:复数的四则运算,复数的模】 原式211i==+ 2.复数i(2-i)等于( ) A.1+2i B.1-2i C.-1+2i D.-1-2i答案:A解析:【知识点:复数的四则运算】 i(2-i)=2i -i 2=1+2i.3.已知(1-i)2z =1+i(i 为虚数单位),则复数z 等于( ) A.1+i B.1-i C.-1+i D.-1-i 答案:D解析:【知识点:复数的四则运算】由(1-i)2z =1+i ,知z =(1-i)21+i =-2i 1+i =-1-i ,故选D.(三)课后作业 ★基础型 自主突破 1.()212i1i +-等于( )A.11i 2--B.11i 2-+C.11i 2+D.11i 2-答案:B解析:【知识点:复数的四则运算】 原式12i i12i 2+==-+- 2. i 为虚数单位,i 607的共轭复数为( ) A.i B.-i C.1 D.-1 答案:A解析:【知识点:共轭复数相关概念,i 的周期性】 方法一:i 607=i 4×151+3=i 3=-i ,其共轭复数为i.故选A.方法二:i607=i 608i =i 4×152i =1i =-i ,其共轭复数为i.故选A.3.已知i 是虚数单位,则(2+i)(3+i)等于( ) A.5-5i B.7-5i C.5+5i D.7+5i 答案:C解析:【知识点:复数的四则运算】4.复数z=i·(1+i)(i 为虚数单位)在复平面上对应的点位于( ) A.第一象限 B.第二象限 C.第三象限 D.第四象限 答案:B解析:【知识点:复数的四则运算,复数的几何意义】 5.复数z 满足(i)i 2i z -=+,则z =( ) A.1i -- B.1i - C.13i -+ D.12i - 答案:B解析:【知识点:复数的四则运算】2iz i i+-=,∴1z i =- 6.复数z =-3+i2+i 的共轭复数是( ) A.2+i B.2-i C.-1+iC.-1-i答案:D解析:【知识点:复数的四则运算,共轭复数的定义】(3)(2)15i i z i -++==-+,1z i =-- 7.若复数z 满足z (2-i )=11+7i (i 为虚数单位),则z 为( )A.3+5iB.3-5iC.-3+5iD.-3-5i答案:A解析:【知识点:复数的四则运算】117(117)(2)3525i i i z i i +++===+- 8. (1+i 1-i )6+2+3i 3-2i=________. 答案:1i -+解析:【知识点:复数的四则运算】 原式6(23i)(32i)5i i 11i 325++=+=-+=-++ ★★能力型 师生共研1.已知复数z 满足z (1+i )=1+ai (其中i 是虚数单位,a ∈R ),则复数z 在复平面内对应的点不可能位于( )A.第一象限B.第二象限C.第三象限D.第四象限答案:B 解析:【知识点:复数的四则运算】由条件可知:z =1+a i 1+i =(1+a i)(1-i)(1+i)(1-i)=a +12+a -12i ;当a +12<0,且a -12>0时,a ∈∅,所以z 对应的点不可能在第二象限,故选B.2.若12+i 是关于x 的实系数方程20x bx c ++=的一个复数根,则( )A.2,3b c ==B.2,1b c ==-C.2,1b c =-=-D.2,3b c =-=答案:D解析:【知识点:复数的四则运算,复数的相等】 把12i +代入方程20x bx c ++=,利用复数的相等即可3.设,a b R ∈,i 是虚数单位,则“0ab =”是“复数ba i +为纯虚数”的()A.充分不必要条件B.必要不充分条件C.充分必要条件D.既不充分也不必要条件答案:B解析:【知识点:复数的四则运算,复数的概念】4.设z 是复数,则下列命题中的假命题是( )A.若2z ≥0,则z 是实数B.若2z <0,则z 是虚数C.若z 是虚数,则2z ≥0D.若z 是纯虚数,则2z <0答案:C解析:【知识点:复数的四则运算,复数的概念】5.一个实数与一个虚数的差( )A.不可能是纯虚数B.可能是实数C.不可能是实数D.无法确定是实数还是虚数答案:C解析:【知识点:复数的四则运算,复数的概念】6.设复数1z =1-i ,2z =a +2i ,若12z z 的虚部是实部的2倍,则实数a 的值为______.答案:6解析:【知识点:复数的概念,复数的四则运算】∵a ∈R ,1z =1-i ,2z =a +2i , ∴12z z =a +2i 1-i =(a +2i)(1+i)(1-i)(1+i)=a -2+(a +2)i 2=a -22+a +22i ,依题意a +22=2×a -22,解得a =6.7.若a1-i =1-b i ,其中a ,b 都是实数,i 是虚数单位,则|a +b i|=________. 答案:5解析:【知识点:复数的模,复数的四则运算】∵a ,b ∈R ,且a1-i =1-b i ,则a =(1-b i)(1-i)=(1-b )-(1+b )i ,∴⎩⎨⎧ a =1-b ,0=1+b.∴⎩⎨⎧ a =2,b =-1.∴|a +bi |=|2-i |=222(1)+-= 5.8.计算:(1-2i)+(-2+3i)+(3-4i)+(-4+5i)+…+(-2002+2003i)+(2003-2004i).答案:见解析解析:【知识点:复数的四则运算】解法一:原式=(1-2+3-4+…-2002+2003)+(-2+3-4+5+…+2003-2004i)=(2003-1001)+(1001-2004)i=1002-1003i.解法二:∵(1-2i)+(-2+3i)=-1+i ,(3-4i)+(-4+5i)=-1+i ,……(2001-2002i)+(-2002+2003)i=-1+i.相加得(共有1001个式子):原式=1001(-1+i)+(2003-2004i)=(2003-1001)+(1001-2004)i=1002-1003i★★★探究型 多维突破A.直角三角形B.等腰三角形C.锐角三角形D.钝角三角形答案:A解析:【知识点:复数的四则运算,复数的加减法的几何意义】2.已知1122,,,x y x y R ∈,定义运算“⊙”为1z ⊙2z =2121y y x x +,设非零复数21,ωω在复平面内对应的点分别为21,P P ,点O 为坐标原点,若1ω⊙2ω=0,则在21OP P ∆中,21OP P ∠的大小为________.答案:90o解析:【知识点:复数的四则运算】设 111a b i ω=+,222a b i ω=+ (12,0a a ≠)故得点),(111b a P ,),(222b a P ,且2121b b a a +=0,即12211-=⋅a b a b . 从而有1212121OP OP b b k k a a ==-g g ,故21OP OP ⊥. 3.复数z 1,z 2满足z 1=m +(4-m 2)i ,z 2=2cos θ+(λ+3sin θ)i (m ,λ,θ∈R ),且z 1=z 2,则λ的取值范围是_____________.答案:⎣⎢⎡⎦⎥⎤-916,7 解析:【知识点:复数的四则运算,三角函数的值域】由复数相等的充要条件可得⎩⎨⎧m =2cos θ,4-m 2=λ+3sin θ,化简得4-4cos 2θ=λ+3sin θ,由此可得λ=-4cos 2θ-3sin θ+4=-4(1-sin 2θ)-3sin θ+4=4sin 2θ-3sin θ=4⎝ ⎛⎭⎪⎫sin θ-382-916, 因为sin θ∈[-1,1],所以λ∈⎣⎢⎡⎦⎥⎤-916,7. 4.已知复数z =x +yi ,且|z -2|=3,则 y x 的最大值为________. 