3.4_简单的旋转作图公开课

合集下载

2024年图形的旋转公开课课件.

2024年图形的旋转公开课课件.

2024年图形的旋转公开课课件.一、教学内容本节课我们将学习人教版八年级数学下册第12章“图形的旋转”。

具体内容包括:图形旋转的定义与性质,旋转三要素(旋转中心、旋转方向、旋转角度),以及如何在平面直角坐标系中作出旋转后的图形。

二、教学目标1. 理解并掌握图形旋转的定义与性质,能准确识别旋转三要素。

2. 学会在平面直角坐标系中,利用旋转三要素对图形进行旋转。

3. 能够运用旋转知识解决实际问题,提高空间想象力和解决问题的能力。

三、教学难点与重点教学难点:图形旋转的性质及其在平面直角坐标系中的应用。

教学重点:旋转三要素的理解和运用。

四、教具与学具准备教具:多媒体课件、旋转演示模型。

五、教学过程1. 实践情景引入(5分钟)利用多媒体课件展示生活中的旋转现象,如风车、风扇、车轮等,引导学生观察并思考旋转的特点。

2. 知识讲解(15分钟)(1)讲解旋转的定义及性质。

(2)介绍旋转三要素:旋转中心、旋转方向、旋转角度。

(3)通过旋转演示模型,让学生直观感受旋转过程。

3. 例题讲解(15分钟)(1)在平面直角坐标系中,将一个点绕原点顺时针旋转90度,求旋转后的坐标。

(2)将一个三角形绕其顶点A逆时针旋转60度,求旋转后的三角形。

4. 随堂练习(10分钟)(1)在坐标系中,将点P(2,3)绕原点逆时针旋转45度,求旋转后的坐标。

(2)将矩形ABCD绕点A顺时针旋转30度,求旋转后的矩形。

5. 小组讨论与分享(5分钟)学生分组讨论练习题的解法,并在班级分享解题思路。

六、板书设计1. 图形的旋转定义:将一个图形绕某个点按某个方向旋转一定的角度性质:旋转不改变图形的大小和形状2. 旋转三要素旋转中心:固定点旋转方向:顺时针或逆时针旋转角度:度数七、作业设计1. 作业题目:(1)将点A(3,4)绕原点逆时针旋转60度,求旋转后的坐标。

