结构力学力法对称性的利用

合集下载

结构力学-力法中对称性的利用

结构力学-力法中对称性的利用

对弯矩X1,一对轴力X2和对剪力X3。X1和X2是正
对称的,X3是反对称的。
X2 X1
X3 X1 X2
EI1
对 称

EI2
EI2
(a)
图8-17
X3 (b)基本结构
绘出基本结构的各单位弯矩力(图解-18),可以看出 M1图和M2图是正对称的,而M3是反对称的。
X1=1
X2=1
X3=1
M1图
M2图
M3图
+ 1P=0 22Y2+ 2P=0
当对称结构承爱一般非对称荷载时,我们还可以将荷
载分解为正,反对称的两组,将它们分别作用于结构上求 解,然后将计算叠加(图8-24)。显然,若取对称的基本 结构计算,则在正对称荷载作用下只有正对称的多余未知 力,反对称荷载作用下只有反对称的多余未知力。
P
q
P/2 q/2 P/2
P/2
+ q/2
q/2 P/2
图8-24
转到下一节
是这样的例子。为了使副系数为零,可以采取未知力分组
的方法。
AP
BP
(a)
X1
X2 X1
(b) 基本体系
(c)
(d)
X2
这就是将原有在对称们置上的两个多个未知力X1和X2分 解为新的两组未知力:一组为两个成正对称的未知力Y1, 另一驵为两个成反对称 的未知力Y2(图8-23a)。新的未 知力与原未知力之间具有如下关系:
可知副系数 13 =31=0, 23 =32 =0 于是方程可以简
化为
11X1 12 X 2 1P 0
21X1 22 X 2 2P 0
33 X 3 3P 0

结构力学-力法-对称性应用-去一半计算

结构力学-力法-对称性应用-去一半计算

例8-5 试计算如图示圆环的内力。EI=常数。 P
R
o
取1/4
基本体系
P 解:这是一个三次超静定。有两个对称轴,故取四分之一结构,
则为一次超静定。
M1 =1,
Mp=-PRsin/2
X1=1
P
R
o M1图
R
PR/2
o
Mp图
PR(-2)/2
PR/
P M图
如图示,则系数和自由项为:
11=M12ds/EI=1/EI0/2Rd=R/2EI 1P=M1Mpds/EI=1/EI/2(-PRsin)rd=-PR2/2EI
转到下一节
M图(a)
1
C
K
B
a/4
A
MK图(d)
若取(d)的基本结构则有:
Ky=-1/EI1(a/2a/4)1/23pa/88=-3pa3/1408EI1 综上所述,计算超静定结构的步骤是:
(1) 解算超静定结构,求出最后内力,此为实际状态。 (2) 任选一种基本结构,加上单位力求出虚拟状态的内力。 (3) 按位移计算公式或图乘法计算所求位移。
Ky

1 EI1
1 2
a 2
a 2
5 3 Pa 6 88
1 2EI1
1 2


3 88
Pa
15 Paa 88
a 2
1 2
Pa a 4
a 2
3Pa3 1408EI1
3pa/88
B
C I1
p
15pa/88
2I1
A
于是得:
X1=- 1P/11=PR/
最后弯矩为:M=M1X1+MP=PR/-Prsin=PR(1/-sin/2)

结构力学复习要点

结构力学复习要点

近几年交大结力真题分析~ (个人总结)一:平面体系的几何组成分析,经常及桁架一起出题,顺便求其内力二:已知受力,绘制弯矩剪力图三:静定结构位移计算,一般加有弹簧或者移动支座四:力法,一般都是对称的图形,让你利用对称性五:位移法,还是对称,一般都有条黑线(EI无限大),难点就在于刚体只能平动和转动,而转动的时候会引起转角……还得靠你自己去练习,掌握了一点都不难。

六:影响线,不多说了,送分题七:直接画出某超静定结构的内力图,表面上是画图,其实是多次利用力矩分配法,对刚结点的弯矩多次分配,画出简图,看似容易的题,其实是得分率最低的题,因此,大家必须多练习,熟练掌握力矩分配法!好多欲考丄建的研友都纠结及结构力学该如何复习,下而我将自己的经历写下来,希望对土建人有所帮助,尤其是跨考土建的同学。

一、谈谈跨考土建。

我是跨考上建,而且跨度较大,之前只学过材料力学。

我想考的专业要求是结构力学, 对于这个没接触过的学科頁•的有些发烘,但是我觉得这不是问题,各位应该有同样的感觉吧—本科课程都是一周就可以突击考试,上课也不听,所以自学完全可以达到预期效果,只是付岀要多一些。

二、结构力学的学习接触一门从未有印象的学科,克服心理上的障碍最重要,当时把指立书目(李廉規版)结构力学认真学了一遍,发现什么都不会,例题勉强看的僮,课后习题干脆都不会,我也想过是否继续,为了心仪的专业,就豁岀去了。