答案: 3解析:【知识点:复数的加减法的几何意义,复数的模,直线的斜率的应用】∴(x -2)2+y 2=3.由图可知⎝ ⎛⎭⎪⎫y x max =31= 3. 5.已知复平面上正方形的三个顶点是A (1,2)、B (-2,1)、C (-1,-2),求它的第四个顶点D 对应的复数.答案:见解析解析:【知识点:复数的四则运算,复数的加减法的几何意义】设D (x,y ),则OA OD AD -=对应的复数为(x +y i)-(1+2i)=(x -1)+(y -2)iOB OC BC -=对应的复数为:(-1-2i)-(-2+i)=1-3i∵BC AD = ∴(x -1)+(y -2)i=1-3i∴⎩⎨⎧-=-=-3211y x ,解得⎩⎨⎧-==12y x ∴D 点对应的复数为2-i.6.已知复数z 满足: 13i ,z z =+-求22(1i)(34i)2z ++的值.答案:见解析解析:【知识点:复数的四则运算,复数的模,复数的概念】设i(,)z a b a b =+∈R ,而13i ,z z =+-即2213i i 0a b a b +--++=,则224,10,43i.3,30a a b a z b b ⎧=-⎧⎪++-=⇒=-+⎨⎨=-=⎩⎪⎩22(1i)(34i)2i(724i)247i34i22(43i)43i z ++-++===+-+-.(四)自助餐1.若12,z z ∈C ,1212z z z z --+是( )A.纯虚数B.实数D.不能确定答案:B解析:【知识点:复数的四则运算,共轭复数,复数的概念】121212i,i(,,,),(i)(i)(i)(i)--=+=+∈+=+-+-+z a b z c d a b c d z z z z a b c d a b c d R 22ac bd =+∈R .2.为正实数,i 为虚数单位,i 2i a +=,则a =( ) A.2 B.3 C.2D.1答案:B解析:【知识点:复数的四则运算,复数的模】2i |1i |12,i +=-=+=a a aa >0,故3a =. 3.36(13i)2i (1i)12i -+-++++的值是( ) A.0B.1C.iD .2i答案:D解析:【知识点:复数的四则运算】33336(13i)2i 13i (2i)(12i)-1+3i 15i ()()()+(1i)12i 2i 52i 5-+-+-+-+-+=+=++=i+i =2i .4 若复数z 满足3(1)i 1z z -+=,则2z z +的值等于( )A .1D .13i 22-+答案:C解析:【知识点:复数的四则运算】13i133i 3i 10,i ,2213i z z z ω+---===-+=-221z z ωω+=+=-.5.已知33i (23i)z -=⋅-,那么复数z 在复平面内对应的点位于() A .第一象限B .第二象限C.第三象限D .第四象限答案:A解析:【知识点:复数的四则运算,复数的几何意义】33132223iz i i -==+-6.已知复数z =1+i ,z -为z 的共轭复数,则z z --z -1=( )A.-2iB.-iC.iD.2i答案:B解析:【知识点:复数的四则运算,共轭复数】解:B 依题意得z z --z -1=(1+i)(1-i)-(1+i)-1=-i.7.设456121z i i i i =++++L ,456121z i i i i =⋅⋅⋅L 则12,z z 的关系是()A .12z z =B .12z z =-C .121z z =+D .无法确定答案:A解析:【知识点:复数的四则运算,等比数列的前n 项和,等比数列的前n 项和】491(1)1111i i i z i i--===--,456127221z i i ++++===L 故选A. 8.已知2()i i (i 1,n n f n n -=-=-∈N ),集合{}()f n 的元素个数是( ) A.2B.3C.4D.无数个答案:C解析:【知识点:复数的四则运算】00-12-23-31(0)i -i 0,(1)i-i =i-=2i,(2)i -i 0,(3)i -i =-2i.i f f f f ======9.在复平面内,复数6+5i,-2+3i 对应的点分别为A ,B.若C 为线段AB 的中点,则点C 对应的复数是( )A.4+8iB.8+2iC.2+4iD.4+i答案:C解析:【知识点:复数的加减法的几何意义】A 点坐标为(6,5),B 点坐标为(-2,3),则中点C 的坐标为(2,4),∴C 点对应的复数为2+4i.10.设i 是虚数单位,z 表示复数z 的共轭复数.若z =1+i ,则z i +i ·z 等于( )A.-2B.-2iC.2D.2i解析:【知识点:复数的四则运算,共轭复数,复数的模】∵z =1+i ,∴z =1-i ,z i =1+i i =-i 2+i i =1-i ,∴ z i +i ·z =1-i +i (1-i )=(1-i )(1+i )=2.故选C.11.若复数z 满足(3-4i )z =|4+3i |,则z 的虚部为( )A.-4B.-45C.4D.45答案:D解析:【知识点:复数的四则运算,共轭复数,复数的模】设z =a +b i ,故(3-4i)(a +b i)=3a +3b i -4a i +4b =|4+3i|,所以⎩⎨⎧ 3b -4a =0,3a +4b =5,解得b =45. 故选D12.若复数z 满足z1-i =i ,其中i 为虚数单位,则z 等于( )A.1-iB.1+iC.-1-iD.-1+i答案:A解析:【知识点:复数的四则运算,共轭复数】∵z 1-i =i ,∴z =i (1-i )=i -i 2=1+i ,∴z =1-i .故选A.13.如图,在复平面内,点A 表示复数z ,则图中表示z 的共轭复数的点是()A.AB.BC.CD.D解析:【知识点:复数的概念,复平面,共轭复数】表示复数z 的点A 与表示z 的共轭复数的点关于x 轴对称,∴B 点表示z .选B.14.设z =(2-i )2(i 为虚数单位),则复数z 的模为 .答案:5解析:【知识点:复数的四则运算,共轭复数,复数的模】15. i 为虚数单位,设复数1z ,2z 在复平面内对应的点关于原点对称,若1z =2-3i,则2z = . 答案:2z = -2+3i解析:【知识点:复数的几何意义】由于z 1对应的点的坐标为(2,-3),所以z 2对应的点的坐标为(-2,3), 2z = -2+3i .16.(1) i 是虚数单位,若复数(1-2i)(a +i)是纯虚数,则实数a 的值为________.(2)已知复数z =(5+2i )2(i 为虚数单位),则z 的实部为________.答案:-2;21解析:【知识点:复数的四则运算,复数的概念】(1)(1-2i )(a +i )=a +2+(1-2a )i ,由已知,得a +2=0,1-2a ≠0,∴a =-2(2)因为z =(5+2i )2=25+20i +(2i )2=25+20i -4=21+20i ,所以z 的实部为21. 17.⎝ ⎛⎭⎪⎫1+i 1-i 2 016=________. 答案:1解析:【知识点:复数的四则运算,共轭复数】⎣⎢⎡⎦⎥⎤⎝ ⎛⎭⎪⎫1+i 1-i 2 1 008=⎝ ⎛⎭⎪⎫1+2i +i 21-2i +i 2 1 008=1. 18.-23+i 1+23i +⎝ ⎛⎭⎪⎫21-i 2 016=________. 答案:1i +解析:【知识点:复数的四则运算,共轭复数】原式=i(1+23i)1+23i +⎣⎢⎡⎦⎥⎤⎝ ⎛⎭⎪⎫21-i 2 1 008=i +⎝ ⎛⎭⎪⎫2-2i 1 008=i +i 1 008=i +i 4×252=1+i . 19.已知f (x )=⎩⎨⎧ 1+x ,x ∈R ,(1+i)x ,x ∉R ,则f [f (1-i )]=________. 