9年级数学月考考试

合集下载

山东省青岛市2023--2024学年九年级上学期月考质检数学试题

山东省青岛市2023--2024学年九年级上学期月考质检数学试题

2023—2024 年山东省青岛市九年级月考质检数学试题2023.9(考试时间:120 分钟满分:150 分)说明:1.本试卷分为第I 卷和第II 卷两部分,共26 题. 第I 卷为选择题,共10 小题,40 分;第II 卷为填空题、作图题、解答题,共16 题,90 分。

2.所有题目均在答.题.卡.上作答,在试题上作答无效。

第I 卷(共40 分)一、选择题:(本大题共10 个小题,每小题4 分,共40 分.在每小题给出的四个选项中,只有一项是符合题目要求的)1.下列四个几何体中,从上面看是三角形的是A B C D2.下列图形既是轴对称图形又是中心对称图形的是A B C D3.如图的数轴上,点B 与点C 关于点A 对称,A 、B 两点对应的实数是 3 和-1,则点C 所对应的实数是A.13 B.2 3.3 1 D.3+14.下列计算正确的是A.5a2 - 4a2 =1 B.a7 ÷a4 =a3 C.(a3 )2 =a5 D.a2 ⋅a3 =a65.华为麒麟990 芯片采用了最新的0.000000007 米的工艺制程,数0.000000007 用科学记数法表示A.7⨯10-9 B.7⨯10-8 C.0.7 ⨯10-9 D.0.7 ⨯10-86.如图,直角三角板的直角顶点放在直线 b 上,且 a / /b , ∠1 = 55︒ ,则 ∠2 的度数为A . 35︒B . 45︒C . 55︒D . 25︒第 6 题 第 7 题7.如图,线段 AB 与线段 CD 关于点 P 对称,若点 A (3, 3) 、 B (5,1) 、 D (-3, -1) ,则点 C 的坐标为 A . (-3, -3) B . (-1, -3) C . (-4, -2) D . (-2, -4) 8.以下为真命题的是A .一组对边相等,另一组对边平行的四边形是平行四边形B .对角线相等的四边形是矩形C .对角线互相垂直且相等的四边形是正方形D .有一条对角线平分一个内角的平行四边形为菱形.9.如图,在 Rt ∆ABC 中, ∠BAC = 90︒ 且 AB = 3 , AC = 4 ,点 D 是斜边 BC 上的一个动点,过点 D 分别作 DM ⊥ AB 于点 M , DN ⊥ AC 于点 N ,连接 MN ,则线段 MN 的最小值为A .125B .52C .3D .4第 9 题 第 10 题10.如图,等边三角形 OAD 的顶点 A (2, 0) ,延长 OD 至点 C ,使 CD = AD ,以 AD , CD 为邻边作 菱形 ABCD ;延长 CB 交 x 轴于点 A 1 ,延长 DC 至点 C 1 ,使 CC 1 = CA 1 ,以 A 1C , CC 1 为邻边作菱形 A 1 B 1C 1C ;以此类推,依次得到菱形 A 2 B 2C 2C 1 ,菱形 A 3 B 3C 3C 2 ⋯ 菱形 A n B n C n C n -1 .则菱形 A n B n C n C n -1 的面积为A . 22 n -1 ⨯B . 22 n ⨯C . 22 n +1D . 22 n + 2 ⨯第II 卷(共110分)二、填空题:(本大题共6 个小题,每小题5 分,共30 分)11.因式分解:(x -y)2 + 2 y(x -y) =.12.如图所示,在一边靠墙(墙足够长)的空地上,修建一个面积为640m2 的矩形临时仓库,仓库一边靠墙,另三边用总长为80m 的栅栏围成,若设栅栏BC 的长为x m ,依据题意可列方程.13.对某校九年级随机抽取若干名学生进行体能测试,成绩记为1 分,2 分,3 分,4 分共4 个等级,将调查结果绘制成如下条形统计图(图1) 和扇形统计图(图2) .根据图中信息,这些学生的平均分数是分.14.学校提倡“低碳环保,绿色出行”,小明和小亮分别选择步行和骑自行车上学,两人各自从家同时同向出发,沿同一条路匀速前进.如图所示,l1 和l2分别表示两人到小亮家的距离s(km) 和时间t(h) 的关系,则出发h 后两人相遇.15.如图,将 A BCD 沿 EF 对折,使点 A 落在点 C 处,若 ∠A = 60︒ , AD = 4 , AB = 6 ,则 AE 的 长为.16.定义:在平面直角坐标系中,对于点 P ( x 1 , y 1 ) ,当点 Q ( x 2 , y 2 ) 满足 2( x 1 + x 2 ) = y 1 + y 2 时,称 点 Q ( x 2 , y 2 ) 是点 P ( x 1 , y 1 ) 的“倍增点”.已知点 P 1 (1, 0) ,则正确的结论有 .