高三物理一轮复习精品学案:动量守恒定律及“三类模型”问题
高三物理一轮复习全套教案完整版

高三物理一轮复习全套教案完整版一、教学内容本节课为高三物理一轮复习,教材选用人民教育出版社的《高中物理》。
复习内容为第五章“动量守恒定律”,具体包括:5.1动量守恒定律,5.2动量守恒定律的应用。
二、教学目标1. 让学生掌握动量守恒定律的定义、表达式及适用条件。
2. 培养学生运用动量守恒定律解决实际问题的能力。
3. 通过对动量守恒定律的复习,提高学生对物理概念的理解和运用能力。
三、教学难点与重点重点:动量守恒定律的定义、表达式及适用条件。
难点:动量守恒定律在实际问题中的应用。
四、教具与学具准备教具:多媒体课件、黑板、粉笔。
学具:教材、笔记本、练习册。
五、教学过程1. 实践情景引入:讲述一个关于动量守恒的日常生活实例,如碰撞现象,引导学生关注动量守恒在实际生活中的应用。
2. 知识回顾:复习动量的定义、表达式,回顾动量守恒定律的发现过程,引导学生理解动量守恒定律的意义。
3. 教材内容梳理:讲解动量守恒定律的定义、表达式及适用条件,通过示例让学生了解动量守恒定律在实际问题中的应用。
4. 例题讲解:选取典型例题,讲解动量守恒定律的运用方法,引导学生学会分析问题、解决问题。
5. 随堂练习:布置随堂练习题,让学生运用动量守恒定律解决问题,及时巩固所学知识。
6. 板书设计:板书动量守恒定律的定义、表达式及适用条件,突出重点,便于学生复习。
7. 作业设计:布置作业题,让学生运用动量守恒定律解决实际问题,提高学生的应用能力。
作业题目:1. 一辆质量为m的小车以速度v1与质量为M的大车以速度v2相碰撞,求碰撞后两车的速度。
答案:2. 课后反思及拓展延伸:六、教学内容拓展动量守恒定律在现代物理学中的应用,如粒子物理学、宇宙学等。
引导学生关注动量守恒定律在其他领域的应用,提高学生的学科素养。
七、课后作业布置1. 复习动量守恒定律的定义、表达式及适用条件。
2. 完成课后练习题,运用动量守恒定律解决问题。
3. 查阅相关资料,了解动量守恒定律在实际应用中的更多例子。
高考物理一轮复习导学案: 动量守恒定律及其应用3

选择性必修第一册 动量和动量守恒定律 6.2 动量守恒及其应用(3) 学案34姓名_______班级_______学号_______【复习目标】1.能说出滑块平板模型的运动情况。
2.能分析画出滑块和平板的受力示意图。
3.根据能量守恒和动量守恒列出关系式。
4.能联系和区分能量和动量问题,选择适当的解题方法。
【复习重点】1.根据能量守恒和动量守恒列出关系式。
2.联系和区分能量和动量问题,选择适当的解题方法。
易错易混点:1. 判断是否是人船模型2. 分析滑块—弹簧模型,对不同阶段以不同的碰撞类型进行处理 易错易混点:“人船模型”问题应注意(1)适用条件:①系统由两个物体组成且相互作用前静止,系统总动量为零;②在系统内发生相对运动的过程中至少有一个方向的动量守恒(如水平方向或竖直方向)。
(2)画草图:解题时要画出各物体的位移关系草图,找出各长度间的关系,注意两物体的位移是相对同一参考系的位移。
【知识点归纳与探究】“人船模型”是初态均处于静止状态的两物体发生相互作用的典型模型。
1.模型概述:在水平方向所受合外力为零的两个静止物体(一个物体在另一个物体上),在系统内力的相互作用下同时开始反向运动,这样的力学系统可看作“人船”模型。
2.模型特点:两物体速度大小、位移大小均与质量成反比,方向相反,两物体同时运动,同时停止,遵从动量守恒定律,系统或每个物体动能均发生变化:力对“人”做的功等于“人”动能的变化;力对“船”做的功等于“船”动能的变化。
3.如图所示,长为L 、质量为M 的小船停在静水中,一个质量为m 的人站在船头,若不计水的阻力,当人从船头走到船尾的过程中,船和人对地面的位移各是多少?m M +m L MM +m L 考点一、“人船模型”学法指导: 两物体速度大小、位移大小均与质量成反比,方向相反,两物体同时运动,同时停止,遵从动量守恒定律,系统或每个物体动能均发生变化:力对“人”做的功等于“人”动能的变化;力对“船”做的功等于“船”动能的变化。
高考物理一轮复习:13.1《动量、动量守恒定律》教学案(含答案)

第1讲动量动量守恒定律考纲下载:1.动量、动量定理、动量守恒定律及其应用(Ⅱ)2.弹性碰撞和非弹性碰撞(Ⅰ)主干知识·练中回扣——忆教材夯基提能1.冲量、动量和动量定理(1)冲量①定义:力和力的作用时间的乘积。
②公式:I=Ft,适用于求恒力的冲量。
③方向:与力的方向相同。
(2)动量①定义:物体的质量与速度的乘积。
②表达式:p=mv。