答案:3∵f (1-i )=(1+i )(1-i )=2,∴f [f (1-i )]=f (2)=1+2=3.20.已知复数z 满足|z |=5,且(3+ 4i )z 是纯虚数,求z .答案:见解析解析:【知识点:复数的四则运算,复数的概念,复数的相等,复数的模】设z =x +y i (x, y ∈R ),∵ |z |=5,∴ x 2+y 2=25.又(3+4i)z =(3+4i)(x +y i)=(3x -4y )+(4x +3y )i 是纯虚数,∴340,430,x y x y -=⎧⎨+≠⎩联立三个关系式解得4,3,x y =⎧⎨=⎩或4,3.=-⎧⎨=-⎩x y∴ z =4+3i 或z =-4-3i21.设1zz +是纯虚数,求复数z 对应的点的轨迹方程.答案:见解析解析:【知识点:复数的四则运算,复数的概念,复数的相等,共轭复数,复数的模】 ∵1z z + 是纯虚数,∴011z z z z ⎛⎫+= ⎪++⎝⎭,即20(z 1)(z 1)zz z z ++=++, 设(x,y R)z x yi =+∈,则222()20x y x ++=∴ 2211(y 0)24x y ⎛⎫++=≠ ⎪⎝⎭.它为复数z 对应点的轨迹方程. 22.如图所示,平行四边形OABC ,顶点O ,A ,C 分别表示0,3+2i ,-2+4i ,试求:①AO→、BC →所表示的复数; ②对角线CA →所表示的复数; ③B 点对应的复数. 答案:见解析解析:【知识点:复数的概念,复平面,复数的向量表示】①AO→=-OA →,∴AO →所表示的复数为-3-2i . ∵BC →=AO →,∴BC →所表示的复数为-3-2i . ②CA→=OA →-OC →,∴CA →所表示的复数为(3+2i )-(-2+4i )=5-2i . ③OB→=OA →+AB →=OA →+OC →,∴OB →所表示的复数为(3+2i )+(-2+4i )=1+6i , 即B 点对应的复数为1+6i .点评:因为复平面内的点、向量及向量对应的复数是一一对应的,要求某个向量对应的复数时,只要找出所求向量的始点和终点,或者用向量相等直接给出结论即可.23.已知z 是复数,z +2i 、z 2-i均为实数(i 为虚数单位),且复数(z +ai )2在复平面内对应的点在第一象限,求实数a 的取值范围.答案:见解析解析:【知识点:复数的概念,复平面,复数的向量表示】设z =x +yi (x 、y ∈R ),∴z +2i =x +(y +2)i ,由题意得y =-2.∵z 2-i =x -2i 2-i=15(x -2i )(2+i )=15(2x +2)+15(x -4)i ,由题意得x =4.∴z =4-2i . ∵(z +ai )2=(12+4a -a 2)+8(a -2)i ,根据条件,可知⎩⎨⎧12+4a -a 2>0,8(a -2)>0,解得2<a <6, ∴实数a 的取值范围是(2,6).三、数学视野以复数作为自变量和因变量的函数就叫做复变函数,而与之相关的理论就是复变函数论.解析函数是复变函数中一类具有解析性质的函数,复变函数论主要就研究复数域上的解析函数,因此通常也称复变函数论为解析函数论.复变函数论产生于十八世纪.1774年,欧拉在他的一篇论文中考虑了由复变函数的积分导出的两个方程.而比他更早时,法国数学家达朗贝尔在他的关于流体力学的论文中,就已经得到了它们.因此,后来人们提到这两个方程,把它们叫做“达朗贝尔-欧拉方程”.到了十九世纪,上述两个方程在柯西和黎曼研究流体力学时,作了更详细的研究,所以这两个方程也被叫做“柯西-黎曼条件”.复变函数论的全面发展是在十九世纪,就像微积分的直接扩展统治了十八世纪的数学那样,复变函数这个新的分支统治了十九世纪的数学.当时的数学家公认复变函数论是最丰饶的数学分支,并且称为这个世纪的数学享受,也有人称赞它是抽象科学中最和谐的理论之一. 为复变函数论的创建做了最早期工作的是欧拉、达朗贝尔,法国的拉普拉斯也随后研究过复变函数的积分,他们都是创建这门学科的先驱.后来为这门学科的发展作了大量奠基工作的要算是柯西、黎曼和德国数学家维尔斯特拉斯了.二十世纪初,复变函数论又有了很大的进展,维尔斯特拉斯的学生,瑞典数学家列夫勒、法国数学家庞加莱、阿达玛等都作了大量的研究工作,开拓了复变函数论更广阔的研究领域,为这门学科的发展做出了贡献.复变函数论在应用方面,涉及的面很广,有很多复杂的计算都是用它来解决的.比如物理学上有很多不同的稳定平面场,所谓场就是每点对应有物理量的一个区域,对它们的计算就是通过复变函数来解决的.比如俄国的茹柯夫斯基在设计飞机的时候,就用复变函数论解决了飞机机翼的结构问题,他在运用复变函数论解决流体力学和航空力学方面的问题上也做出了贡献.复变函数论不但在其他学科得到了广泛的应用,而且在数学领域的许多分支也都应用了它的理论.它已经深入到微分方程、积分方程、概率论和数论等学科,对它们的发展很有影响.。
苏教版数学高二-数学苏教版选修1-2素材 课堂导学 3.2 复数的四则运算

课堂导学三点剖析各个击破一、复数代数形式的加减运算 【例1】 计算:(1-2i)-(2-3i)+(3-4i)-(4-5i)+…+(1 999-2 000i)-(2 000-2 001i). 解法一:原式=(1-2+3-4+…+1 999-2 000)+(-2+3-4+5-…-2 000+2 001)i=-1 000+1 000i. 解法二:(1-2i)-(2-3i)=-1+i,(3-4i)-(4-5i)=-1+i,……(1 999-2 000i)-(2 000-2 001i)=-1+i.将上述式子累加得原式=1 000(-1+i)=-1 000+1 000i.温馨提示复数的加减法,类似于多项式加减法中的合并同类项的过程.具体解题时,可适当地进行组合,简化运算.类题演练1设z 1=x+2i,z 2=3-yi(x 、y ∈R ),且z 1+z 2=5-6i,求x+yi.解:z 1+z 2=x +2i+3-y i=(x +3)+(2-y )i.∵z 1+z 2=5-6i,∴⎩⎨⎧-=-=+.62,53y x 解得⎩⎨⎧==.8,2y x ∴x +y i=2+8i.变式提升 1已知平行四边形中,三个顶点对应的复数分别是2+i,4+3i ,3+5i,求第四个顶点对应的复数.解:如右图,设点Z 1、Z 2、Z 3分别对应复数2+i,4+3i,3+5i.(1)若Z 1Z 3为对角线,则3241Z Z Z Z =,即z 4-z 1=z 3-z 2,∴z 4=z 3-z 2+z 1=(3+5i)-(4+3i)+(2+i)=1+3i.(2)若Z 1Z 2为对角线,则2341Z Z Z Z =,即z 4-z 1=z 2-z 3,∴z 4=z 2-z 3+z 1=(4+3i)-(3+5i)+(2+i)=3-i.(3)若Z 2Z 3为对角线,则3142Z Z Z Z =,即z 4-z 2=z 3-z 1,∴z 4=z 3-z 1+z 2=(3+5i)-(2+i)+(4+3i)=5+7i.二、复数代数形式的乘除运算【例2】已知x 、y ∈R ,且i315i 21y i 1x +=+++,求x 、y 的值. 解:i 315i 21y i 1x +=+++可写成103i)-(1552i)-y(12i)-x(1=+, 5x(1-i)+2y(1-2i)=5-15i,(5x+2y)-(5x+4y)i=5-15i.∴⎩⎨⎧=+=+,15y 4x 5,5y 2x 5 ⎩⎨⎧=-=.5y ,1x 温馨提示 在进行复数除法运算时,通常把(a+bi)÷(c+di)写成di c bi a ++的形式,再把分子与分母都乘复数(c-di ),并进行化简整理.