(填 写序号)①点 Q 1 (3, 8) , Q 2 (-2, -2) 都是点 P 1 的“倍增点”;②若直线 y = x + 2 上的点 A 是点 P 1 的“倍增点”,则点 A 的坐标为 (2,4) ;③抛物线 y = x 2 - 2x - 3 上存在两个点是点 P 1 的“倍增点”;④若点 B 是点 P 1 的“倍增点”,则 P 1 B 的最小值是455;三、解答题:(本大题共 10 个小题,共 80 分.解答应写出文字说明、证明过程或演算步骤.) 17.(本小题满分 6 分)已知: ∠ABC , D 为 BA 边上的一点.求作:点 P ,使 DP / / BC ,且点 P 到 BA , BC 的距离相等.(用直尺、圆规作图,不写作法,但要保留作图痕迹)解不等式组:253(2)13212x xxx+≤+⎧⎪⎨+-<⎪⎩,并指出它的所有非负整数解.19.(本小题满分8 分)化简:22211()a aaa a a---÷+,再从-1,0,1,2 中选一个合适的数代入求值.20.(本小题满分10 分)(1)解一元二次方程:x2 - 2x - 8 = 0(2)已知一元二次方程x2 -ax +1= 0 的两实数根相等,求a 的值21.(本小题满分10 分)为了解某校九年级全体男生体能情况,随机抽取了部分男生进行测试,将测试成绩分为A 、B 、C 、D 四个等级,并把成绩绘制成如图所示的两个统计图表,其中“75<x < 90 ”这组的数据如下:76,78,80,82,82,84,85,85,85,86,86,89.测试成绩统计表(1)填空:m = ,n = ;(2)B 等级成绩中的众数是,中位数是;(3)求扇形统计图中C 级的圆心角度数;(4)若该校九年级共有男生360 人,根据抽样结果,估计体育测试成绩达到B 级及以上(包括B 级)的男生人数.如图,在平面直角坐标系中,点O 为坐标原点,AB / /OC ,点B ,C 的坐标分别为(15,8) ,(21,0) ,动点M 从点A 沿A →B 以每秒1 个单位的速度运动;动点N 从点C 沿C →O 以每秒2 个单位的速度运动.M ,N 同时出发,当一个点到达终点后另一个点继续运动,直至到达终点,设运动时间为t 秒.(1)在t =3时,M 点坐标,N 点坐标.(2)当t 为何值时,四边形OAMN 是矩形?23.(本小题满分12 分)某社区拟建A ,B 两类摊位以搞活“地摊经济”,每个A 类摊位的占地面积比每个B 类摊位的占地面积多2 平方米.建A 类摊位每平方米的费用为20 元,建B 类摊位每平方米的费用为40 元.用150 平方米建A 类摊位的个数恰好是用120 平方米建B 类摊位个数的34.(1)求每个A ,B 类摊位占地面积各为多少平方米?(2)该社区拟建A ,B 两类摊位共100 个,且B 类摊位的数量不少于A 类摊位数量的3 倍.建造多少个A 类摊位,多少个B 类摊位,才能使费用最少?并求出建造这100 个摊位的最少费用.如图,平行四边形ABCD 的对角线AC 、BD 交于点O ,E 为OC 中点,过点C 作CF / /BD 交BE 的延长线于F ,连接DF .(1)求证:∆FCE ≅∆BOE ;(2)若AD =CD ,当∆ADC 满足什么条件时,四边形OCFD 为正方形?请说明理由.25.(本小题满分12 分)青岛某学校的学生进行综合实践活动时,探究每盆植株培育株数与市场销售价格之间的关系,通过实验和市场调查发现,每盆植株在5 株以内(含5 株),植株的品质较高,单株售价3 元,超过5 株后,每盆每多种1 株,单株售价降低0.3 元,当每盆种植株株数超过12 株后,植株品质较低,市场统一收购价单株0.8 元,每盆最多可种植18 株.(1)设每盆种植x(5<x≤12) 株,①则单株售价元,每盆售价元(用含x 的代数式表示);②当每盆售价为16.2 元时,求x 的值.(2)该学生实验小组共种植了40 盆,每盆培育所需费用y(元) 与每盆种植株数x (株) 之间满足y = 2 + 0.3x ,每盆植株除培育费用外无其他支出.该小组将其中10 盆赠送给学校,其余放至市场出售,全部售出后销售所得扣除培育费用后还剩余100 元,求每盆的种植株数.【模型定义】如图1,点M ,N 把线段AB 分割成AM ,MN 和BN ,若以AM ,MN ,BN 为边的三角形是一个直角三角形,则称点M ,N 是线段AB 的勾股分割点.【探究应用】①已知点M ,N 是线段AB 的勾股分割点,若AM =2 ,MN =3 ,则BN = ;②如图2,在∆ABC 中,FG 是中位线,点D ,E 是线段BC 的勾股分割点,且EC >DE BD ,连接AD ,AE 分别交FG 于点M ,N ,求证:点M ,N 是线段FG 的勾股分割点;【问题解决】如图3,已知点M ,N 是线段AB 的勾股分割点,MN >AM BN ,四边形AMDC ,四边形MNFE和四边形NBHG 均是正方形,点P 在边EF 上,试探究S∆ACN ,S∆APB,S∆MBH的数量关系.。