③单位:千克·米/秒;符号:kg·m/s。
④特征:动量是状态量,是矢量,其方向和速度方向相同。
(3)动量定理①内容:物体所受合力的冲量等于物体动量的变化量。
②表达式:F合·t=Δp=p′-p。
③矢量性:动量变化量方向与合力的方向相同,可以在力的方向上用动量定理。
(4)动能和动量的关系:E k=p22m。
2.动量守恒定律(1)动量守恒定律的内容如果一个系统不受外力,或者所受外力的矢量和为零,这个系统的总动量保持不变。
(2)常用的四种表达式①p=p′,系统相互作用前总动量p等于相互作用后的总动量p′。
②m1v1+m2v2=m1v′1+m2v′2,相互作用的两个物体组成的系统,作用前的动量和等于作用后的动量和。
③Δp1=-Δp2,相互作用的两个物体动量的变化量等大反向。
④Δp=0,系统总动量的增量为零。
(3)动量守恒定律的适用条件①理想守恒:不受外力或所受外力的合力为零。
②近似守恒:系统内各物体间相互作用的内力远大于它所受到的外力。
③某一方向守恒:如果系统在某一方向上所受外力的合力为零,则系统在这一方向上动量守恒。
3.动量守恒定律的应用(1)碰撞①碰撞现象两个或两个以上的物体在相遇的极短时间内产生非常大的相互作用的过程。
②碰撞特征a.作用时间短。
b.作用力变化快。
c.内力远大于外力。
d.满足动量守恒。
③碰撞的分类及特点a.弹性碰撞:动量守恒,机械能守恒。
b.非弹性碰撞:动量守恒,机械能不守恒。
c.完全非弹性碰撞:动量守恒,机械能损失最多。
高三物理 一轮复习动量守恒定律导学案

P Q课题:动量守恒定律及应用【学习目标】会利用条件判断动量守恒,会应用动量守恒定律。
【重点难点】动量守恒定律的应用【自主学习】教师评价: (等第)1.定律内容:互相作用的物体系若不受 作用或所受的合外力为________,则系统总动量保持不变 2.动量守恒条件:(1)系统不受外力或所受合外力为零(2)系统内力____________外力(3)系统在某一方向上合外力为零,则该方向上系统动量________3.动量守恒表达式_____________________________________________________________ 4.说明:(1)动量守恒定律的研究对象是 。
(2)动量守恒不仅指系统的初、末两个时刻动量相等,而且系统在整个过程中总动量都 _ (3)注意动量守恒定律中速度的矢量性指__________、相对性指________和同时性指 (4)动量守恒定律不仅适用宏观物质低速运动,对微观现象和高速运动仍然____________ 自主测评:1.质量为2千克的质点,从静止开始沿某一方向做匀变速直线运动,它的动量p 随位移x 变化的关系为s m Kg x p /8⋅=,求质点所受的合外力?2.质量m 1=10g 的小球在光滑的水平面上以v 1=30cm/s 的速率向右运动,恰遇上质量m 2=50g 的小球以v 2=10cm/s 的速率向左运动,碰撞后,小球m 2恰好停止,那么碰撞后m 1小球的速度是多大?方向如何?3.如图所示的装置中,木块B 与水平桌面间的接触是光滑的,子弹A 沿水平方向射入木块后留在木块内,将弹簧压缩到最短.现将子弹、木块和弹簧合在一起作为研究对象(系统),则此系统在从子弹开始射入木块到弹簧压缩至最短的整个过程中:( )A 、动量守恒、机械能守恒B 、动量不守恒、机械能不守恒C 、动量守恒、机械能不守恒D 、动量不守恒、机械能守恒 4.下面关于动量守恒的判断,正确的是 ( )A .静止于水面的两船间用绳相连,船上的人用力拉绳子,两船靠近,如果两船所受阻力不能忽略,两船动量必不守恒B .人在静止的汽车上行走,人与车总动量守恒C .水平飞行的子弹击中并穿过放在水平桌面上的木块,由于子弹对木块的作用力远大于桌面对木块的摩擦力,因此子弹击中木块的过程中子弹、木块系统的动量守恒D .斜面置于光滑水平面上,物体在沿斜面下滑的过程中,水平方向的动量是否守恒取决于物体与斜面间有无摩擦5、在匀速前进的船上,分别向前、向后抛出两个质量相等的物体,抛出时两个物体相对地面的水平速度大小相等,则物体抛出后船的速度大小:( )A 、速度大小不变;B 、速度减小;C 、速度增大;D 、不能确定。
高考物理一轮复习课件用动量守恒定律解决“三类模型”问题

(2)若木块未从木板上滑下,当两者速度相同时,木板速度最大, (1)木板C的最终速度大小;
(1)当发动机第三次喷出气体后,火箭的速度为多大? 3 kg的小车静止在光滑的水平面上,车长L=1.
相对位移最大 (完全非弹性碰撞拓展模型) (3)物块A滑上木板C之后,在木板C上做减速运动的时间t.
