高等有机化学第一章绪论2010级
合集下载
有机化学 第1章 绪论

有机化学
第一章 绪 论
【本章重点】
共价键的形成及共价键的属性、诱导效应。 【必须掌握的内容】 1. 有机化合物及有机化学。 2. 有机化合物构造式的表示方法。 3. 共价键的形成——价键法(sp3、sp2 sp杂化、σ键与π 键)和分子轨道法。 4. 共价键的基本属性及诱导效应。 5. 共价键的断键方式及有机反应中间体。 6. 有机化合物的酸碱概念。
2Cl·
△H = +242kJ / mol (
双原子分子键能也就是键的离解能;多原子分子 同类型共价键的键能,是各个键离解能的平均值。
如: CH4 +435.1 ·CH +443.5 ·CH2 +443.5 ·CH +338.9 而CH
4 3
离解能△H(kJ / mol) ·CH3 + H· ·CH2 ·CH ·C ·C + H· + H· +物通过蒸馏、结晶、吸附、
萃取、升华等操作孤立出单一纯净的有机物。
[结构] 对分离出的有机物进行化学和物理行为的了解
,阐明 其结构和特性。
[反应和合成] 从某一有机化合物(原料)经过一系列反
应转化成一已知的或新的有机化合物(产物)。
§有机化合物的特点
有机化合物的特点通常可用五个字概括: “多、燃、低、难、慢”。
△H = (435.1 + 443.5 + 443.5 + 338.9)= 1661 kJ / mol 故甲烷C-H 键的键能为:1661 / 4 = 415.3 kJ / mol 键能是指破坏或形成某一个共价键所需的平均能量。 一般来说,有机分子的键能越小,键就越活泼;键能越 大,键就比较稳定。
4. 键的极性与偶极矩 由两个电负性不同的原子组成共价键时,由 于成键的两个原子对价电子的吸引力不同,使成 键电子云在两个原子间的分布不对称,造成共价 键的正负电荷中心不重合形成极性键。
第一章 绪 论
【本章重点】
共价键的形成及共价键的属性、诱导效应。 【必须掌握的内容】 1. 有机化合物及有机化学。 2. 有机化合物构造式的表示方法。 3. 共价键的形成——价键法(sp3、sp2 sp杂化、σ键与π 键)和分子轨道法。 4. 共价键的基本属性及诱导效应。 5. 共价键的断键方式及有机反应中间体。 6. 有机化合物的酸碱概念。
2Cl·
△H = +242kJ / mol (
双原子分子键能也就是键的离解能;多原子分子 同类型共价键的键能,是各个键离解能的平均值。
如: CH4 +435.1 ·CH +443.5 ·CH2 +443.5 ·CH +338.9 而CH
4 3
离解能△H(kJ / mol) ·CH3 + H· ·CH2 ·CH ·C ·C + H· + H· +物通过蒸馏、结晶、吸附、
萃取、升华等操作孤立出单一纯净的有机物。
[结构] 对分离出的有机物进行化学和物理行为的了解
,阐明 其结构和特性。
[反应和合成] 从某一有机化合物(原料)经过一系列反
应转化成一已知的或新的有机化合物(产物)。
§有机化合物的特点
有机化合物的特点通常可用五个字概括: “多、燃、低、难、慢”。
△H = (435.1 + 443.5 + 443.5 + 338.9)= 1661 kJ / mol 故甲烷C-H 键的键能为:1661 / 4 = 415.3 kJ / mol 键能是指破坏或形成某一个共价键所需的平均能量。 一般来说,有机分子的键能越小,键就越活泼;键能越 大,键就比较稳定。
4. 键的极性与偶极矩 由两个电负性不同的原子组成共价键时,由 于成键的两个原子对价电子的吸引力不同,使成 键电子云在两个原子间的分布不对称,造成共价 键的正负电荷中心不重合形成极性键。
高等有机化学课件第一、二章

高等有机化学
有机化学教研室
第一章 绪 论
定义:高等有机化学是由物理化学和有机化学相结合 而发展起来的一门论述有机化合物的结构、反应、机 理及它们之间关系的科学