第一遍学校课本用了2个月,期间困难很大,到本校的土木学院找老师帮忙,结构力学老师居然退休了。

我靠,整个学校没有结构力学老师,我日!没办法,硬头皮自学。

6月份时发生了一个转折点,那就是选到了一遍优秀的练习册。

我当时想买一本练习册, 看中了当当上一本很厚的练习册(于玲玲版),买回来后直接研究它,课本的课后题不会就不做了。

就这样边研究练习册边在书上查找概念就行消化,最痛苦的两个月结束了,我把练习册做了一遍,好多问题没有明白,一本好的练习册可以肖省你的时间,为你归纳好了概念等,如力法,它将各种题型分布展开,里而都是各大名校的真题,做到淸华、同济、哈工大的真题确实有难度。

第六章-力法(二) ,同济大学结构力学课件,朱慈勉版教材,吕凤悟老师课件

第六章-力法(二) ,同济大学结构力学课件,朱慈勉版教材,吕凤悟老师课件
根据对称结构的受力特征,在对称或反对称荷载作用下,可以取半结构 计算,另外半结构的内力可通过对称或反对称镜像得到。
半结构选取的关键在于正确判别另外半结构对选取半结构的约束作用。 判别方法有两种:
根据对称轴上的杆件和截面的变形(或位移)特征判别。(适用于所有结构)
根据对称轴上的杆件和截面的内力特征判别。 (一般只适用于奇数跨结构)
【例】试用力法求作图示刚架的弯矩图。 各杆 EI C 。
Strucural Analysis
School of Civil Engineering, Tongji Univ.
§6-5 对称性的利用—力法简化计算
【例】试用力法求作图示刚架的弯矩图。各杆 EI C 。
【解】利用对称性简化为一次超静定。
11X1 1p 0
11

144 EI
,
1 p

1800 EI
X1 12.5kN
M M1X1 M p
Strucural Analysis
School of Civil Engineering, Tongji Univ.
§6-5 对称性的利用—力法简化计算
取半结构计算
§6-5 对称性的利用—力法简化计算
对称性的概念
对称结构:几何形状、支承情况、刚度分布均对称的结构。
支承不对称
对称结构
几何对称 支承对称 刚度对称
非对称结构
刚度不对称
对称荷载:作用在对称结构对称轴两侧,大小相等,方向和作用点对称的荷载。 反对称荷载:作用在对称结构对称轴两侧,大小相等,作用点对称,方向

13X 3 23X 3

1 p 2p
0 0
31X1 32 X 2 33 X 3 3 p 0

结构力学第五章力法

结构力学第五章力法

12kN/m
EI
2
2 M1 基本体系
24
2EI
2EI
4m
MP
6 216
6
d11 =
D1 P =
1 6 6 2 6 1 1 2 2 2 2 224 2 = 2 EI 2 3 EI 2 EI 2 3 3EI
M
1 6 216 3 6 2 EI 3 4 1 2 24 3 2 984 1 = 4 EI EI 2 EI 3
(A)
由上述,力法计算步骤可归纳如下: 1)确定超静定次数,选取力法基本体系; 2)按照位移条件,列出力法典型方程; 3)画单位弯矩图、荷载弯矩图,用(A)式求系数和自由项; 4)解方程,求多余未知力; 5)叠加最后弯矩图。 M = M i X i M P
q=23kN/m
q=23kN/m
6m
=
撤除约束时需要注意的几个问题: (1)同一结构可用不同的方式撤除多余约束但其超静定次数相同。
(2)撤除一个支座约束用一个多余未知力代替, 撤除一个内部约束用一对作用力和反作用力代替。 (3)内外多余约束都要撤除。
(4)不要把原结构撤成几何可变或几何瞬变体系
4 5 1 2 外部一次,内部六次 撤除支杆1后体系成为瞬变 不能作为多余约束的是杆 1、2、 5 共七次超静定 1 3
力法基本体系的合理选择
1 1 2 1 1 1 21 aa qa2 21= 2a = d a = qa3 d12P = d 21 = D1d 11力法基本体系有多种选择,但必须是几何不变体系。同时应 == = ,22 D 2 P = 0 EI 3 3 624 EI EI EI2 28 32 3EI EI 尽量使较多的副系数、自由项为零或便于计算。所选基本体系应 含较多的基本部分,使Mi,MP尽可能分布局部。 qa 2 用力法解图示连续梁, 2kN/m ↓↓↓↓↓↓↓↓ 15 各跨EI=常数,跨度为a. 2kN/m ↓↓↓↓↓↓↓↓ 2kN/m 2a X1 qa 2 X2 d 11 = = d 22 ↓↓↓↓↓↓↓↓ 3EI 60 a d 12 = d 21 = X1=1 M1 6 EI qa3 D1P = , D2P = 0 1 24 EI X2=1 M 2