(1)2 m/s (2)13.5 m/s
题型例析2 人船模型
B
类型二 子弹打木块模型 1.模型图示
2.模型特点
(1)子弹水平打进木块的过程中,系统的动量守恒.
(2)系统的机械能有损失.
3.两种情景 (1)子弹嵌入木块中,两者速度相等,机械能损失最多 (完全非弹性碰撞).
动量守恒:mv0=(m+M)v
“三类模型”问题 3mk. g的小车静止在光滑的水平面上,车长L=1.
(M1)h2/(mM/+s m()2t)a1n3.α 变(2)式子训弹练在3第(二子块弹木打块木中块与模该型木)如块所发示生,相相对距运足动够的远时且间完t.全相同的两个木块,质量均为3m,静止放置在光滑水平面上,质量为m的子弹(可视为质点)以初速度v0水平向右射入木块,穿 出(2)第子一弹块在木第块二时块速木度块变中为与2该v0木/5块,发已生知相木对块运的动长的为时L,间设t. 子弹在木块中所受的阻力恒定,试求: 例6 m3 (2019·河D南.九8 师m联盟质检)如图所示,在光滑水平面上有B、C两个木板,B的上表面光滑,C的上表面粗糙,B上有一个可视为质点的物块A,A、B、C的质量分别为3m、2m、 m之.间的相互作用力为Ff. (32k)子g的弹小在车第静二止块在木光块滑中的与水该平木面块上发,生车相长对L运=动1.的时间t. 动(2)量系守统恒的:机m械v能0=有(损m+失M.)v m之h间/(的M+相m互)作tan用α力为Ff. 动(完量全守非恒弹:性m碰v撞0=拓m展v1模+型M)v2 (2)子弹在第二块木块中与该木块发生相对运动的时间t.
高三物理一轮复习教学案25动量守恒定律

25(1)动量守恒定律学习目标:1、动量守恒定律2、动量守恒定律成立的条件3、应用动量守恒定律分析、解题学习内容:一、动量守恒定律1、内容:___________________________________________________________________2、数学表达式:①P=P' ②△P=0 ③△P 1=-△P 23、成立条件①系统所受的合外力等于0 ;②系统在某一分方向上合力等于0,该方向动量守恒 ;③如果系统所受的内力远大于外力时,如碰撞,爆炸等现象中,系统的冲动量可看成近似守恒。
例1、关于动量守恒的条件,下列说法中正确的是:( )A .只要系统内存在摩擦力,动量不可能守恒B .只要系统内某个物体做加速运动,动量就不守恒C .只要系统所受合外力的冲量为零,动量守恒D .只要系统所受外力的合力为零,动量守恒练一练如图,木块和弹簧相连放在光滑的水平面上,子弹A 沿水平方向射入木块后留在木块B 内,入射时间极短,之后木块将弹簧压缩,关于子弹和木块组成的系统,下列说法中正确的是( )A .从子弹开始射入到弹簧压缩到最短的过程中,系统动量守恒B .子弹射入木块的过程中,系统动量守恒C .木块压缩弹簧的过程中,系统动量守恒D .上述任何一个过程动量均不守恒二、动量守恒定律的应用:对动量守恒定律的几点说明:①守恒定律研究的对象:两个以上物体组成的系统②定律的矢量性③定律中参照物的相对性,同一性④定律中状态的同时性步骤:a 、确定研究对象b 、对研究对象进行受力分析,并判断系统的动量是否守恒c 、分析研究对象的运动状态,确定系统始末状态的总动量d 、规定正方向,根据守恒定律列方程例2 如图所示,木块质量为 m = 0.4kg ,它以速度V=20 m /s 水平滑上一辆静止的平板小车,已知车的质量M =1.6kg ,木块与小车间动摩擦因数μ=0.2,其它摩擦不计,g =10m/s 2,求:①木块相对于车静止时,平板小车的速度? ②这一过程所经历的时间及小车运动的距离。
高考物理一轮总复习第六章动量动量守恒定律第3讲“动量守恒定律中三类典型问题”的分类研究教师用书

第3讲 “动量守恒定律中三类典型问题”的分类研究类型(一) 碰撞问题1.碰撞遵循的三条原则(1)动量守恒定律。
(2)机械能不增加。
E k1+E k2≥E k1′+E k2′或p 122m 1+p 222m 2≥p 1′22m 1+p 2′22m 2(3)速度要合理。
①同向碰撞:碰撞前,后面的物体速度大;碰撞后,前面的物体速度大或相等。
②相向碰撞:碰撞后两物体的运动方向不可能都不改变。
2.弹性碰撞讨论(1)碰后速度的求解:根据动量守恒和机械能守恒⎩⎪⎨⎪⎧ m 1v 1+m 2v 2=m 1v 1′+m 2v 2′ ①12m 1v 12+12m 2v 22=12m 1v 1′2+12m 2v 2′2 ② 解得v 1′=m 1-m 2v 1+2m 2v 2m 1+m 2, v 2′=m 2-m 1v 2+2m 1v 1m 1+m 2。