新理论 有机化学 新方法 与
新反应
生命科学 材料科学 环境科学
1、有机分子的设计、识别与组装等概念影响着多个自 然科学领域
2、为研究和认识生命体系中复杂现象提供新的方法和 手段 3、新型功能物质(材料、药物等)的发现、制备和利 用
OH
CHO
4、解释活性中间体稳定性
·CH2
+ CH2
5、解释物质稳定性 O
三、分子轨道理论
分子轨道理论认为成键电子不是定域在特定原子间, 而是分布在能量不连续的一系列分子轨道中。
分子轨道处理为原子轨道的线性组合,即分子轨道 等于形成分子的原子轨道数,是守恒的。
Ψ=c1φ1+c2φ2+……+cnφn
共振结构的能量判断规则
1、共价键数目越多,越稳定 2、含完整电子八隅体的结构比价电子少于八隅体的结 构稳定 3、结构中电荷数目越大,越不稳定 4、电荷分布符合元素电负性的稳定
共振论在有机化学中的应用
1、解释碱性
R-NH2
NH2
NH C
NH
NH2
胺
胍
脒
R
C NH2
2、解释酸性
OH
R-OH
3、解释芳环亲电取代反应位置
三、近年的发展
1、研究手段由宏观向微观 (量子化学) 2、有静态向动态立体化学发展(构象分析) 3、从头计算(量子规律和薛定谔方程)
根据若干微观物理数据定量的推演有机反应的速率、 产率及结构及其物理化学性质 4、新理论的建立与充实(理论联系实践) 5、与其它学科的渗透和相互促进
有机化学教研室
第一章 绪 论
定义:高等有机化学是由物理化学和有机化学相结合 而发展起来的一门论述有机化合物的结构、反应、机 理及它们之间关系的科学
新理论 有机化学 新方法 与
新反应
生命科学 材料科学 环境科学
1、有机分子的设计、识别与组装等概念影响着多个自 然科学领域
2、为研究和认识生命体系中复杂现象提供新的方法和 手段 3、新型功能物质(材料、药物等)的发现、制备和利 用
OH
CHO
4、解释活性中间体稳定性
·CH2
+ CH2
5、解释物质稳定性 O
三、分子轨道理论
分子轨道理论认为成键电子不是定域在特定原子间, 而是分布在能量不连续的一系列分子轨道中。
分子轨道处理为原子轨道的线性组合,即分子轨道 等于形成分子的原子轨道数,是守恒的。
Ψ=c1φ1+c2φ2+……+cnφn
共振结构的能量判断规则
1、共价键数目越多,越稳定 2、含完整电子八隅体的结构比价电子少于八隅体的结 构稳定 3、结构中电荷数目越大,越不稳定 4、电荷分布符合元素电负性的稳定
共振论在有机化学中的应用
1、解释碱性
R-NH2
NH2
NH C
NH
NH2
胺
胍
脒
R
C NH2
2、解释酸性
OH
R-OH
3、解释芳环亲电取代反应位置
三、近年的发展
1、研究手段由宏观向微观 (量子化学) 2、有静态向动态立体化学发展(构象分析) 3、从头计算(量子规律和薛定谔方程)
根据若干微观物理数据定量的推演有机反应的速率、 产率及结构及其物理化学性质 4、新理论的建立与充实(理论联系实践) 5、与其它学科的渗透和相互促进
《有机化学》第一章 绪论

Sp3杂化
2P
2S 6C
2P 跃迁 2S
杂化
Sp3杂化轨道
Sp2杂化
2P 2S 6C
2P 跃迁 2S
杂化
Sp2杂化轨道
Sp2和sp3杂化轨道的形状大体相似,只是由于s成分的 逐渐增多,形状较胖,电负性较大。
Sp杂化
2P 2S 6C
2P 跃迁 2S
杂化
Sp杂化轨道
判断杂化类型的方法(第2和3章重点讲)
第一节 有机化学(Organic chemistry)发展概况
Organic一词的意思是有机的、有生命的 , 因此,有机化合物的最初定义是指来源于 动、植物体的物质 。
甘蔗------制取蔗糖; 大米或果汁----酿制酒精 植物油和草木灰共融--------制成肥皂 米醋------乙酸等称为有机物,形成“生命力论”