类题演练2已知 z =i 1i a --(a>0),且复数ω=z (z +i)的虚部减去它的实部所得的差等于23,求复数ω. 解:ω=i a a a ai a i i a a i a i i a i i i a i i a 2212)1)(1(2))(1(111)1(12+++=++=--+=-+⋅--=+----, ∴232122=+-+a a a , 即a 2-1=3.∵a>0,∴a=2,ω=23+3i. 变式提升 2计算:i 21i 2i)(1i)3(-162++--++. 解:5)21)(2(])1[()31(212)1()31(32363i i i i i i i i -+--++-=++--++- =5242)2()31(33+++--+-i i i i =ii i i i i 888)3()3)(1(33)1(3)1(3223-=--+-⋅+-⋅+--i=i-i=0.三、共轭复数问题【例3】 已知复数z 满足z ·z --i (z 3)=1-(i 3),求z .思路分析:(1)将方程两边化成a+bi 的形式,根据复数相等的充要条件来解.(2)根据模的性质即|z |2=z z 和两个纯虚数的积为实数来解.解:方法一:设z =x+yi(x,y ∈R ),则x 2+y 2-i [yi)(x 3+]=1-(i 3), 即x 2+y 2-3y-3xi=1+3i, 由复数相等得⎩⎨⎧=-=-+.3x 3,1y 3y x 22解得⎩⎨⎧=-=,0y ,1x 或⎩⎨⎧=-=.3y ,1x∴z =-1或z =-1+3i.方法二:∵z z -i(z 3)=1-(i 3),∴z z -1=3i+3i z ,即|z |2-1=3i(z +1)∈R , ∴z +1是纯虚数或0, 可令z =-1+ai(a ∈R ),∴|-1-ai|2-1=3i(ai),即a 2=-3a ⇒a=0或a=-3, ∴z =-1或z =-1-3i,故z =-1或z =-1+3i.类题演练3设a 、b 为共轭复数,且(a+b)2-3abi=4-6i,求a 和b.解:设a=x +y i ,则b=x -y i ,(x ,y ∈R ),由条件得:(x +y i+x -y i)2-3(x +y i)(x -y i)i=4-6i,即4x 2-3(x 2+y 2)i=4-6i,由复数相等的充要条件,得:⎪⎩⎪⎨⎧=+=.6)(3,44222y x x 解得:⎩⎨⎧±=±=.1,1y x∴⎩⎨⎧+=-=⎩⎨⎧-=+=.1,11,1i b i a i b i a 或 变式提升 3计算(-i 2321+)n +(-i 2321-)n (n ∈N ). 解:设ω=-i 2321+,分以下三种情况: ①当n=3k 时,原式=ω3k +k 3ω=1+1=2;②当n=3k+1时,原式=ω3k+1+13+k ω=ω+ω=-1; ③当n=3k+2时,原式=ω3k+2+23+k ω=ω2+2ω=-1. 综上,原式=⎩⎨⎧≠-=kn k n 3,13,2(k ∈Z).。
2014年高二数学课堂基础规范教案第三章3.2《复数代数形式的四则运算》(新人教A版选修1-2)

复数的代数形式的乘除运算教学要求:掌握复数的代数形式的乘、除运算。
教学重点:复数的代数形式的乘除运算及共轭复数的概念教学难点:乘除运算教学过程:一、复习准备:1. 复数的加减法的几何意义是什么?2. 计算(1)(14)(72)i i +-+ (2)(52)(14)(23)i i i --+--+ (3)(32)(43)(5)]i i i --+-+-[3. 计算:( 1)(1(2+⨯- (2)()()a b c d +⨯+ (类比多项式的乘法引入复数的乘法)二、讲授新课:1.复数代数形式的乘法运算①.复数的乘法法则:2()()()()a bi c di ac bci adi bdi ac bd ad bc i ++=+++=-++。
例1.计算(1)(14)(72)i i +⨯- (2)(72)(14)i i -⨯+ (3)[(32)(43)](5)i i i -⨯-+⨯+(4)(32)(43)(5)]i i i -⨯-+⨯+[探究:观察上述计算,试验证复数的乘法运算是否满足交换、结合、分配律?例2.1、计算(1)(14)(14)i i +⨯- (2)(14)(72)(14)i i i -⨯-⨯+(3)2(32)i +2、已知复数Z ,若,试求Z 的值。
变:若(23)8i Z +≥,试求Z 的值。
②共轭复数:两复数a bi a bi +-与叫做互为共轭复数,当0b ≠时,它们叫做共轭虚数。
注:两复数互为共轭复数,则它们的乘积为实数。
练习:说出下列复数的共轭复数32,43,5,52,7,2i i i i i --++--。
=,试写出复数的除法法则。
2.复数的除法法则:2222()()()()()()a bi a bi c di ac bd bc ad a bi c di i c di c di c di c d c d ++-+-+÷+===+++-++ 其中c di -叫做实数化因子 例3.计算(32)(23)i i -÷+,(12)(32)i i +÷-+(师生共同板演一道,再学生练习) 练习:计算232(12)i i -+,23(1)1i i -+- 2.小结:两复数的乘除法,共轭复数,共轭虚数。
人教版高中数学选修(1-2)-3.2《复数代数形式的四则运算》教学设计
3.2 复数代数形式的四则运算(罗静)一、教学目标1.核心素养通过学习复数代数形式的四则运算,初步形成基本的数学抽象和数学运算能力.2.学习目标(1)掌握复数代数形式的加法、减法运算法则,能进行复数代数形式加法、减法运算,理解并掌握复数加法与减法的几何意义.(2)理解并掌握复数的代数形式的乘法与除法运算法则,熟练进行复数的乘法和除法的运算.理解复数乘法的交换律、结合律、分配律;了解共轭复数的定义及性质.(3)培养学生参透转化、数形结合的数学思想方法,提高学生分析问题、解决问题以及运算的能力.3.学习重点复数代数形式四则运算法则.4.学习难点复数加减法运算的几何意义,对复数除法法则的运用.二.教学设计(一)课前设计1.预习任务任务1 预习教材P56---P60,完成P58和P60相应练习题任务2 掌握复数加、减、乘、除四则运算法则任务3 利用复平面理解复数加减法的几何意义2.预习自测1.设z1=2+bi,z2=a+i,当z1+z2=0时,复数a+bi为()A.1+iB.2+iC.3D.-2-i答案:D解析:∵z1+z2=(2+bi)+(a+i)=(2+a)+(b+1)i=0,∴⎩⎨⎧ 2+a =0b +1=0,∴⎩⎨⎧ a =-2b =-1,∴a +bi =-2-i . 2.已知z 1=2+i ,z 2=1-2i ,则复数z =z 2-z 1对应的点位于( )A.第一象限B.第二象限C.第三象限D.第四象限答案:C解析:z =z 2-z 1=(1-2i )-(2+i )=-1-3i .故z 对应的点为(-1,-3),在第三象限.3.若复数z 满足z +(3-4i )=1,则z 的虚部是( )A.-2B.4C.3D.-4答案:B解析:z =1-(3-4i )=-2+4i ,所以z 的虚部是4.(二)课堂设计1.知识回顾1. 复数通常用小写字母z 表示,即z =a +b i(a,b ∈R ),这一表示形式叫做复数的代数形式,其中a 叫做复数z 的实部,b 叫做复数z 的虚部.2. 两个复数相等,即实部和虚部分别相等即a +b i =c +di ⇔a =c 且b =d (a ,b ,c ,d ∈R )3. 复数z =a +bi (a,b ∈R )2.问题探究问题探究一:复数的加减法●活动一 怎样计算复数的加法与减法?设12i,i(,,,)z a b z c d a b c d R =+=+∈,是任意两个复数,那么(1)复数1z 与2z 的和的定义:12(i)(i)()()i z z a b c d a c b d +=+++=+++(2)复数1z 与2z 的差的定义:12(i)(i)()()i z z a b c d a c b d -=+-+=-+-.●活动二 从复数的加法和减法法则我们可以得到一个怎样的结论?事实上,两个复数相加(减)就是把实部与实部、虚部与虚部分别相加(减).。