(2)将三角形ABC绕点B顺时针旋转90度,求旋转后的三角形。

答案:(1)A'(2,3)(2)三角形A'B'C'2. 拓展延伸:研究旋转对称图形的性质及特点。

北师大版数学八年级下册第三章图形的平移与旋转3.4简单的图案设计教案设计

北师大版数学八年级下册第三章图形的平移与旋转3.4简单的图案设计教案设计

3.4 简单的图案设计教学目标1.了解图案最常见的构图方式:轴对称、平移、旋转,理解简单图案设计的意图.2.认识和欣赏平移、旋转在现实生活中的应用,能够灵活运用轴对称、平移、旋转的组合,设计出简单的图案.3.经历对生活中的典型图案进行观察、分析、欣赏等过程,进一步发展空间观念,增强审美意识.教学重点利用旋转、轴对称或平移进行简单的图案设计.教学难点灵活运用平移、旋转与轴对称的组合进行简单的图案设计.课时安排1课时教学过程复习巩固1.轴对称:如果一个平面图形沿一条直线折叠后,直线两旁的部分能够互相重合,那么这个图形叫做轴对称图形,这条直线叫做对称轴.2.平移:在平面内,将一个图形沿某个方向移动一定的距离,这样的图形运动称为平移.3.旋转:在平面内,将一个图形绕一个定点按某个方向转动一个角度,这样的图形运动称为旋转,这个定点称为旋转中心,转动的角称为旋转角.导入新课我们学习了轴对称、平移、旋转的知识,在现实生活中能够利用轴对称、平移、旋转进行简单的图案设计,运用平移与旋转组合的方式进行一些图案这是本节课学习的内容.探究新知探究点一分析构成图案的基本图形【活动1】小组讨论(师生互学)在现实生活中,我们经常见到一些美丽的图案.你能用平移、旋转或轴对称分析图中各个图案的形成过程吗?与同伴交流.【问题1】(学生交流)试说出构成下列图形的基本图形.(1)(2)(3)(3)学生回答:【思考】(学生互动交流)你还能举出一些类似的例子吗?与同伴交流.【总结】图形的变换可以通过选择不同的变换方式得到,可能需要旋转、轴对称、平移等多种变换组合才能得到完美的图案.活动2拓展延伸(学生对学)探究点二分析这个图案形成的过程活动2合作探究,解决问题(师生互动)【例】欣赏图中的图案,并分析这个图案形成的过程.解:图中的图案是由三个“基本图案”组成的,它们分别是三种不同颜色的“爬虫”(形状、大小完全相同).在图中,同色的“爬虫”之间是平移关系,所有同色的“爬虫”可以通过其中一只经过平移而得到;相邻的不同色的“爬虫”之间可以通过旋转而得到,其中,旋转角为120°,旋转中心为“爬虫”头上、腿上或脚趾上一点.【课堂练习】为了美化绿地,要在给定的一块长方形的空地上设计一个花坛,只允许用正方形和圆两种图形,并使整个图案成轴对称,请画出两种图形.解:答案不唯一,如图所示.探究点三图案设计活动3探究应用(教师引导,学生互学)【例】下面花边中的图案以正方形为基础,由圆弧、圆或线段构成.仿照例图,请你为班级的板报设计一条花边.要求:(1)只要画出组成花边的一个图案;(2)以所给的正方形为基础,用圆弧、圆或线段画出;(3)图案应有美感.解:【动手操作】请你设计一些基本图案,再由基础图案运用平移、旋转、轴对称设计一幅简单的图案课堂练习1.风车应做成中心对称图形,并且不是轴对称图形,才能在风口处平稳旋转.如图所示,现有一长方形硬纸板(硬纸板中心有一个小孔)和两张全等的长方形薄纸片,将纸片粘到硬纸板上,做成一个能绕着小孔平稳旋转的风车.正确的粘合方法是( )2.下列这些复杂的图案都是在一个图案的基础上,绕某一点旋转后形成的,它们中每一个图案都可以由一个“基本图案”通过连续旋转得来,旋转的角度正确的是( )A.30°B.45°C.60°D.90°3.如图所示的四个图形中,从几何图形变换的角度考虑,哪一个与其他三个不同?请指出这个图形,并简述你的理由.参考答案:1.A解析:风车应做成中心对称图形,并且不是轴对称图形,A中是中心对称图形,并且不是轴对称图形,符合题意;B中不是中心对称图形,是轴对称图形,不符合题意;C中是中心对称图形,也是轴对称图形,不符合题意;D中不是中心对称图形,是轴对称图形,不符合题意.故选A.2.C解析:每一个图案都可以被通过中心的射线平分成6个全等的部分,则旋转的角度是60°.故选C.3.解:第二个与其他三个不同.理由:只有它不是轴对称图形.课堂小结(学生总结,老师点评)1.分析图案的形成过程(1)分析构成图案的基本图形;(2)分析图案的形成过程.2.利用平移、旋转、轴对称等方式设计图案布置作业教材第86页习题3.7板书设计4.简单的图案设计1.分析图案的形成过程(1)分析构成图案的基本图形;(2)分析图案的形成过程.2.利用平移、旋转、轴对称等方式设计图案。

图形的旋转公开课课件.

图形的旋转公开课课件.

图形的旋转公开课课件.一、教学内容本节课选自教材《数学》第五章“几何图形的运动”中的第三节“图形的旋转”。

详细内容包括:图形旋转的定义与性质,旋转三要素(旋转中心、旋转方向、旋转角度),以及如何在平面直角坐标系中实现图形的旋转。

二、教学目标1. 理解并掌握图形旋转的定义、性质和三要素,能在实际操作中正确应用。

2. 学会在平面直角坐标系中,利用旋转三要素对图形进行旋转。

3. 能够运用旋转知识解决实际问题,提高空间想象能力和解决问题的能力。

三、教学难点与重点教学难点:图形旋转的性质及旋转三要素在实际操作中的应用。

教学重点:图形旋转的定义、性质和旋转三要素。

四、教具与学具准备1. 教具:多媒体课件、旋转演示模型、直尺、圆规。

2. 学具:练习本、铅笔、直尺、圆规。

五、教学过程1. 实践情景引入:通过展示生活中的旋转现象(如风车、地球仪等),引导学生思考旋转的规律。

2. 例题讲解:(1)讲解图形旋转的定义、性质和旋转三要素;(2)在平面直角坐标系中,演示如何利用旋转三要素对图形进行旋转;(3)通过实际操作,让学生感受旋转的效果。