共价键 C--C C=C C—O C—N C--Br
键能 347.3 611 359.8 305. 4 284.5
3、键角(bond angle) 有机分子中二个共价键之间的夹角,称为键角。
4、键的极性和分子的极性
当两个相同的原子或原子团形成共价键时,由 于其电负性相同,因此成键电子云对称地分布 在两个原子周围,分子的正、负电荷中心重合, 这种键称为非极性共价键。
=dq 偶极矩的单位为德拜(Debye, Debye.Peter 荷兰物理学家), 简写为D。1D=10-8cm 10-10静电单位。
双原子分子的极性就是其键的极性,多原子分子 的极性是各个价键极性的矢量和。偶极矩是矢量,方向 从正电荷中心指向负电荷中心,可书写如下:
δ+
H
-
Cl
偶极矩 u=q•d
由于青霉素的发现和大量生产,拯救了千百万 肺炎、脑膜炎、脓肿、败血症患者的生命,及时 抢救了许多的伤病员。青霉素的出现,当时曾轰 动世界。为了表彰这一造福人类的贡献,弗莱明、 钱恩、弗罗里于1945年共同获得诺贝尔医学和生 理学奖。
《有机化学》第1章_绪论(高职高专 )

1.1 有机化合物和有机化学
一.有机化学(Organic Chemistry)的发展
① 1806年,Berzelius首先提出“有机化学” 概念;无机化学. ② 生命力学说:有机化合物只能来源于有机体(organic) 。 ③ 1828年, F.Wöhler从无机物氰酸铵人工合成了有机物尿素,突 破生命力学说约束,促进有机化学发展并成为一门单独学科。
特殊的共价键组成决定了上述特点。
石墨的晶体结构(sp2)
Graphite
金刚石的晶体结构(sp3)
足球烯erical
有机化合物结构上存在同分异构现象:
一.同分异构现象 分子式相同而结构相异因而其性质也各异的不同 化合物,称为同分异构体,这种现象叫同分异构现象。
A:B A·+ B·
例如:
Cl : Cl (光照) Cl·+ Cl· CH4 + Cl · CH3 ·+ H : Cl
例如: 乙醇和二甲醚(官能团异构)
CH3CH2OH CH3OCH3
CH3 CH3CHCH3
丁烷和异丁烷(碳链异构)
CH3CH2CH2CH3
原子数目和种类越多,同分异构体数越多.
碳架异构 构造异构 同分异构 立体异构 构型异构 位置异构
(丁烷与异丁烷) (1-丁烯与2-丁烯)
官能团异构 (二甲醚与乙醇) 构象异构
(2)键角(方向性):任何一个两价以上的原子,与其它原 子所形成的两个共价键之间的夹角. (3)键能 :气态原子A和气态原子B结合成气态A-B分子 所放出的能量,也就是气态分子A-B离解成A和B两个 原子(气态)时所吸收的能量.
(泛指多原子分子中几个同类型键的离解能的平均值).
◆离解能:某个共价键离解所需能量.
有机化学-1(绪论)

分子轨道的饱和性和方向性
• 通过分子轨道形成共价键时, 同样有饱和性和方向性。 • 当碳原子的2px轨道和氢原 子的1s轨道形成C-H键时, 在保证两个原子核尽可能远 离的同时,1s轨道只有沿 着x轴的方向才能与2px轨 道产生最大程度的重叠 。 从图可以看出,达到同样的 重叠程度,两原子核间的距 离a明显大于b。
第二节 有机化合物的结构
共价键理论
• 1857年凯库勒和库帕分别独立地指出有机化合物中的碳原子都 是四价的,而且互相结合成碳链,这一理论成为有机化学结构的 基本理论。 • 1861年布特列洛夫提出化学结构的观点:指出分子中各原子以 一定的化学力按照一定次序结合,这种按照一定次序的结合叫做 结构,结构决定了它的性质。 • 有机化合物是含碳化合物,碳原子最显著的特点是以共价键与其 他原子结合,并且大多数有机化合物由碳、氢、氧、氮等元素构 成,这些元素都是非金属。非金属元素在形成化学键时,也主要 是以共价键结合。构成有机化合物的化学键最主要的是共价键, 因此,研究有机化合物的结构首先必须要研究共价键。