(2)分析讨论:当碰前物体2的速度不为零时,若m 1=m 2,则:v 1′=v 2,v 2′=v 1,即两物体交换速度。
当碰前物体2的速度为零时,即v 2=0,则:v 1′=m 1-m 2v 1m 1+m 2,v 2′=2m 1v 1m 1+m 2。
①m 1=m 2时,v 1′=0,v 2′=v 1,碰撞后两物体交换速度。
②m 1>m 2时,v 1′>0,v 2′>0,碰撞后两物体沿同方向运动。
③m 1<m 2时,v 1′<0,v 2′>0,碰撞后质量小的物体被反弹回来。
[典例] (2022·广东高考)某同学受自动雨伞开伞过程的启发,设计了如图所示的物理模型。
竖直放置在水平桌面上的滑杆上套有一个滑块,初始时它们处于静止状态。
当滑块从A 处以初速度v 0为10 m/s 向上滑动时,受到滑杆的摩擦力f 为1 N ,滑块滑到B 处与滑杆发生完全非弹性碰撞,带动滑杆离开桌面一起竖直向上运动。
已知滑块的质量m =0.2 kg ,滑杆的质量M =0.6 kg ,A 、B 间的距离l =1.2 m ,重力加速度g 取10 m/s 2,不计空气阻力。
人教版高考物理一轮复习学案设计 专题:动量守恒定律

高考物理一轮复习
B.m(L-d)
d
D.m(L+d)
L
,人的速度大小为v′,人从船尾走到船头所用时间为
解析:设向右为正方向,人跳出前后,甲船与人动量守恒,则(m+
解析:设物块与地面间的动摩擦因数为μ.若要物块a、b能够发生碰撞,应有
m/s
发生第一次碰撞,碰撞过程中,系统的动量守恒、机械能守恒.设速度方
B.v0+v2
解析:弹丸爆炸瞬间爆炸力远大于外力,故爆炸瞬间动量守恒.因两弹片均水平飞出,飞行时间
.取向右为正方向,由水平速度v=x
t知,A中,v甲=2.5 m/s
;C中,v
甲=1 m/s,v
乙
=2 m/s;D中,v
甲
=-
v
甲+m
乙
v
乙
,其中m
甲
=
3
4m,m乙=
1
4m,v=
通过计算判断,冰块与斜面体分离后能否追上小孩?
两球速度大小之比为2∶5 两球速度大小之比为1∶10
B.3L 4
第一次分离后,物块A沿圆弧面上升的最大高度.
.动量守恒,机械能守恒
B.1
2
mM
m+M
v2
D.NμmgL
离开弹簧后,应该做________运动,已知滑块A、B的质量分别为
图中可以看出闪光照片有明显与事
____________________________.
分开后,A的动量大小为________ kg·m/s,B的动量的大小为
小球脱离弹簧时小球和小车各自的速度大小;在整个过程中,小车移动的距离.。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
第2讲动量守恒定律及“三类模型”问题一、动量守恒定律1.内容如果一个系统不受外力,或者所受外力的矢量和为零,这个系统的总动量保持不变.2.表达式(1)p=p′,系统相互作用前总动量p等于相互作用后的总动量p′.(2)m1v1+m2v2=m1v1′+m2v2′,相互作用的两个物体组成的系统,作用前的动量和等于作用后的动量和.(3)Δp1=-Δp2,相互作用的两个物体动量的变化量等大反向.(4)Δp=0,系统总动量的增量为零.3.适用条件(1)理想守恒:不受外力或所受外力的合力为零.(2)近似守恒:系统内各物体间相互作用的内力远大于它所受到的外力.(3)某一方向守恒:如果系统在某一方向上所受外力的合力为零,则系统在这一方向上动量守恒.自测1关于系统动量守恒的条件,下列说法正确的是()A.只要系统内存在摩擦力,系统动量就不可能守恒B.只要系统中有一个物体具有加速度,系统动量就不守恒C.只要系统所受的合外力为零,系统动量就守恒D.系统中所有物体的加速度为零时,系统的总动量不一定守恒答案 C二、碰撞、反冲、爆炸1.碰撞(1)定义:相对运动的物体相遇时,在极短的时间内它们的运动状态发生显著变化,这个过程就可称为碰撞.(2)特点:作用时间极短,内力(相互碰撞力)远大于外力,总动量守恒.(3)碰撞分类①弹性碰撞:碰撞后系统的总动能没有损失.②非弹性碰撞:碰撞后系统的总动能有损失.③完全非弹性碰撞:碰撞后合为一体,机械能损失最大.2.反冲(1)定义:当物体的一部分以一定的速度离开物体时,剩余部分将获得一个反向冲量,这种现象叫反冲运动.(2)特点:系统内各物体间的相互作用的内力远大于系统受到的外力.实例:发射炮弹、爆竹爆炸、发射火箭等.(3)规律:遵从动量守恒定律.3.爆炸问题爆炸与碰撞类似,物体间的相互作用时间很短,作用力很大,且远大于系统所受的外力,所以系统动量守恒.