(1)画出给定图形的旋转;(2)判断给定旋转是否正确,并说明理由;(3)在平面直角坐标系中,完成指定旋转。

六、板书设计1. 图形旋转的定义、性质、旋转三要素;2. 平面直角坐标系中图形旋转的步骤;3. 例题及解答过程;4. 课堂练习及答案。

七、作业设计1. 作业题目:(1)将给定图形绕点O逆时针旋转90度;(2)在平面直角坐标系中,将点A(2,3)绕原点逆时针旋转60度,求旋转后的坐标;2. 答案:八、课后反思及拓展延伸1. 反思:本节课学生对图形旋转的定义、性质和旋转三要素掌握情况较好,但在实际操作中仍存在一定困难,需要在今后的教学中加强练习。

2. 拓展延伸:(1)探索其他几何图形的旋转性质;(2)研究旋转在生活中的应用,提高学生的实际操作能力。

重点和难点解析1. 教学目标中的“理解并掌握图形旋转的定义、性质和三要素”;2. 教学难点中的“图形旋转的性质及旋转三要素在实际操作中的应用”;3. 教学过程中的“例题讲解”和“随堂练习”;4. 作业设计中的题目设置和答案。

图形的旋转简单的旋转作图(课堂PPT)

图形的旋转简单的旋转作图(课堂PPT)
28
3、如图,△ABC是直角三角形,BC是斜边,
将△ABP绕点A逆时针旋转后,能与△ACP’重 合。如果AP=3,求PP’的长。
解:∵ △ABP绕点A逆时针旋转后, 能与△ACP’重合,
A
∴AP’=AP=3, ∠PAP’= ∠BAC=90°
P’
∴ △ PAP’为等腰直角三角形,
PP’为斜边
P
∴ PP’2=AP2+AP’2=32+32B=18
●旋转前后,两图形的大小不变、 形状不变;
● 旋转前后,两图形任意一对对应 点与旋转中心的连线所成的角都是
旋转角,旋转角相等;对应点到旋 转中心的距离相等.
1
简单的旋转作图 例1 将A点绕O点沿顺时针方向旋转60˚.
点的旋转作法 B
A
O
作法: 1. 以点O为圆心,OA长为半径画 圆;
2. 连接OA, 用量角器或三角板 (限特殊角)作出∠AOB=60°,与 圆周交于B点;
26
提高练习
1、如图所示,正方形ABCD的边长为2 ㎝ ,E是
边AB上一点(不与A、B重合),现将Rt△DAE绕
D点逆时针旋转90°得Rt△DCF.
(1)DE与DF有什么关系?简单的说明理由
(2)求四边形BFDE的面积。
A
D
解(1)DE=DF.
E
原因是对应点到旋转中心的距离相等
(2)S四边形BFDE=S四边形ABCD=2×2=4cm2 B
是(

A.点A是旋转中心 B. ∠DAC是一个旋转角
C .AB=AC D. △ABD≌△ACE
4.如图在等腰直角△ABC中,∠B=90°,将ABC绕顶点
A逆时针旋转60°后得到△ADE,则∠BAE等于