• 关于共价键的解释,有价键理论和分子轨道理论。
价键理论
• 电子配对法(价键法,VB):共价键的形成是由于成 键的两个原子都具有未成键的电子,且自旋方向相反, 自旋相反的成单电子相互接近时,可以相互配对形成稳 定的化学键。这种自旋相反的两个电子相互配对构成的 化学键叫做共价键。 • 基本要点:自旋相反的成单电子相互接近时,核间电子 云密度较大,可形成稳定的化学键;共价键有饱和性, 一个原子有几个未成对电子苄可以和几个自旋相反的电 子配对成键;共价键有方向性,共价键尽可能沿着原子 轨道最大重叠的方向形成,最大重叠原理。为了产生最 大重叠,碳原子通常发生杂化。 • 碳原子的2s, 2p轨道上的四个外层电子在形成有机化合 物时,激发状态下,相互补偿,发生杂化。 • 杂化轨道的产生:电子云重叠最多;成键电子云与其它 电子云重叠最少;成键原子间的相互排斥作用最小。
有机化学-第一章-绪论

sp2杂化的碳原子的几何
构型为平面三角形。
sp2杂化的碳原子 有机化学 第一章
24
sp1杂化
sp杂化轨道 形状:梨形
成分: 1/2 s + 1/2 P 夹角: 180° 碳原子构型:直线型
未参与杂化的两个 p 轨道的对 称轴相互垂直,且均垂直于sp 杂化轨道对称轴所在直线。
可形成两个 键和两个π键
19
杂化轨道理论 (hybrid orbital theory) 碳原子在基态时的价电子层电子构型
C : 2s2 2px1 2py1 2pz0
吸收能量
C*: 2s1 2px1 2py1 2pz1
sp3杂化
重新 分配
sp2杂化
sp杂化
有机化学 第一章
20
sp3杂化
可形成四 个 键
有机化学 第一章
21
ψ*
能
1
2
量
ψ
原子轨道组合成分子轨道必备条件: ① 能量相近 ② 最大重叠 ③ 对称性相同
有机化学 第一章
27
分子轨道理论(molecular orbital theory)
电子在分子轨道中的填充顺序
能量最低原理 泡利不相容原理 洪特规则(兼并轨道规则)
最大重叠 此外还遵循成键三原则: 能量相近
1.1 有机化合物和有机化学
•有机化学是研究有机化合物的组成、结构、性质 、合成、应用及相关理论的一门科学。
那么,什么是有机物呢?
十七世纪中叶,据物质来源分为:动物、植物 和矿物
有机——“有生命的物质”
有机化学 第一章
3
有机化学发展的历史
十九世纪初瑞典化学家 柏齐利乌斯(Berzelius)把动物物质和 植物物质合并称有机化合物,把矿物物质称为无机化合物。
有机化学 绪论

C: 2s2 2p2
激发 s轨道 p轨道
杂化 (线性组合)
4个sp3 杂化轨道
(sp3 杂化)
3个sp2
(sp2 杂化) p轨道
(sp杂化)
2个sp p轨道
(i) sp3杂化
甲烷分子中的碳原子采取sp3杂化。杂化的结果:
sp 3
①sp3轨道具有更强的成键能力和更大的方向性。 ②四个sp3杂化轨道完全相同,取最大的空间距离为正四 面体构型,轨道夹角为109.5°。
C
HC
CH
HC
CH
sp杂化碳为直线构型 键
乙炔分子的σ骨架
2个相互⊥的π
乙炔分子中电子云的形状为对称于σC-C键的圆筒形。
讨论:
• 不同杂化态碳原子的电负性不同,导致其与 氢原子或其他原子形成的σ键的性质不同。
电负性:sp杂化碳> sp2杂化碳> sp3杂化碳 !
• 杂化轨道可形成σ键,如C-H、C-C、C-X、 C-O、C-N等。σ键是有机分子构成碳链或碳 环的基础。
1-丁烯
CH3CHCH2OH CH3
2-甲基丙醇
(B)脂环化合物
OH
环戊烷
环辛炔
环己醇
(C)芳香族化合物
OH
NO2
苯酚
硝基苯
萘
(D)杂环化合物
O
呋喃
N
吡啶
O CHO
2-呋喃甲醛
精品课件!
精品课件!