李廉锟《结构力学》笔记和课后习题(含考研真题)详解-第7章 力 法【圣才出品】

李廉锟《结构力学》笔记和课后习题(含考研真题)详解-第7章 力 法【圣才出品】

第7章 力 法
7.1 复习笔记【知识框架】
【重点难点归纳】
一、概述(见表7-1-1) ★★
表7-1-1 概述
二、超静定次数的确定(见表7-1-2) ★★★★
表7-1-2 超静定次数的确定
三、力法的基本概念(见表7-1-3) ★★★
力法的基本概念,包括基本未知量、基本体系、基本结构以及基本方程见表7-1-3,此外,表中还归纳了超静定结构的力法分析步骤。

表7-1-3 力法的基本未知量、基本体系和基本方程
四、力法的典型方程(见表7-1-4) ★★★
表7-1-4 力法的典型方程
五、对称性的利用 ★★★★
1.对称结构及作用荷载的对称性(表7-1-5)
表7-1-5 对称结构及作用荷载的对称性
2.非对称荷载的处理(表7-1-6)
表7-1-6 非对称荷载的处理。

结构力学重点大全

结构力学重点大全

5.求 ij iP 实质上是计算静定结构的位移,对梁和刚架可采用“图乘法”计算。
图乘法计算公式
EyI0
基线同侧图乘为正,反之为负。
2
主系数 ii
Mi ds EI
M i 图自乘,恒为正。
副系数 ij
Mi Mj ds EI
自由项 iP
Mi MP ds EI
M i 图与 M j 图图乘,有正、负、零的可能。
2.5
X1=1
C
45 M0
3m 2.5m 2.5m 3m
3m 2.5m 简化的半结构
基本结构
M1 图
MP 图
解: 1.利用对称结构在反对称荷载作用下取左半跨结构进行计算,
取基本结构,列力法方程
11 X1 1P0
2. 绘 M1 MP 图,求系数和自由项,
A
1 1E 1(2 .I 5 3 2 .5 3 2 .5 2 3 .5 2 .5 ) 1 E .4 1I 6
•⑷ 在超静定结构计算中,一部份杆件考虑弯曲变形,另一部份杆件考虑轴向变形, 则此结构为 ( D )。
A. 梁 B. 桁架 C.横梁刚度为无限大的排架 D. 组合结构
组合结构举例: 6
14 53 2
杆1、杆2、杆3、杆4、杆5 均为只有轴力的二力杆,仅 考虑轴向变形。
杆6为梁式杆件,应主 要考虑弯曲变形。
20.45
B
D
24.55
24.55 20.45
1pE 1(I2.5 3 4 5 3)1E 1 .5 I2
3.求X1
x1
1P
11
9.82
C
M 图(kN.m)
4.绘 M 图。 MM1x1MP M B D 2 .5 9 .8 2 2 .5 4 k5 N M

结构力学——5力法

结构力学——5力法

系数行列式之值>0 主系数 ii 0
0 副系数 ij 0 0
5)最后内力
M M 1 X 1 M 2 X 2 .......... ... M n X n M
返回
P
作业: 第106页 5-1(a)、(b)(c)、 (f)、 (g)、(i)、 (j) 5-2 (a)、(b)(c)
静力特性
非荷载外因的影响
内力与刚度的关系
无关
返回
6. 力法解超静定结构的思路 首先以一个简单的例子,说明力法的思路和基本概 念。讨论如何在计算静定结构的基础上,进一步寻求计 算超静定结构的方法。 1判断超静定次数: n=1 2. 选择基本体系(结构) 3写出变形(位移)条件:
(a)
EI 原体系(原结构)
返回
(1)对称结构作用对 称荷载
11X1+12X2+△1P=0 21X1+22X2+△2P=0 33X3+△3P=0
MP图是正对称的,故△3P=0。 X3=0 。 则
返回
(1)力法方程的物理意义为: 基本结构在全部多余 未知力和荷载共同作用下,基本结构沿多余未知力方向 上的位移,应与原结构相应的位移相等。 (2)系数及其物理意义: 下标相同的系数 i i 称为主系数(主位移),它是单位 单独作用时所引起的沿其自身方向上 多余未知力 的位移,其值恒为正。 系数 i j(i≠j)称为副系数(副位移),它是单位多余未知力 单独作用时所引起的沿 Xi方向上的位移, 其值可能为正、为负或为零。据位移互等定理,有 i j= j i △i P称为常数项(自由项)它是荷载单独作用时所引起 的沿Xi方向的位移。其值可能为正、为负或为零。 返回 上述方程的组成具有规律性,故称为力法典型方程。
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
相关文档
最新文档