八年级数学 第三章 4简单的旋转作图配套课件 北师大版

八年级数学 第三章 4简单的旋转作图配套课件 北师大版
△ CBD
BC 的中点 重合,那么这个旋转中心是___________.
图1
2.如图 2,Rt△AOB 绕点 O 旋转到△COD 的位置,若∠ 30° AOD=120°,则旋转角等于________.
图2
旋转中心 3.作比较简单的旋转作图,应具备三个条件:__________、
旋转角 旋转方向 __________、__________.
思路点拨:旋转作图的步骤:
①确定旋转中心、旋转方向、旋转角;
②找出表示图形的关键点; ③将图形的关键点与旋转中心连接起来,然后按旋转方向 分别将所连线段旋转一个旋转角,得到此关键点的对应点;
④按原图形的顺序连接这些对应点,所得的图形就是旋转
后的图形.
随堂小练
1.如图 1,如果△ABC 绕 BC 上某点旋转一定角度后与
4 简单的旋转作图
旋转作图(重难点) 旋转作图的依据: (1)旋转的定义: 将一个图形绕一个定点沿某个方向转动一个角度. (2)旋转的基本性质: 图形上每一点都绕旋转中心沿相同的方向转动了相同的角 度;对应点到旋转中心的距离相等.因此,对于旋转作图,应 先确定图形的“关键点”,以局部带动整体进行旋转.
4.将图 3 所示线段 AB 绕 O 点沿逆时针方向旋转 120°.
图3
解:图略.
利用旋转作图 【例题】如图 4,画出△ABC 绕点 O 顺时针方向旋转 80° 后得到的三角形.
图4
解:如图 7.
图7 (1)连接 OA; 2)以 O 为顶点,OA 为一边按顺时针方向作∠AOA′=80°;
(3)在射线 OA′上取 OA′=OA,得到点 A 的对应点 A′; (4)用同样的方法作出点 B、C 的对应点 B′、C′; (5)连接 A′B′、A′C′、B′C′,则△ A′B′C′就是 △ABC 绕点 O 顺时针方向旋转 80°后得到的三角形. 【规律总结】确定一个三角形旋转后的位置的条件为: (1)三角形原来的位置;(2)旋转中心;(3)旋转角.

人教版初中九年级上册数学《旋转作图》精品课件

人教版初中九年级上册数学《旋转作图》精品课件

教学研讨
感谢你的参与 期待下次再见

还可以用 什么方法把甲 图案变成乙图 案?
可以先将甲图案绕图上的
A点旋转,使得图案被
B 乙
A
“扶直”,然后,再沿AB
方向将所得图案平移到B
甲 点位置,即可得到乙图案
B
A
二、旋转设计作图
合作探究
1.选择不同的___旋__转__中__心_、不同的_旋__转__角_旋转同一个图案,会出 现不同的效果. (1)两个旋转中,旋转中心不变, 旋__转__角__ 改变了,产生了 __不__同___的旋转效果.
方法归纳 旋转作图的基本步骤:
(1)明确旋转三要素: 旋转中心、旋转方向和旋转角度. (2)找出关键点; (3)作出关键点的对应点; (4)作出新图形; (5)写出结论.
A E
F
B
D
考考你:
C
借助上图,如何确定它们的旋转中心位置?
答:找到两条对应点连线段的垂直平分线的交点.
例2. 怎样将甲图案变成乙图案? 乙
∴∠ABE′=∠ADE= 90 ° ,
BE′= DE ,
E′
B
C
因此在CB的延长线上截取点E′,使BE. ′=DE
则△ABE′为旋转后的图形.
想一想:
A
D
还有其他方法确定点E的
对应点E′吗?
E
答:延长CB,以点A为圆心,AE 的
长为半径画弧,交CB的延长线于E', B
C
连接AE',则△ABE'为旋转后的图形.
旋转角都为 60°的旋转图形.
A' D'
D B'
A
C
C'

图形旋转作图PPT课件

图形旋转作图PPT课件
线段的旋转作法:将线段两端点分别旋 转,然后将两个旋转后 的点连成线段,即为原 线段旋转后的线段.
简单的旋转作图
例1 将A点绕O点沿顺时针方向旋转60˚.
点的旋转作法
分析:
项目 源图形 源位置 旋转中心 旋转方向 旋转角度
已知 ● ● ● ● ●
B
目标图形