苏教版高中数学选修1-2 第3章 3.2 复数的四则运算 学案
3.2复数的四则运算第1课时复数的加法、减法、乘法运算学习目标 1.掌握复数代数形式的加减运算.2.理解复数乘法运算法则,能进行复数的乘法运算.3.掌握共轭复数的概念及应用.知识点一复数的加减运算思考1类比多项式的加减法运算,想一想复数如何进行加减法运算?答案两个复数相加(减)就是把实部与实部、虚部与虚部分别相加(减),即(a+b i)±(c+d i)=(a±c)+(b±d)i(a,b,c,d∈R).思考2复数的加法满足交换律和结合律吗?答案满足.梳理(1)运算法则设z1=a+b i,z2=c+d i(a,b,c,d∈R)是任意两个复数,那么(a+b i)+(c+d i)=(a+c)+(b +d)i,(a+b i)-(c+d i)=(a-c)+(b-d)i.(2)加法运算律对任意z1,z2,z3∈C,有z1+z2=z2+z1,(z1+z2)+z3=z1+(z2+z3).知识点二复数的乘法运算思考复数的乘法与实数的乘法有何联系与区别?答案复数的乘法类似于多项式的乘法,相当于把复数的代数形式看成关于“i”的多项式,运算过程中要把i2换成-1,然后把实部与虚部分别合并.梳理(1)复数的乘法法则设z1=a+b i,z2=c+d i(a,b,c,d∈R),z1z2=(a+b i)(c+d i)=(ac-bd)+(ad+bc)i.(2)乘法运算律对于任意z1,z2,z3∈C,有知识点三共轭复数思考复数3+4i与3-4i,a+b i与a-b i(a,b∈R)有什么特点?答案这两组复数的特点:①实部相等,②虚部互为相反数.梳理(1)把实部相等、虚部互为相反数的两个复数叫做互为共轭复数.(2)复数z=a+b i(a,b∈R)的共轭复数记作z,即z=a-b i.(3)当复数z=a+b i(a,b∈R)的虚部b=0时,z=z,也就是说,实数的共轭复数仍是它本身.1.两个实数的和、差、积仍是实数,两个虚数的和、差、积仍是虚数.(×)2.任意有限个复数的含加、减、乘法的混合运算中,应先进行乘法,再进行加、减法,有括号时先算括号内的.(√)3.两个互为共轭复数的和是实数,差是纯虚数.(×)类型一复数的加减运算例1计算:(1)(3+5i)+(3-4i);(2)(-3+2i)-(4-5i);(3)(5-5i)+(-2-2i)-(3+3i).解(1)(3+5i)+(3-4i)=(3+3)+(5-4)i=6+i.(2)(-3+2i)-(4-5i)=(-3-4)+[2-(-5)]i=-7+7i.(3)(5-5i)+(-2-2i)-(3+3i)=(5-2-3)+[-5+(-2)-3]i=-10i.反思与感悟复数加减运算法则的记忆方法(1)复数的实部与实部相加减,虚部与虚部相加减.(2)把i看作一个字母,类比多项式加减中的合并同类项.跟踪训练1(1)计算:(5-6i)+(-2-i)-(3+4i);(2)已知复数z满足z+1-3i=5-2i,求z.解(1)(5-6i)+(-2-i)-(3+4i)=[(5-2)+(-6-1)i]-(3+4i)=(3-7i)-(3+4i)=(3-3)+(-7-4)i =-11i. (2)由z +1-3i =5-2i ,得z =(5-2i)-(1-3i)=(5-1)+(-2+3)i =4+i. 类型二 复数的乘法 例2 计算:(1)(1-i)(1+i)+(-1+i); (2)(2-i)(-1+5i)(3-4i)+2i.解 (1)(1-i)(1+i)+(-1+i)=1-i 2-1+i =1+i. (2)(2-i)(-1+5i)(3-4i)+2i =(-2+10i +i -5i 2)(3-4i)+2i =(-2+11i +5)(3-4i)+2i =(3+11i)(3-4i)+2i =(9-12i +33i -44i 2)+2i =53+21i +2i =53+23i.反思与感悟 (1)三个或三个以上的复数相乘,可按从左向右的顺序运算,或利用结合律运算.混合运算的顺序与实数的运算顺序一样.(2)平方差公式、完全平方公式等在复数范围内仍然成立.一些常见的结论要熟悉:i 2=-1,(1±i)2=±2i.跟踪训练2 若复数(m 2+i)(1+m i)是实数,则实数m =________. 答案 -1解析 ∵(m 2+i)(1+m i)=m 2-m +(m 3+1)i 是实数,∴m 3+1=0,则m =-1. 类型三 共轭复数的概念例3 复数z 满足z ·z +2i z =4+2i ,求复数z 的共轭复数. 解 设z =x +y i(x ,y ∈R ),则z =x -y i. ∵z ·z +2i z =4+2i , ∴x 2+y 2+2i(x +y i)=4+2i , 因此(x 2+y 2-2y )+2x i =4+2i ,得⎩⎪⎨⎪⎧ x 2+y 2-2y =4,2x =2,解得⎩⎪⎨⎪⎧ x =1,y =3,或⎩⎪⎨⎪⎧x =1,y =-1, ∴z =1+3i 或z =1-i.因此z 的共轭复数z =1-3i 或z =1+i.反思与感悟 (1)有关复数z 及其共轭复数的题目,注意共轭复数的性质:①设z =a +b i(a ,b ∈R ),则z ·z =a 2+b 2.②z ∈R ⇔z =z .(2)紧紧抓住复数相等的充要条件,把复数问题转化成实数问题是解决本题的关键,正确熟练地进行复数运算是解题的基础.跟踪训练3 已知z ∈C ,z 为z 的共轭复数,若z ·z -3i z =1+3i ,求z . 解 设z =a +b i(a ,b ∈R ), 则z =a -b i(a ,b ∈R ).由题意得(a +b i)(a -b i)-3i(a -b i)=1+3i , 即a 2+b 2-3b -3a i =1+3i ,则有⎩⎪⎨⎪⎧ a 2+b 2-3b =1,-3a =3,解得⎩⎪⎨⎪⎧ a =-1,b =0或⎩⎪⎨⎪⎧a =-1,b =3, 所以z =-1或z =-1+3i.1.已知复数z 1=12-32i 和复数z 2=cos 60°+isin 60°,则z 1+z 2=________.答案 1解析 ∵z 2=12+32i ,∴z 1+z 2=1.2.已知i 是虚数单位,则(-1+i)(2-i)=________. 答案 -1+3i解析 (-1+i)(2-i)=-2+3i -i 2=-1+3i.3.若复数z 满足z +(2-3i)=-1+2i ,则z +2-5i =________. 答案 -1解析 ∵z =-1+2i -2+3i =-3+5i , ∴z +2-5i =-3+5i +2-5i =-1.4.设复数z 1=x +2i ,z 2=3-y i(x ,y ∈R ),若z 1+z 2=5-6i ,则z 1-z 2=________. 答案 -1+10i解析 ∵z 1+z 2=x +2i +(3-y i)=(x +3)+(2-y )i , ∴(x +3)+(2-y )i =5-6i(x ,y ∈R ), 由复数相等的定义,得x =2且y =8, ∴z 1-z 2=2+2i -(3-8i)=-1+10i.5.复数z 1=a +4i ,z 2=-3+b i ,若它们的和z 1+z 2为实数,差z 1-z 2为纯虚数,则a ,b 的值分别为________. 答案 -3,-4解析 ∵z 1+z 2=a -3+(4+b )i 为实数, ∴4+b =0,即b =-4.