自测2如图1所示,两滑块A、B在光滑水平面上沿同一直线相向运动,滑块A的质量为m,速度大小为2v0,方向向右,滑块B的质量为2m,速度大小为v0,方向向左,两滑块发生弹性碰撞后的运动状态是()图1A.A和B都向左运动B.A和B都向右运动C.A静止,B向右运动D.A向左运动,B向右运动答案 D解析以两滑块组成的系统为研究对象,两滑块碰撞过程动量守恒,由于初始状态系统的动量为零,所以碰撞后两滑块的动量之和也为零,所以A、B的运动方向相反或者两者都静止,而碰撞为弹性碰撞,碰撞后两滑块的速度不可能都为零,则A应该向左运动,B应该向右运动,选项D正确,A、B、C错误.命题点一动量守恒定律的理解和基本应用例1(多选)如图2所示,A、B两物体质量之比m A∶m B=3∶2,原来静止在平板小车C上,A、B间有一根被压缩的弹簧,地面光滑,当弹簧突然释放后,则()图2A.若A、B与平板车上表面间的动摩擦因数相同,A、B组成的系统的动量守恒B.若A、B与平板车上表面间的动摩擦因数相同,A、B、C组成的系统的动量守恒C.若A、B所受的摩擦力大小相等,A、B组成的系统的动量守恒D.若A、B所受的摩擦力大小相等,A、B、C组成的系统的动量守恒答案BCD解析如果A、B与平板车上表面的动摩擦因数相同,弹簧释放后,A、B分别相对小车向左、向右滑动,它们所受的滑动摩擦力F f A向右、F f B向左,由于m A∶m B=3∶2,所以F f A∶F f B =3∶2,则A、B组成的系统所受的外力之和不为零,故其动量不守恒,A选项错误;对A、B、C组成的系统,A、B与C间的摩擦力为内力,该系统所受的外力为竖直方向的重力和支持力,它们的合力为零,故该系统的动量守恒,与平板车间的动摩擦因数或摩擦力是否相等无关,故B、D选项正确;若A、B所受的摩擦力大小相等,则A、B组成的系统的外力之和为零,故其动量守恒,C选项正确.例2(2017·全国卷Ⅰ·14)将质量为1.00kg的模型火箭点火升空,50g燃烧的燃气以大小为600m/s的速度从火箭喷口在很短时间内喷出.在燃气喷出后的瞬间,火箭的动量大小为(喷出过程中重力和空气阻力可忽略)()A.30kg·m/sB.5.7×102 kg·m/sC.6.0×102kg·m/sD.6.3×102 kg·m/s答案 A解析设火箭的质量为m1,燃气的质量为m2.由题意可知,燃气的动量p2=m2v2=50×10-3×600kg·m/s=30 kg·m/s.以火箭运动的方向为正方向,根据动量守恒定律可得,0=m1v1-m2v2,则火箭的动量大小为p1=m1v1=m2v2=30kg·m/s,所以A正确,B、C、D错误.变式1 两磁铁各放在两辆小车上,小车能在水平面上无摩擦地沿同一直线运动.已知甲车和磁铁的总质量为0.5kg ,乙车和磁铁的总质量为1kg ,两磁铁的N 极相对.推动一下,使两车相向运动,某时刻甲的速率为2m /s ,乙的速率为3 m/s ,方向与甲相反,两车运动过程中始终未相碰.则: (1)两车最近时,乙的速度为多大? (2)甲车开始反向时,乙的速度为多大? 答案 (1)43m /s (2)2 m/s解析 (1)两车相距最近时,两车的速度相同,设该速度为v ,取刚开始运动时乙车的速度方向为正方向,由动量守恒定律得m 乙v 乙-m 甲v 甲=(m 甲+m 乙)v 所以两车最近时,乙车的速度为v =m 乙v 乙-m 甲v 甲m 甲+m 乙=1×3-0.5×20.5+1m/s =43m/s.(2)甲车开始反向时,其速度为0,设此时乙车的速度为v 乙′,取刚开始运动时乙车的速度方向为正方向,由动量守恒定律得 m 乙v 乙-m 甲v 甲=m 乙v 乙′ 解得v 乙′=2m/s命题点二 碰撞模型问题1.碰撞遵循的三条原则 (1)动量守恒定律 (2)机械能不增加E k1+E k2≥E k1′+E k2′或p 122m 1+p 222m 2≥p 1′22m 1+p 2′22m 2(3)速度要合理①同向碰撞:碰撞前,后面的物体速度大;碰撞后,前面的物体速度大(或相等). ②相向碰撞:碰撞后两物体的运动方向不可能都不改变. 2.弹性碰撞讨论 (1)碰后速度的求解 根据动量守恒和机械能守恒⎩⎪⎨⎪⎧m 1v 1+m 2v 2=m 1v 1′+m 2v 2′ ①12m 1v 12+12m 2v 22=12m 1v 1′2+12m 2v 2′2② 解得v 1′=(m 1-m 2)v 1+2m 2v 2m 1+m 2v 2′=(m 2-m 1)v 2+2m 1v 1m 1+m 2(2)分析讨论:当碰前物体2的速度不为零时,若m 1=m 2,则v 1′=v 2,v 2′=v 1,即两物体交换速度. 