目标位置
作法:
未知 ●
备注 点A 点A 点O 顺时针 60˚ 点 点B (求作)
3. 点和线段的旋转根据旋转的定义与性质实现作图; 4. 一般图形的旋转首先通过选取若干个控制点化归为
点和线段的旋转;然后运用旋转的性质进行作图.
还有其它作法吗?
对应点; 5. 连接CE, DE,则△DEC即为所求作.
简单的旋转作图
开Hale Waihona Puke 旋转要素分析控制点选择 控制点旋转 旋转后控制点连线 (旋转后作图)
结束
有时,旋转中心以及旋转方向与角度不 是显式告知的,需要化未知为已知.
线段的端点、多边形顶点、折线的连接 点、线段与曲线的连接点、圆或圆弧或扇形 的圆心.
旋转中心 ●
点C
应点的位置以及旋转后的三角形.
E
M
N
旋转方向
旋转角度 目标图形 ●
● 根据A与D的对应 关系判断为顺时 针
● ∠ACD
三角形
A
D 作法二:
目标位置
● △DEC (求作)
1. 连接CD;
B
C
2. 以C为圆心,CB长为半径画圆 ;
3. 延长CA,交⊙C与M,延长CD,交⊙C与N;
4. 在⊙C上截取BE=MN,则E点为B点的
旋转方向 ●
顺时针
旋转角度 ●

人教版初中九年级上册数学《旋转作图》精品课件

人教版初中九年级上册数学《旋转作图》精品课件

C
·F O
D
E
课堂小结
旋转的 作图
作旋转图形
作图基本步骤五步
确定旋转中心
找两条对应点 连线段的垂直 平分线的交点
课后作业
1.从教材课后习题中选取; 2.从课时练中选取。
下课了!
四边形EFGH就是四边形ABCD绕O点旋转后的图形.
2.如图,正方形ABCD和正方形CDEF有公共边CD,请设计方案,使 正方形ABCD旋转后能与正方形CDEF重合,你能写出几种方案?
解: 方案一: 把正方形ABCD绕点D
顺时针旋转90°.
B
方案二: 把正方形ABCD绕点C
逆时针旋转90°.
A
方案三: 把正方形ABCD绕CD的 中点O旋转180°.
(5)旋转中心是唯一不动的点;
一、简单的旋转作图
画一画:如图,画出线段 AB绕点A按顺时针方向旋转60°后
的线段.
X
C
作法:(1)如图,以AB为一边按顺时针方向画∠BAX,使 得∠BAX=60°. (2)在射线AX上取点C,使得AC=AB.线段AC为所求.
试一试 画出下图所示的四边形 ABCD 以 O为中心,
旋转角都为 60°的旋转图形.
A' D'
D B'
A
C
C'
B
O
拓展提升
平移和旋转的异同:
①相同:都是一种运动;运动前后不改变图形的形状和大小.
②不同
图形变换 平移 旋转
运动方向
运动量的衡量
直线
移动一定距离
顺时针或逆时针 转动一定的角度
典例精析
例1 如图,E是正方形ABCD中CD边上任意一点,以点A为中
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
确定一个三角形旋转后的位置的条件:A (1)旋转中心 D
(2)旋转方向
(3)旋转角度。
2014年3月28日星期五5 时25分37秒
B
C
8

练习
1、在下图中,将大写字母 N 绕它下侧的顶点按顺时 针方向旋转 90 ,作出旋转后的图案。
2014年3月28日星期五5 时25分37秒
9
2、如图, △A’B’C’是△ABC绕定点P顺
时25分37秒
想一想
在旋转过程中,确定一个三角形旋转后的位置,除需要此三 角形原来的位置外,还需要什么条件?
还需要知道绕哪个点旋转,往哪个方向旋转,旋转 角度是多少?即是要知道旋转中心、旋转方向和旋
转角。
确定一个三角形旋转后的位置的条件为: (1)三角形原来的位置 (2)旋转中心 (3)旋转方向 (4 )旋转角度 2014 年3月28日星期五5
时25分37秒
18