又z 1-z 2=(a +3)+(4-b )i 为纯虚数, ∴a +3=0且4-b ≠0,∴a =-3.1.复数的加减运算把复数的代数形式z =a +b i(a ,b ∈R )看作关于“i ”的多项式,则复数的加法、减法运算,类似于多项式的加法、减法运算,只需要“合并同类项”就行,不需要记加法、减法法则. 2.两个复数的和(差)是复数,但两个虚数的和(差)不一定是虚数,例如(3-2i)+2i =3. 3.复数的乘法与多项式乘法是类似的,有一点不同即必须在所得结果中把i 2换成-1,再把实部、虚部分别合并,两个复数的积仍然是一个复数. 4.理解共轭复数的性质 (1)z ∈R ⇔z =z .(2)当a ,b ∈R 时,有a 2+b 2=(a +b i)(a -b i),这是虚数问题实数化的一个重要依据.一、填空题1.复数z 满足z -(1-i)=2i ,则z =________. 答案 1+i解析 ∵z -(1-i)=2i , ∴z =1-i +2i =1+i.2.若复数(1+b i)(2+i)是纯虚数(i 是虚数单位,b 是实数),则b =________. 答案 2解析 (1+b i)(2+i)=(2-b )+(2b +1)i , 令2-b =0,且2b +1≠0, ∴b =2.3.已知复数z 1=(a 2-2)+(a -4)i ,z 2=a -(a 2-2)i(a ∈R ),且z 1-z 2为纯虚数,则a =________. 答案 -1解析 ∵z 1-z 2=(a 2-a -2)+(a -4+a 2-2)i(a ∈R )为纯虚数,∴⎩⎪⎨⎪⎧a 2-a -2=0,a 2+a -6≠0,解得a =-1.4.复数z =i(i +1)(i 为虚数单位)的共轭复数是________. 答案 -1-i解析 ∵z =i(i +1)=i 2+i =-1+i , ∴z 的共轭复数是z =-1-i.5.若复数z =1-2i(i 为虚数单位),则z ·z +z 的实部是________. 答案 6解析 ∵z =1-2i , ∴z =1+2i ,∴z ·z =(1-2i)(1+2i)=5, ∴z ·z +z =5+1-2i =6-2i. ∴z ·z +z 的实部是6. 6.复数z =32-a i ,a ∈R ,且z 2=12-32i ,则a =________. 答案 12解析 ∵z 2=⎝⎛⎭⎫32-a i 2=⎝⎛⎭⎫34-a 2-3a i , ∴⎝⎛⎭⎫34-a 2-3a i =12-32i(a ∈R ),则⎩⎨⎧34-a 2=12,3a =32,∴a =12.7.把复数z 的共轭复数记作z ,已知(1+2i)z =4+3i ,则z =________. 答案 2+i解析 设z =a +b i ,则z =a -b i(a ,b ∈R ), (1+2i)z ]=(1+2i)(a -b i)=(a +2b )+(2a -b )i =4+3i ,由复数相等的充要条件可得⎩⎪⎨⎪⎧ a +2b =4,2a -b =3,解得⎩⎪⎨⎪⎧a =2,b =1.∴z =2+i.8.已知z 1=(3x +y )+(y -4x )i(x ,y ∈R ),z 2=(4y -2x )-(5x +3y )i(x ,y ∈R ).设z =z 1-z 2,且z =13-2i ,则z 1=________,z 2=________. 考点 复数的加减法运算法则 题点 复数加减法的综合应用答案 5-9i -8-7i解析 ∵z =z 1-z 2=(3x +y -4y +2x )+(y -4x +5x +3y )i =(5x -3y )+(x +4y )i =13-2i ,∴⎩⎪⎨⎪⎧ 5x -3y =13,x +4y =-2,解得⎩⎪⎨⎪⎧x =2,y =-1.∴z 1=5-9i ,z 2=-8-7i. 9.已知z 1=32a +(a +1)i ,z 2=-33b +(b +2)i(a ,b ∈R ),若z 1-z 2=43,则z 1·z 2=________. 答案 -18-63i 解析 z 1-z 2=32a +(a +1)i -[-33b +(b +2)i] =⎝⎛⎭⎫32a +33b +(a -b -1)i =4 3. ∴⎩⎪⎨⎪⎧32a +33b =43,a -b -1=0,解得⎩⎪⎨⎪⎧a =2,b =1,∴z 1=3+3i ,z 2=-33+3i.z 1·z 2=(3+3i)(-33+3i)=-18-63i.10.已知3+i -(4+3i)=z -(6+7i),则z =________. 答案 5+5i解析 ∵3+i -(4+3i)=z -(6+7i), ∴z =3+i -(4+3i)+(6+7i) =(3-4+6)+(1-3+7)i =5+5i.11.若(x +i)i =-1+2i(x ∈R ),则x =________. 答案 2解析 由题意知x i -1=-1+2i ,又x ∈R ,由复数相等,得x =2. 二、解答题12.已知z -1+2z i =-4+4i ,求复数z .解 设z =x +y i(x ,y ∈R ),代入z -1+2z i =-4+4i ,整理,得(x -2y -1)+(2x +y )i =-4+4i ,故有⎩⎪⎨⎪⎧ x -2y -1=-4,2x +y =4.解得⎩⎪⎨⎪⎧x =1,y =2,所以复数z =1+2i.13.已知复数z =(1-i)2+1+3i ,若z 2+az +b =1-i(a ,b ∈R ),求b +a i 的共轭复数. 解 z =(1-i)2+1+3i =-2i +1+3i =1+i , 由z 2+az +b =1-i ,得(1+i)2+a (1+i)+b =1-i ,∴a +b +i(a +2)=1-i(a ,b ∈R ),∴⎩⎪⎨⎪⎧a +b =1,a +2=-1,解得⎩⎪⎨⎪⎧a =-3,b =4.所以b +a i =4-3i ,则b +a i 的共轭复数是4+3i. 三、探究与拓展14.已知z 1=3+4i ,z 2=t +i ,且z 1·z 2是实数,则实数t =________. 答案 34解析 ∵z 2=t +i ,∴z 2=t -i , ∴z 1·z 2=(3+4i)(t -i) =3t -3i +4t i -4i 2 =(3t +4)+(4t -3)i. 又∵z 1·z 2是实数, ∴4t -3=0,即t =34.15.已知复数z =1+i ,实数a ,b 满足az +2bz =(a +2z )2成立,求a ,b 的值. 解 az +2bz =(a +2b )+(a +2b )i , (a +2z )2=(a +2)2-4+4(a +2)i =(a 2+4a )+4(a +2)i ,∴(a +2b )+(a +2b )i =(a 2+4a )+4(a +2)i.∴⎩⎪⎨⎪⎧a +2b =a 2+4a ,a +2b =4(a +2),解得⎩⎨⎧ a =-22,b =4-32,或⎩⎨⎧a =22,b =4+3 2.∴所求实数a =-22,b =4-32或a =22,b =4+3 2.。
北师大版数学高二-选修1学案 4.2.2 复数的四则运算(二)
问题生成记录:
精
讲
互
动
例1计算: , , , 并总结规律.
例2计算 , , ,
例3已知: ,求证:(1) ,
(2) ,(3)
例4计算
例5计算
达
标
训
练
课本P81练习
1.
2.ห้องสมุดไป่ตู้
3.
(选做题)已知z是虚数,且z+ 是实数,求证: 是纯虚数.
作业
反思
4.2.2
目标
1.理解并掌握复数的代数形式的乘法与除法运算法则,深刻理解它是乘法运算的逆运算;
2.理解并掌握复数的除法运算实质是分母实数化类问题.
重点
复数代数形式的除法运算.
二次备课
难点
对复数除法法则的运用.