当碰前物体2的速度为零时,v 2=0,则: v 1′=(m 1-m 2)v 1m 1+m 2,v 2′=2m 1v 1m 1+m 2,①m 1=m 2时,v 1′=0,v 2′=v 1,碰撞后两物体交换速度. ②m 1>m 2时,v 1′>0,v 2′>0,碰撞后两物体沿同方向运动. ③m 1<m 2时,v 1′<0,v 2′>0,碰撞后质量小的物体被反弹回来.例3 (多选)两个小球A 、B 在光滑水平面上相向运动,已知它们的质量分别是m 1=4kg ,m 2=2kg ,A 的速度v 1=3m /s(设为正),B 的速度v 2=-3 m /s ,则它们发生正碰后,其速度可能分别是( ) A.均为1m /s B.+4 m/s 和-5m/s C.+2m /s 和-1 m/sD.-1m /s 和5 m/s答案 AD解析 由动量守恒,可验证四个选项都满足要求.再看动能情况E k =12m 1v 12+12m 2v 22=12×4×9J +12×2×9J =27JE k ′=12m 1v 1′2+12m 2v 2′2由于碰撞过程动能不可能增加,所以应有E k ≥E k ′,可排除选项B.选项C 虽满足E k ≥E k ′,但A 、B 沿同一直线相向运动,发生碰撞后各自仍能保持原来的速度方向(v A ′>0,v B ′<0),这显然是不符合实际的,因此C 错误.验证选项A 、D 均满足E k ≥E k ′,故答案为选项A(完全非弹性碰撞)和选项D(弹性碰撞).例4 (2016·全国卷Ⅲ·35(2))如图3所示,水平地面上有两个静止的小物块a 和b ,其连线与墙垂直;a 和b 相距l ,b 与墙之间也相距l ;a 的质量为m ,b 的质量为34m .两物块与地面间的动摩擦因数均相同.现使a 以初速度v 0向右滑动.此后a 与b 发生弹性碰撞,但b 没有与墙发生碰撞.重力加速度大小为g .求物块与地面间的动摩擦因数满足的条件.图3答案 32v 02113gl ≤μ<v 022gl解析 设物块与地面间的动摩擦因数为μ.若要物块a 、b 能够发生碰撞,应有12m v 02>μmgl ① 即μ<v 022gl②设在a 、b 发生弹性碰撞前的瞬间,a 的速度大小为v 1.由能量守恒定律得 12m v 02=12m v 12+μmgl③设在a 、b 碰撞后的瞬间,a 、b 的速度大小分别为v 1′、v 2′,以向右为正方向,由动量守恒和能量守恒有 m v 1=m v 1′+34m v 2′④ 12m v 12=12m v 1′2+12×34m v 2′2⑤联立④⑤式解得 v 2′=87v 1⑥由题意,b 没有与墙发生碰撞,由功能关系可知 12×34m v 2′2≤μ·3m 4gl ⑦联立③⑥⑦式,可得μ≥32v02113gl⑧联立②⑧式得,a与b发生弹性碰撞,但b没有与墙发生碰撞的条件为32v02 113gl≤μ<v022gl.变式2(2015·全国卷Ⅰ·35(2))如图4所示,在足够长的光滑水平面上,物体A、B、C位于同一直线上,A位于B、C之间.A的质量为m,B、C的质量都为M,三者均处于静止状态.现使A以某一速度向右运动,求m和M之间应满足什么条件,才能使A只与B、C各发生一次碰撞.设物体间的碰撞都是弹性的.图4答案 (5-2)M ≤m <M解析 设A 运动的初速度为v 0,A 向右运动与C 发生碰撞,以向右为正方向,由动量守恒定律得m v 0=m v 1+M v 2由机械能守恒定律得12m v 02=12m v 12+12M v 22可得v 1=m -M m +M v 0,v 2=2mm +Mv 0要使得A 与B 能发生碰撞,需要满足v 1<0,即m <M A 反向向左运动与B 发生碰撞过程,有 m v 1=m v 3+M v 4 12m v 12=12m v 32+12M v 42 整理可得v 3=m -M m +M v 1,v 4=2m m +Mv 1由于m <M ,所以A 还会向右运动,根据要求不发生第二次碰撞,需要满足v 3≤v 2 即2mm +M v 0≥M -m m +M v 1=(m -M m +M)2v 0 整理可得m 2+4Mm ≥M 2解方程可得m≥(5-2)M另一解m≤-(5+2)M舍去所以使A只与B、C各发生一次碰撞,须满足(5-2)M≤m<M拓展点1“滑块—弹簧”碰撞模型例5如图5所示,质量M=4kg的滑板B静止放在光滑水平面上,其右端固定一根水平轻质弹簧,弹簧的自由端C到滑板左端的距离L=0.5m,这段滑板与木块A(可视为质点)之间的动摩擦因数μ=0.2,而弹簧自由端C到弹簧固定端D所对应的滑板上表面光滑.木块A以速度v0=10m/s由滑板B左端开始沿滑板B上表面向右运动.已知木块A的质量m=1 kg,g取10 m/s2.