(2)按官能团分类 一些常见重要官能团
化合物类别
烯烃 炔烃 卤代烃 硝基化合物 胺 醇和酚 醚 醛
• 未参与杂化的p轨道可形成π键,如C=C、 C=O、C≡C、C≡N等。
②分子轨道法
• 分子轨道理论主要用来处理p电子或π电子 。
大学有机化学上册第一章绪论

B A· · A+ + B
CH3 H3C C· Cl · CH3 H3C CH3 C+ CH3
离子型反应
+
Cl
-
有机反应的活性中间体:自由基、碳正离子、碳负离子等。 有机反应可分为以下类型:
离子型反应 自由基反应 周环反应
取代反应 加成反应 消除反应 重排反应 氧化—还原反应
六. 有机化合物结构上的主要特点----同分异构现象 目前人类已知的有机物达5000多万种,数量远远 超过无机物。
y x
yy
x
2py - 2py
1s - 2px
价键理论特点: 电子定域,价电子运动在2个成键 原子核周围。
杂化轨道理论(Hybrid Orbital Theory)
C 2S
2
2Px1
2Py1
跃迁
2S1 2Px 2Py1 2Pz1
1
杂化
(sp3)4
四个sp3杂化轨道
有机化合物中的碳原子的杂化状态如下:
有机化学是一门迅速发展的学科
有机合成化学 天然有机化学 生物有机化学 金属与元素有机化学 物理有机化学 有机分析化学 药物化学 香料化学 农药化学 有机新材料化学 ...... 等学科 生命科学 材料科学 环境科学 化学生物学 能源、工业、农业 ...... 等方面
有机化学的世界丰富多彩
有机化学实验的仪器赏心悦目
HOCH2 HO HO O OH OH
E. Fischer(1902) Work:sugars and purine synthesis
H R1 O O O H R2 R3 O O (Ginkgolide B) OH 银杏内酯B
(Vitamin B12)
CH3 H3C C· Cl · CH3 H3C CH3 C+ CH3
离子型反应
+
Cl
-
有机反应的活性中间体:自由基、碳正离子、碳负离子等。 有机反应可分为以下类型:
离子型反应 自由基反应 周环反应
取代反应 加成反应 消除反应 重排反应 氧化—还原反应
六. 有机化合物结构上的主要特点----同分异构现象 目前人类已知的有机物达5000多万种,数量远远 超过无机物。
y x
yy
x
2py - 2py
1s - 2px
价键理论特点: 电子定域,价电子运动在2个成键 原子核周围。
杂化轨道理论(Hybrid Orbital Theory)
C 2S
2
2Px1
2Py1
跃迁
2S1 2Px 2Py1 2Pz1
1
杂化
(sp3)4
四个sp3杂化轨道
有机化合物中的碳原子的杂化状态如下:
有机化学是一门迅速发展的学科
有机合成化学 天然有机化学 生物有机化学 金属与元素有机化学 物理有机化学 有机分析化学 药物化学 香料化学 农药化学 有机新材料化学 ...... 等学科 生命科学 材料科学 环境科学 化学生物学 能源、工业、农业 ...... 等方面
有机化学的世界丰富多彩
有机化学实验的仪器赏心悦目
HOCH2 HO HO O OH OH
E. Fischer(1902) Work:sugars and purine synthesis
H R1 O O O H R2 R3 O O (Ginkgolide B) OH 银杏内酯B
(Vitamin B12)
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
12.10.2020
17
所以很有必要再继续学习《高等有机化学》
由于有机合成、有机分析均有专门课程, 再加上学时的限制。本课程主要讲授物理 有机化学最基本的知识。
12.10.2020
18
三、The method of Studying Advanced Organic Chemistry
以老师的讲课为纲,主要靠自学。32个 学时讲不了多少内容!
12.10.2020
23
有机化学的分支树
12.10.2020
24
一、有机化学的主要分支学科
1. 物理有机化学 用物理和物理化学的概念、理论和方法
出处。
12.10.2020
20
《高等有机化学》 王积涛编 《物理有机化学》(上、下) 高振衡编 《高等有机化学》[美]Carey and Sundberg,
夏炽(chi)中译分A、B两卷: A卷:有机结构理论, B卷:反应与合成 高等有机化学基础(第三版) 荣国斌编
12.10.2020
21
第二节 有机化学重要分支
12.10.2020
16
我国物理有机研究起步于上世纪60年代, 80年代以后有了迅速发展。目前,在上海有 机化学研究所、兰州大学、南开大学、中科 院化学所、理化所、大连化物所、北京师范 大学、中山大学等单位具有较强的研究队伍 或有特色的研究小组。在若干重要前沿领域 获得具有国际水平的研究成果或进入国际领 先行列。
同学们已经学过《有机化学》,都已经 知道:有机化学是研究有机化合物的组成、 结构、性质、变化、合成和应用的化学分 支,已形成一门独立的学科。
12.10.2020
22
• 有机化学发展经历经了一个很长的历史发 展时期。
• 作为化学学科下的二级学科。现已形成一 个完整的有机化学科学体系。
• 有机化学学科,枝繁叶茂,成长为一棵参 天大树
12.10.2020
14
美国国家研究委员会(NRC)发布的化学 发展战略中提出的五个优先发展前沿领域, 与物理有机化学有关的就有三个,即化学 反应活性、化学催化、生命过程中的化学, 其首要的前沿(化学反应活性)对于有机 化学来说,也是物理有机的核心方向。
12.10.2020
15
在国际上,美、英、德、日等工业发达国 家在物理有机化学研究与广度方面处于领 先地位,涌现了一些作出杰出贡献的物理 有机化学家。
Advanced Organic Chemistry
12.10.2020
1
基本要求
端正学习态度,认真扎实地学; 有事请假; 对老师有什么要求提出来; 完成必要的作业。
12.10.2020
2
第一章 绪论
• 什么是高等有机化学?高等有机化学的研 究对象是什么?高等有机化学与有机合成 关系是什么?