自
主
学
习
复数除法定义:满足(c+di)(x+yi)=(a+bi)的复数x+yi(x,y∈R)叫复数a+bi除
板书
设计
最新人教版高中数学选修1-2《复数代数形式的四则运算》示范教案
3.2.2复数代数形式的乘除运算整体设计教材分析本节课是《复数代数形式的四则运算》的第二课时,是四则运算的重点,也是本章的重点.复数的乘法法则是规定的,其合理性表现在:这种规定与实数乘法的法则是一致的,而且实数乘法的有关运算律在这里仍然成立.由除法是乘法的逆运算的这种规定,可以得到复数除法的运算法则.教材在内容编排上使用问题探究式的方法,引导学生能够自己探究新知,发现新知,理解新知.学生不仅学到了知识,而且培养了学习兴趣,提高了学习积极性.课时分配1课时.教学目标知识与技能目标1.掌握复数代数形式的乘除运算法则,熟练进行复数的乘法和除法运算.2.理解复数乘法的交换律、结合律、分配律;了解共轭复数的定义及性质.过程与方法目标1.运用类比方法,经历由实数系中的乘除法到复数系中乘除法的过程.2.培养学生的发散思维和集中思维的能力,以及问题理解的深刻性、全面性.情感、态度与价值观通过实数的乘、除法运算法则及运算律,推广到复数的乘、除法,使同学们对运算的发展历史和规律,以及连续性有一个比较清晰完整的认识,同时培养学生的科学思维方法.重点难点重点:掌握复数代数形式的乘除运算的法则,熟练进行复数的乘法和除法运算.难点:复数除法的运算法则.教学过程引入新课提出问题:试计算5(2+i).活动设计:先由学生独立思考,然后交流看法.学情预测:学生可能类比单项式与多项式的乘法来计算.活动成果:(板书)5(2+i)=(2+i)+(2+i)+(2+i)+(2+i)+(2+i)=10+5i.设计意图通过比较分别运用实数集中乘法的意义和复数的加法法则计算所得的结果,得到结论:m(a+bi)=ma+mbi,其中m,a,b∈R.引出新课.两个复数相乘又该如何计算?探究新知提出问题:如何计算(2+i)(3+2i)?活动设计:先让学生独立思考,然后小组交流,教师巡视指导,并注意与学生交流.学情预测:学生可能类比两个多项式的乘法来计算.活动成果:(板书)(1)规定,复数的乘法法则:设z1=a+bi,z2=c+di是任意两个复数,那么它们的积:(a+bi)(c+di)=ac+bci+adi+bdi2=(ac-bd)+(ad+bc)i.(2)(2+i)(3+2i)=6+3i+4i+2i2=4+7i.设计意图遇到问题就得解决问题,但是复数又是一个全新的知识,它是实数集的扩充,所以在不违背原有知识的基础上规定了复数的乘法法则,使学生体会知识的创新与发展的过程.理解新知提出问题1:怎样理解复数的乘法法则?它可能满足哪些运算律?活动设计:学生独立思考,然后同学间交流.学情预测:学生可以独立理解复数的乘法法则,并写出它满足的运算律.活动成果:(1)可以看出,两个复数相乘,类似于两个多项式相乘,只要在所得的结果中把i2换成-1,并且把实部与虚部分别合并即可.两个复数的积是一个确定的复数.(2)实数集上的乘法满足的运算律,可以直接推广到复数集上的乘法运算中:对于任意z1,z2,z3∈C,有z1·z2=z2·z1,(z1·z2)·z3=z1·(z2·z3),z1(z2+z3)=z1z2+z1z3.设计意图准确地把握法则及其满足的运算律,为正确熟练地运用打下良好的基础.提出问题2:计算i5,i6,i7,i8的值,你能推测i n(n∈N*)的值有什么规律吗?活动设计:学生独立思考,然后同学间交流结果,教师巡视指导.学情预测:学生能够计算出四个值,并说出周期性.活动成果:i5=i,i6=-1,i7=-i,i8=1,推测i4n+1=i,i4n+2=-1,i4n+3=-i,i4n+4=1(n∈N*).设计意图了解i的幂的周期性,培养学生的观察和归纳能力.运用新知例1计算:(1)(1-i)2;(2)(1-2i)(3+4i)(1+2i).思路分析:第(1)题可以用复数的乘法法则计算,也可以用实数系中的乘法公式计算;第(2)题可以按从左到右的运算顺序计算,也可以结合运算律来计算.解:(1)解法一:(1-i)2=(1-i)(1-i)=1-i-i+i2=-2i;解法二:(1-i)2=1-2i+i2=-2i.(2)解法一:(1-2i)(3+4i)(1+2i)=(3+4i-6i-8i2)(1+2i)=(11-2i)(1+2i)=(11+4)+(22-2)i=15+20i;解法二:(1-2i)(3+4i)(1+2i)=[(1-2i)(1+2i)](3+4i)=5(3+4i)=15+20i.点评:此题主要是巩固复数乘法法则及运算律,以及乘法公式的推广应用.特别要提醒其中(-2i)·4i=8,而不是-8.探究新知提出问题1:在例1中1-2i与1+2i的积恰好是一个实数,观察这两个复数之间有何联系?活动设计:学生独立思考,然后交流.学情预测:在教师的引导下,学生能够得出两个复数的异同.活动成果:一般地,当两个复数的实部相等,虚部互为相反数时,这两个复数叫做互为共轭复数.虚部为0的两个共轭复数也叫共轭虚数.注意:z 的共轭复数常用z 表示.即:若z =a +bi ,则z =a -bi.设计意图例1(2)为引出共轭复数的概念提供了实例支持,从而得出共轭复数的定义,使学生对知识的接受变得自然.提出问题2:类比实数的除法,联系复数减法法则的引入过程,探求复数除法的法则. 活动设计:引导学生运用乘法法则以及复数相等的概念来得到除法法则.活动成果:(1)规定复数的除法是乘法的逆运算,即把满足(c +di)(x +yi)=a +bi(c +di ≠0)的复数x +yi ,叫做复数a +bi 除以c +di 的商.(2)经计算可得(cx -dy)+(dx +cy)i =a +bi.根据复数相等的定义,有cx -dy =a ,dx +cy =b.由此得x =ac +bd c 2+d 2,y =bc -ad c 2+d 2. 于是得到复数除法的法则是:(a +bi)÷(c +di)=ac +bd c 2+d 2+bc -ad c 2+d 2i. 由此可见,两个复数相除(除数不为0),所得的商是一个确定的复数.理解新知提出问题1:若z 1,z 2是共轭复数,那么(1)在复平面内,它们所对应的点有怎样的位置关系?(2)z 1·z 2是一个怎样的数?(3)若z 1是实数,则它的共轭复数是怎样的数?活动设计:学生独立探究,然后再小组交流.教师巡视指导.学情预测:学生通过独立思考,然后与同学交流看法,最后能够得出正确的结论. 活动成果:(1)两个共轭复数的对应点关于实轴对称;(2)z 1·z 2=|z 1|2=|z 2|2;(即z·z =|z|2=|z |2)(3)z 1的共轭复数仍是z 1,即实数的共轭复数是它本身.设计意图使学生加深对共轭复数概念的了解.提出问题2:在实际进行复数运算时,每次都按照乘法逆运算的办法来求商,这是十分麻烦的.如何简化求商的过程?这种简化的求商过程与实数系中作何种运算的过程相类似?活动设计:起初学生会无从下手,可以提示他们观察商的实部和虚部的分母与除数的关系,从而得解.学情预测:学生在教师的指导下,基本上能发现规律.活动结果:(1)在进行复数除法运算时,通常先把(a +bi)÷(c +di)写成a +bi c +di的形式,再把分子与分母都乘以分母的共轭复数c -di ,化简整理后即可.(2)这种求商过程与作根式除法时的处理是很类似的.在作根式除法时,分子、分母都乘以分母的“有理化因式”,从而使分母“有理化”.这里分子和分母都乘以分母的“实数化因式”(共轭复数),从而使分母“实数化”.设计意图简化求解过程,有利于熟练运用法则.运用新知例2计算(1+2i)÷(3-4i).思路分析:先把(1+2i)÷(3-4i)写成1+2i 3-4i的形式,然后分子、分母都乘以3+4i ,计算整理即可.解:(1+2i)÷(3-4i)=1+2i 3-4i =(1+2i )(3+4i )(3-4i )(3+4i )=3-8+6i +4i 32+42=-5+10i 25=-15+25i. 点评:例2是复数除法的计算题,目的是让学生熟练操作上述作除法的简便过程. 巩固练习计算:(1)7+i 3+4i ;(2)(3+2i)(-3+2i);(3)(-1+i )(2+i )-i. 解:(1)7+i 3+4i =(7+i )(3-4i )(3+4i )(3-4i )=25-25i 25=1-i ; (2)(3+2i)(-3+2i)=(2i)2-(3)2=2i 2-3=-2-3=-5;(3)(-1+i )(2+i )-i =-2-i +2i +i 2-i =-3+i -i =(-3+i )i -i·i=-1-3i. 变练演编1.已知:________÷________=1+2i ,则横线上可以填的条件是什么?(可以多写几种)2.计算:3+4i 4-3i;并自己编制一道类似的题目. 答案:1.11+2i ,3-4i 或5,1-2i 等等.(先写出被除数或除数中的一个,然后求另一个)2.