练习
随堂练习
P 79习题
1、在下图中,将大写字母 N 绕它下侧的顶点按顺时 针方向旋转 90 ,作出旋转后的图案。
2014年3月28日星期五5 时25分37秒
19
2、如图,四边形ABCD绕O点旋转后,顶点A的对应点为E ,试确定B、C、D对应的点的位置,以及旋转后的四边形.
时25分37秒
作一个图形平移后的图形的方法与步骤:
找出关键点;
作出这些点平移后的点(作出对应点); 将所作的对应点按原来的方式连接。
以局部带整体。
2014年3月28日星期五5 时25分37秒
4
例 题 解 析
例1
分析
如图 △ABC 绕 C 点旋转后,顶点 A 的对应点为点 D。 试确定顶点 B 的对应位置, 以及旋转后的三角形。
(4)连接 AB,BC, AC
2014年3月28日星期五5 时25分37秒
则△ABC即为所求作的三角形
11
问题情境 Ⅰ、如图所示,将“小旗子”绕点O按顺时针方向 旋转90°: (1)经过旋转,OA与Oபைடு நூலகம்`有什么关系?
OA=OA` (2)∠AOA`是什么角?它是多 少度? ∠AOA`是旋转角 ∠AOA`=90°
时针旋转900后得出的图形,A’是A的对应点 , 求作△ABC
A
A' B' P c'
2014年3月28日星期五5 时25分37秒
10
B
A
解: (1)连接PA
0 P (2) 以PB' 为边作B' PB 90 ,
C
A'
B' c'
在射线PB上截取PB PB' 0 (3) 以PC' 为边作C' PC 90 , 在射线PC上截取PC PC'
C
O
假设顶点B,C的对应点分别为点E,点F,则∠BOE,∠COF,∠AOD都是旋转 角.△DEF就是△ABC绕点O旋转后的三角形.根据旋转的性质知道:经过旋转,图 形上的每一点都绕旋转中心沿相同方向转动了相同的角度,即旋转角相等,对应 点到旋转中心的距离相等,则∠BOE=∠COF=∠AOD,OE=OB,OF=OC,这样即可求 作出旋转后的图形.
2014年3月28日星期五5 时25分37秒
A
O
A`
12
问题情境 Ⅱ、如图,在方格纸上作出“小旗子”绕点O按顺 时针旋转90°后的图案:
A B O B` C A`
C`
2014年3月28日星期五5 时25分37秒 13
动手作图 1.点的旋转
试着找一找如图A点绕 O点顺时针旋转30°后 所在的位置A’ O A'
A
A'
2.线段的旋转
试着画一画线段AB绕 O点逆时针旋转90° 后所得的线段(O点 在线段外)
A B
B' O
C’ C B’
3.图形的旋转
试着画△ABC绕O点逆时针 旋转60°后所得的三角形
2014年3月28日星期五5 时25分37秒
A
14
O
“旋转”作图的步骤 : (1)明确题目要求: 弄清旋转中心、方向和角度; (2)分析所作图形: 找出构成图形的关键点; (3)旋转关键点:沿一定的方向和角度分别作出 各关键点的对应点;
2014年3月28日星期五5 时25分37秒
1
诊断练习
1.下列图形属于旋转变换的是哪一个?它可以看作 是什么“基本图案”通过怎样的旋转而得到的?
2014年3月28日星期五5 时25分37秒
2
复习旧知
1、“旋转”的定义: 在平面内,将一个图形绕着一个定点沿某 个方向转动一个角度,这样的图形运动称为旋 转(变换)。 2、“旋转”的基本性质: (1)经过旋转,图形的形状和大小不变; (2)经过旋转,图形上的每一点都绕旋转中心沿相 同的方向转动了相同的角度; (3)任意一对对应点与旋转中心的连线所成的角都 是旋转角,对应点到旋转中心的距离相等。 3 2014年3月28日星期五5
(1) 以点C为圆心、CB长为半径画弧 ;
(2) 以点D为圆心、AB长为半径画弧 ; C
B (3) 两弧 的交点 即为点 B 的对应点 E 。
(4) 连接 CE 、ED、DC。
2014年3月28日星期五5 时25分37秒
△DEC 就是△ABC绕 O点旋转后的图形。
7
想一想 在旋转过程中, 确定一个三角形旋转后的位置, 除需要此三角形原来的位置外, 还需要什么条件?
四边形EFGH就是四边形ABCD绕O点旋转后的图形
20
拓展训练
1.将一个直角三角板绕30°角的顶点顺 时针旋转,使一直角边与原斜边在同一条 直线上(如图所示)。你知道旋转角是多 少吗?连结BB’,△ABB’有什么特征吗?
2.在五边形ABCDE中,AB=AE、BC+DE=CD, ∠ABC+∠AED=180°. 求证:AD平分∠CDE. 证:连接AC,将△ABC绕点A旋转∠BAE的度数到 △AEF的位置,因为AB=AE,所以AB与AE重合.因为 ∠ABC+∠AED=180°,且∠AEF=∠ABC,所以 ∠AEF+∠AED=180°.所以D,E,F三点在一直线上, AC=AF,BC=EF.在△ADC与△ADF中, DF=DE+EF=DE+BC=CD.,AF=AC,AD=AD 所以,△ADC≌△ADF(SSS),因此,∠ADC=∠ADF ,即:AD平分∠CDE.
(4)作出新图形:顺次连接作出的各点;
(5)写出结论: 说明所作出的图形。
2014年3月28日星期五5 时25分37秒 15
范例讲解
1.如图,△ABC绕点O旋转后,顶点 A的对应点为点D。 试确定顶点B的对应点的位置,以及 旋转后的三角形。
分析