12.10.2020
12.10.2020
19
参考书
《MARCH’S ADVANCED ORGANIC CHEMISTRY》; 6th Edition; Michael B. Smith, Jerry March
该书的第五版在2009年已由清华大学 李艳梅教授翻译
第一部分,9章,基础理论; 第二部分,10章,反应与反应机理; 大量的原始文献 Organic Syntheses(OS)
研究内容——研究有机化合物的结构、性 质、反应,以及结构和性质的关系。
理论基础——主要是量子化学和以此为依 据的化学键理论和电子理论。
研究目的——指导探索反应条件、指导有
机合成。 12.10.2020
7
二、The Relation between Advanced Organic Chemistry and Organic Syntheses
3
第一节 为什么学习高等有机化学
一、 Contents of Advanced Organic Chemistry 同学们已经学过《有机化学》,已经知 道:有机化学是研究有机化合物的组成、 结构、性质、变化、合成和应用的化学分 支,已形成一门独立的学科。
12.10.2020
4
有机化学中主要介绍内容的是: (1)有机化学的基本概念和术语。 (2)大篇幅介绍有机官能团化学。 (3)大量的经验事实。
12.10.2020
11
物理有机研究有机分子结构与其物理、化 学及生物等性能之间的关系,阐明有机反 应的机理的细节与规律(如反应途径、过 渡态与反应中间体、能量关系、立体化学 特征以及环境效应),并用理论化学的方 法来计算和预测已知和未知化合物,中间 体及过渡态等特性和各种反应途径。
12.10.2020
12
物理有机化学与有机化学中各主要分支和 新的边缘领域,例如有机合成、生物有机、ห้องสมุดไป่ตู้金属有机、光化学、药物化学以及高分子 化学等均有密切的联系。
12.10.2020
13
现代有机化学发展的规律表明,物理有机 化学对其它有机化学分支和边缘学科的发 展起着理论指导作用,并相互渗透相辅相 成。
物理有机化学是当今有机化学中最富活力 和重要性的领域之一。
12.10.2020
5
同时少量介绍了有机化合物结构理论、有 机活性中间体、有机反应机理、有机合成等 内容,但很不系统。
正是由于有机化学教学内容的特点,我们 常常把这一阶段以介绍官能团化学为主的 《有机化学》称为基础有机化学或普通有机 化学。
12.10.2020
6
高等有机化学——亦称物理有机化学,有 人称理论有机化学。
高等有机侧重点:有机理论; 有机合成侧重点:合成方法和合成路线; 高等有机指导有机合成,有机合成证实 高等有机,应用于实际。
12.10.2020
8
有机合成不能光靠讲课来学好,要做大量 的实验。 写一个反应很容易,实施起来就不容易。 特别是实验手段很重要。 高等有机学不好,有机合成就无法学。因 为有机合成是建立在掌握大量有机反应类型 的基础上。
12.10.2020
9
高等有机学不好,有机合成就无法学, 因为有机合成是建立在掌握大量有机反应 类型的基础上。
而高等有机主要讲有机反应的性质和结 构的关系,讨论大量的反应类型。
12.10.2020
10
高等有机化学从严格意义上讲,不是一个 单独的学科,只是作为讲授高一级有机化 学知识的一门课程。它的内容应该包括物 理有机、有机合成、天然有机、有机分析 等内容。