解法一:3+4i 4-3i =(3+4i )(4+3i )(4-3i )(4+3i )=25i 25=i ; 解法二:3+4i 4-3i =(3+4i )i (4-3i )i =(3+4i )i 3+4i=i. 编制的题目:5+3i 3-5i ,-5i +6-6i -5(编制的原则设分子是z 1=a +bi ,则分母为z 2=b -ai ,即分母与i 的乘积就是分子,可直接约分,从而达到分母实数化).设计意图第一个题目的设计不仅是为了训练学生灵活处理问题,熟练运用知识的能力,而且可以培养学生发散思维与集中思维的能力,还可以考查学生对知识、问题理解的深刻性和思维的深刻性、全面性.题型的新颖性、开放性更是不言而喻.第二个题的目的是使学生更深刻理解复数的除法就是分母的实数化.达标检测1.复数a +bi 与c +di 的积是实数的充要条件是( )A .ad +bc =0B .ac +bd =0C .ac =bdD .ad =bc2.已知(1+2i)z =4+3i ,求z.3.计算-23+i 1+23i+(21-i )2 010. 解析:1.若(a +bi)(c +di)=(ac -bd)+(ad +bc)i 是实数,则只需虚部ad +bc =0.故答案为A.2.由已知可得z =4+3i 1+2i =(4+3i )(1-2i )(1+2i )(1-2i )=10-5i 5=2-i ,所以z =2+i. 3.-23+i 1+23i +(21-i )2 010=i (1+23i )1+23i+[(21-i )2]1 005=i +(2-2i )1 005 =i +i 1 005=i +i 4×251+1=i +i =2i.课堂小结对给定的三个复数z 1=a 1+b 1i ,z 2=a 2+b 2i ,z 3=a 3+b 3i ,你能研究些什么?用什么样的方法来研究?(数系的扩充,当复数的虚部为0时,复数也就是特殊的实数;复数的分类;复数相等的概念;复数的几何意义;复数的模;复数的运算;复数的运算律;任一个复数的共轭复数及性质等本章所学的所有知识.用类比、转化、数形结合、化虚为实等思想方法来研究.)布置作业习题3.2 A 组4、5题.补充练习基础练习1.复数(15+8i)(-1-2i)的值为________.2.已知复数z 1=3+4i ,z 2=t +i ,且z 1·z 2是实数,则实数t 等于( )A.34B.43 C .-43 D .-343.复数z =m -2i 1+2i在复平面上对应的点不可能位于( ) A .第一象限 B .第二象限C .第三象限D .第四象限4.若z 1=a +2i ,z 2=3-4i 且z 1z 2为纯虚数,则实数a 的值为__________. 5.已知z 1=5+10i ,z 2=3-4i ,1z =1z 1+1z 2,求z. 答案:1.1-38i 2.A 3.A 4.83 5.5-52i. 拓展练习6.已知2i -3是关于x 的方程2x 2+px +q =0的一个根,求实数p ,q 的值.思路分析:2i -3是方程的根,代入方程后根据复数相等的定义,化虚为实,即可求得. 解:由已知得:2(2i -3)2+p(2i -3)+q =0,从而(10-3p +q)+(2p -24)i =0.于是,有⎩⎪⎨⎪⎧10-3p +q =0,2p -24=0,解得p =12,q =26. 点评:解决复数问题的关键就是转化为实数问题来处理,复数相等就是实现这一转化的很好的工具.设计说明本节课是本章的重点内容,同时复数乘、除法的法则的理解更是难点.故在本节课的设计上多次采取类比的方法,使知识在不失其本质的情况下,更易于理解.同时这种处理方法可以使新知识与所学知识建立联系性,有利于知识的网络化和系统化.在整个设计上突出了问题驱动式的教学方法,以问题为主线,以学生为主体,随着问题的提出与解决,教学内容也被随之很好地学习与理解.在例题和习题的设计环节上,力求突出本节课的重点:熟练掌握复数的乘除法运算以及数学思维方式与技能形成的培养.例题的选题目的有三:一是巩固所学法则及运算律;二是通过一题多解培养学生的发散思维能力;三是培养计算能力,以形成技能.变练演编的第1题考查学生灵活运用知识、发散思维及逆向思维的能力;第2题则是使学生更加深刻地体会复数除法的实质就是“分母实数化”,培养学生问题理解的深刻性、全面性.为了进一步巩固所学,又设计了巩固练习、达标检测和补充练习等环节.在补充练习中为学有余力的同学安排了拓展练习,增加思维量的同时也开阔了视野.备课资料我们知道,对于实系数一元二次方程ax 2+bx +c =0,如果b 2-4ac<0,那么它在实数集R 内没有实根.现在把实数集R 扩充为复数集C ,再来考察这一问题.经过变形,原方程可以化为x 2+b a x =-c a, ∴x 2+2·x·b 2a +(b 2a )2=(b 2a )2-c a ,(x +b 2a )2=b 2-4ac (2a )2,(x +b 2a )2=-[-(b 2-4ac )(2a )2]. 由于-(b 2-4ac )(2a )2是正实数,我们可以得到x +b 2a =±-(b 2-4ac )·i 2a . 所以当b 2-4ac<0时,实系数一元二次方程ax 2+bx +c =0在复数集C 内有且只有两个根x =-b±-(b 2-4ac )·i 2a(b 2-4ac<0). 显然,它们是一对共轭复数.(设计者:许彩霞 董伟伟)。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
n n ⑶( z1 z2 ) n z1 z |2 | z |2
4、 i i 3 i 5 i 33 的值是 5、当 z 1i 时, z 100 z 50 1 的值是
2
6、
( 1 3i ) 3 (1 i )6
2 i 1 2i
等于
a bi 为实数,则 cdi
7、 设 a 、 b 、 c 、 d R ,若 8、 (1)
i 2014
姓名:
学号:
第
学习小组
N 3 ,
3.计算: i i 2 i 3
.
4.投掷两颗骰子,得到其向上的点数分别为 m 和 n ,则复数 m ni n mi 为实数 的概率为
2
. .
5.设 a R ,且 a i i 为正实数,则 a
1 i
1 i
2
1 i
1 i
2
9、
1 i 2015 ( ) 1 i
3 2
10.、知 1 2
i ,求使 ( i ) n N 的最小正整 数 n=
.
【课堂研讨】
例 1.计算 (1 2i ) (3 4i )
例2. 复数 z 满足 (1 2i) z 4 3i, 求 z.
3
5..8+6i 的平方根是__________. 6、 已知
(1 i ) 3 =a+3i,则 a 等于 1 i
7、复数
(1 3i )5 的值是 1 3i
1 i 1 i n 1 i n 9.设 f(n)=( ) +( ) ,n∈ N,如果 A {f(n)},则满 足条件的集合 A 有 1 i 1 i 1 z 10、已知复数 z 满足 =i,则 1+z 等于 1 z 2 11、已知 z= ,求 1+z+z2+…+z2015 的值. 1 3i
8、复数(1+ )4 的值是
个
12、已知关于 x、y 的方程组
(2 x 1) i y (3 y)i, (2 x ay) ( y 4 x bi) 9 8i
① ②
有实数解,求 a、b 的值(其中 x、y、a、b∈ R).
4
1
例3、下列命题中正确的是 (1)如果Z1 Z 2是实数,则Z1、Z 2互为共轭复数 (2)纯虚数Z的共轭复数是 Z。 (3)两个纯虚数的差是纯虚数 (4)两个虚数的差还是虚数
例 4、 已知 z
1 i , 求 z100 z 50 1的值。 2
例5
⑴ 、已知复数 z 的平方根为 3 + 4i ,求复数 z ; ⑵ 、求复数 z = 3 + 4i 的平方根.
6.已知 z C ,且 z 1 1 ,则 z 2i 的取值 范围是
【课后巩固】
1.已知 z1=2-i,z2=1+3i,则复数
i z2 的虚部为 z1 5
2.i 是虚数单位, 3.
(1 i)(2 i) 等于 i3
5i 的值等于__________. 1 i 1 i 2003 4.设 z=-1+( ) ,则 z=__________. 1 i
课题:3.2 复数四则运算(2)导学案
班级: 姓名: 学号: 第 学习小组
【学习目标】
1、理解复数代数形式的四则运算法则。 2、能运用运算律进行复数的四则运算。
【课前预习】
1.复数的加、减、乘、除运算按以下法则进行:
z1 z 2 (a c) (b d )i 设 z1 a bi, z 2 c di(a, b, c, d R) ,则 z1 z 2 (ac bd ) (ad bc)i z1 ac bd bc ad ( z 0) z2 c 2 d 2 c 2 d 2 2
2
课题:3.2 复数四则运算(2)检测案
班级: 【课堂检测】
1. 若复数 z1 4 29i, z2 6 9i, 其中 i 是虚数单位, 则复数 ( z1 z2 )i 的实部为____. 2.设集合 M 1,2,(a2 3a 1) (a2 5a 6)i , N {1,3} ,若 M 则a .