求:图5(1)弹簧被压缩到最短时木块A的速度大小;(2)木块A压缩弹簧过程中弹簧的最大弹性势能.答案(1)2m/s(2)39J解析(1)弹簧被压缩到最短时,木块A与滑板B具有相同的速度,设为v,从木块A开始沿滑板B上表面向右运动至弹簧被压缩到最短的过程中,整体动量守恒,以向右为正方向,则m v0=(M+m)v解得v=mM+mv0代入数据得木块A的速度v=2m/s(2)在木块A压缩弹簧过程中,弹簧被压缩到最短时,弹簧的弹性势能最大,由能量关系知,最大弹性势能为E pm=12m v02-12(m+M)v2-μmgL代入数据得E pm=39J.拓展点2“滑块—平板”碰撞模型例6如图6所示,质量m1=0.3kg的小车静止在光滑的水平面上,车长L=1.5m,现有质量m2=0.2kg可视为质点的物块,以水平向右的速度v0=2m/s从左端滑上小车,最后在车面上某处与小车保持相对静止.物块与车面间的动摩擦因数μ=0.5,取g=10 m/s2,求:图6(1)物块与小车共同速度大小; (2)物块在车面上滑行的时间t ; (3)小车运动的位移大小x ;(4)要使物块不从小车右端滑出,物块滑上小车左端的速度v 0′不超过多少?答案 (1)0.8m /s (2)0.24 s (3)0.096 m (4)5 m/s解析 (1)设物块与小车共同速度为v ,以水平向右为正方向,根据动量守恒定律:m 2v 0=(m 1+m 2)v 解得v =0.8m/s(2)设物块与车面间的滑动摩擦力为F f ,对物块应用动量定理: -F f t =m 2v -m 2v 0 又F f =μm 2g 解得:t =v 0-vμg代入数据得t =0.24s(3)对小车应用动能定理:μm 2gx =12m 1v 2解得x =0.096m(4)要使物块恰好不从小车右端滑出,须使物块运动到小车右端时与小车有共同的速度,设其为v ′,以水平向右为正方向,则:m2v0′=(m1+m2)v′由系统能量守恒有:12=12(m1+m2)v′2+μm2gL2m2v0′代入数据解得v0′=5m/s故要使物块不从小车右端滑出,物块滑上小车左端的速度v0′不超过5m/s.拓展点3“滑块—斜面”碰撞模型例7(2016·全国卷Ⅱ·35(2))如图7所示,光滑冰面上静止放置一表面光滑的斜面体,斜面体右侧一蹲在滑板上的小孩和其面前的冰块均静止于冰面上.某时刻小孩将冰块以相对冰面3m/s的速度向斜面体推出,冰块平滑地滑上斜面体,在斜面体上上升的最大高度为h=0.3 m(h小于斜面体的高度).已知小孩与滑板的总质量为m1=30 kg,冰块的质量为m2=10 kg,小孩与滑板始终无相对运动.取重力加速度的大小g=10 m/s2.图7(1)求斜面体的质量;(2)通过计算判断,冰块与斜面体分离后能否追上小孩?答案(1)20kg(2)不能,理由见解析解析(1)规定向左为速度正方向.冰块在斜面体上上升到最大高度时两者达到共同速度,设此共同速度为v,斜面体的质量为m3.由水平方向动量守恒和机械能守恒定律得m2v0=(m2+m3)v ①12=12(m2+m3)v2+m2gh ②2m2v0式中v0=3m/s为冰块推出时的速度.联立①②式并代入题给数据得m3=20kg ③(2)设小孩推出冰块后的速度为v1,由动量守恒定律有m1v1+m2v0=0 ④代入数据得v1=-1m/s ⑤设冰块与斜面体分离后的速度分别为v2和v3,由动量守恒和机械能守恒定律有m2v0=m2v2+m3v3 ⑥12=12m2v22+12m3v32⑦2m2v0联立③⑥⑦式并代入数据得v 2=-1m/s⑧由于冰块与斜面体分离后的速度与小孩推出冰块后的速度相同且处在后方,故冰块不能追上小孩.命题点三 “人船模型”问题1.特点⎩⎪⎨⎪⎧(1)两个物体(2)动量守恒(3)总动量为零2.方程m 1v 1-m 2v 2=0(v 1、v 2为速度大小) 3.结论m 1x 1=m 2x 2(x 1、x 2为位移大小)例8长为L、质量为M的小船停在静水中,一个质量为m的人立在船头,若不计水的阻力和空气阻力,当人从船头走到船尾的过程中,船和人对地面的位移各是多少?答案见解析解析选人和船组成的系统为研究对象,因系统在水平方向不受力,所以动量守恒,人未走时系统的总动量为零.当人起步加速前进时,船同时加速后退;当人匀速前进时,船匀速后退;当人减速前进时,船减速后退;当人速度为零时,船速度也为零.设某时刻人对地的速率为v 1,船对地的速率为v 2,以人运动的方向为正方向,根据动量守恒定律得 m v 1-M v 2=0①因为在人从船头走到船尾的整个过程中时刻满足动量守恒,对①式两边同乘以Δt ,得 mx 1-Mx 2=0②②式为人对地的位移和船对地的位移关系.