B
A
D
一般作图题,在分析如何求 作时,都要先假设已经把所 求作的图形作出来,然后再 根据性质,确定如何操作.
线段的端点、多边形顶点、 折线的连接点、线段与曲线的连 接点、圆或圆弧或扇形的圆心.
注意连接顺序
2014年3月28日星期五5 时25分37秒
结束
25

(1)连接OA、OB、OC、OD、OE. (2)分别以OB、OC、OD为一边作∠BOF, ∠COG, ∠DOH,使∠BOF= ∠COG= ∠DOH= ∠AOE. (3)分别在射线OF,OG,OH上,截取OF=OB, OG=OC,OH=OD (4)连接EF,FG,GH,HE.
2014年3月28日星期五5 时25分37秒
2014年3月28日星期五5 时25分37秒 16
解:
(1)连接OA,OD,OB,OC. (2)如下图,分别以OB、OC为一边作 ∠BOE、∠COF,使得 ∠BOE=∠COF=∠AOD. (3)分别在射线OE、OF上截取 OE=OB、OF=OC. (4)连接EF,ED,FD. △DEF,就是△ABC绕O B 点旋转后的图形.
2014年3月28日星期五5 时25分37秒
22
课堂小结
1、“旋转”作图的步骤 : (1)明确题目要求: 弄清旋转中心、方向和角度; (2)分析所作图形: 找出构成图形的关键点; (3)旋转关键点:沿一定的方向和角度分别作出 各关键点;
(4)作出新图形:顺次连接各关键点;
(5)写出结论: 说明所作出的图形。
F 解:(1)连接CD; (2) 以CB 为一边作∠BCF , 使得∠BCF=∠ACD; (3) 在射线CF上截取CE=CB; B (4) 连接DE 。 A
E
D
C
△DEC 就是△ABC绕 O点旋转后的图形。
2014年3月28日星期五5 时25分37秒 6
议 一 议
你还能用其它方法作出 例 1 中 的 △DEC 吗? E A D
2014年3月28日星期五5 时25分37秒 21
3.如下图是某设计师设计的方桌布图案的一部分,请你运用旋转变换 的方法,在坐标纸上将该图形绕原点顺时针依次旋转90°、180°、270° ,并画出它在各象限内的图形,你会得到一个美丽的“立体图形”!但是 涂阴影时要注意利用旋转变换的特点,不要涂错了位置,否则不会出现理 想的效果,你来试一试吧!

明确:旋转中心,旋转的方向与旋转角度;
E
假设顶点 B 的对应点为 E , 则∠BCE 、∠ACD都是旋转角, 且 ∠BCE =∠ACD 、CE=CB 、CD=CA B
2014年3月28日星期五5 时25分37秒
D
A
C
5
例 题 解 析
例1
如图 △ABC 绕 C 点旋转后,顶点 A 的对应点为点 D。 试确定顶点 B 的对应位置, 以及旋转后的三角形。
2014年3月28日星期五5 时25分37秒 23
2、“旋转”作图的条件 : (1)三角形原来的位置 (2)旋转中心 (3)旋转方向 (4)旋转角度
相关文档
最新文档