由图还可看出: x 1+x 2=L③联立②③两式得x 1=M M +m L ,x 2=mM +mL变式3如图8所示,质量为M的气球下挂着长为L的绳梯,一质量为m的人站在绳梯的下端,人和气球静止在空中,人从绳梯的下端往上爬到顶端时,人和气球相对于地面移动的距离分别是多少?(不计空气阻力)图8答案见解析解析由于人和气球组成的系统静止在空中,竖直方向系统所受外力之和为零即系统竖直方向总动量守恒.设某时刻人对地的速率为v1,气球对地的速率为v2,以人运动的方向为正方向,根据动量守恒定律得m v1-M v2=0 ①因为在人从绳梯的下端爬到顶端的整个过程中时刻满足动量守恒定律,对①式两边同乘以Δt,可得mx=My ②由题意知x+y=L ③联立②③得x=Mm+MLy=mm+ML即人相对于地面移动的距离是MM+mL.气球相对于地面移动的距离是mM+mL.命题点四“子弹打木块”模型问题1.木块放在光滑水平面上,子弹水平打进木块,系统所受的合外力为零,因此动量守恒.2.两者发生的相对位移为子弹射入的深度x相.3.根据能量守恒定律,系统损失的动能等于系统增加的内能.4.系统产生的内能Q=F f·x相,即两物体由于相对运动而摩擦产生的热(机械能转化为内能),等于摩擦力大小与两物体相对滑动的路程的乘积.5.当子弹速度很大时,可能射穿木块,这时末状态子弹和木块的速度大小不再相等,但穿透过程中系统的动量仍守恒,系统损失的动能为ΔE k=F f·L(L为木块的长度).例9 一质量为M 的木块放在光滑的水平面上,一质量为m 的子弹以初速度v 0水平打进木块并留在其中,设子弹与木块之间的相互作用力为F f .则:(1)子弹、木块相对静止时的速度是多少? (2)子弹在木块内运动的时间为多长?(3)子弹、木块相互作用过程中子弹、木块发生的位移以及子弹打进木块的深度分别是多少? (4)系统损失的机械能、系统增加的内能分别是多少? (5)要使子弹不射出木块,木块至少多长? 答案 (1)m M +m v 0 (2)Mm v 0F f (M +m )(3)Mm (M +2m )v 022F f (M +m )2 Mm 2v 022F f (M +m )2 Mm v 022F f (M +m )(4)Mm v 022(M +m ) Mm v 022(M +m ) (5)Mm v 022F f (M +m )解析 (1)设子弹、木块相对静止时的速度为v ,以子弹初速度的方向为正方向,由动量守恒定律得 m v 0=(M +m )v 解得v =mM +mv 0(2)设子弹在木块内运动的时间为t ,由动量定理得 对木块:F f t =M v -0 解得t =Mm v 0F f (M +m )(3)设子弹、木块发生的位移分别为x 1、x 2,如图所示,由动能定理得 对子弹:-F f x 1=12m v 2-12m v 02解得:x 1=Mm (M +2m )v 022F f (M +m )2对木块:F f x 2=12M v 2解得:x 2=Mm 2v 022F f (M +m )2子弹打进木块的深度等于相对位移,即x 相=x 1-x 2=Mm v 022F f (M +m )(4)系统损失的机械能为E 损=12m v 02-12(M +m )v 2=Mm v 022(M +m )系统增加的内能为Q =F f ·x 相=Mm v 022(M +m )系统增加的内能等于系统损失的机械能 (5)假设子弹恰好不射出木块,此时有 F f L =12m v 02-12(M +m )v 2解得L =Mm v 022F f (M +m )因此木块的长度至少为Mm v 022F f (M +m ).变式4(2018·青海平安模拟)如图9所示,质量为高三物理一轮复习31 2m 、长为L 的木块置于光滑水平面上,质量为m 的子弹以初速度v 0水平向右射向木块,穿过木块的过程中受到木块的恒定阻力为F f =5m v 0216L,试问子弹能否穿过木块?若能穿过,求出子弹穿过木块后两者的速度;若不能穿过,求出子弹打入木块后两者的速度.图9答案 见解析解析 设子弹能穿过木块,穿过木块后子弹的速度为v 1,木块的速度为v 2,以子弹初速度的方向为正方向,根据动量守恒定律得m v 0=m v 1+2m v 2① 根据能量守恒定律得5m v 0216L L =12m v 02-12m v 12-12×2m v 22 ②由①②式解得v 1=v 02或v 1=v 06将v 1=v 06代入①式,得v 2=512v 0>v 1(舍去) 将v 1=v 02代入①式,得v 2=14v 0<v 1 所以假设成立,即子弹能穿过木块,穿过木块后的速度为12v 0,木块的速度为14v 0.。