北京市海淀区2023-2024学年上学期九年级9月月考数学试卷(含解析)

北京市海淀区2023-2024学年上学期九年级9月月考数学试卷(含解析)

2023-2024学年北京市海淀区九年级(上)月考数学试卷(9月份)一、选择题(本大题共8小题,共16.0分。

在每小题列出的选项中,选出符合题目的一项)1.下列四个图形中,为中心对称图形的是( )A. B. C. D.2.一元二次方程2x2+x−5=0的二次项系数、一次项系数、常数项分别是( )A. 2,1,5B. 2,1,−5C. 2,0,−5D. 2,0,53.把抛物线y=x2向上平移3个单位,得到的抛物线是( )A. y=(x−3)2B. y=(x+3)2C. y=x2−3D. y=x2+34.在平面直角坐标系xOy中,点A(2,3)关于原点对称的点的坐标是( )A. (2,−3)B. (−2,3)C. (3,2)D. (−2,−3)5.在平面直角坐标系xOy中,下列函数的图象经过点(0,0)的是( )A. y=x+1B. y=x2C. y=(x−4)2D. y=1x6.用配方法解方程x2+4x=1,变形后结果正确的是( )A. (x−2)2=2B. (x+2)2=2C. (x−2)2=5D. (x+2)2=57.把长为2m的绳子分成两段,使较长一段的长的平方等于较短一段的长与原绳长的积.设较长一段的长为x m,依题意,可列方程为( )A. x2=2(2−x)B. x2=2(2+x)C. (2−x)2=2xD. x2=2−x8.如图,二次函数y=ax2+bx+c(a≠0)的图象经过点A,B,C.现有下面四个推断:①抛物线开口向下;②当x=−2时,y取最大值;③当m<4时,关于x的一元二次方程ax2+bx+c=m必有两个不相等的实数根;④直线y=kx+c(k≠0)经过点A,C,当kx+c>ax2+bx+c时,x的取值范围是−4<x<0;其中推断正确的是( )A. ①②B. ①③C. ①③④D. ②③④二、填空题(本大题共8小题,共24.0分)9.抛物线y=−3(x−1)2+2的顶点坐标是.10.请写出一个开口向上,并且与y轴交于点(0,−2)的抛物线解析式______.11.若点A(−1,y1),B(2,y2)在抛物线.y=2x2上,则y1,y2的大小关系为:y1______y2.(选填“>”“<或“=”)12.若关于x的方程x2−2x+k=0有两个不相等的实数根,则k的取值范围为.13.如图,在平面直角坐标系xOy中,点A(−2,0),点B(0,1).将线段BA绕点B旋转180°得到线段BC,则点C的坐标为.14.如图,将△ABC绕点A顺时针旋转30°得到△ADE,点B的对应点D恰好落在边BC上,则∠ADE=______.15.如图,在边长为2的正方形ABCD中,E,F分别是边DC,CB上的动点,且始终满足DE=CF,AE,DF交于点P,则∠APD的度数为;连接CP,线段CP的最小值为.16.野兔跳跃时的空中运动路线可以看作是抛物线的一部分.建立如图所示的平面直角坐标系,通过对某只野兔一次跳跃中水平距离x(单位:m)与竖直高度y(单位:m)进行的测量,得到以下数据:水平距离x/m00.41 1.42 2.4 2.8竖直高度y/m00.480.90.980.80.480根据上述数据,回答下列问题:①野兔本次跳跃的最远水平距离为______ m,最大竖直高度为______ m;②已知野兔在高速奔跑时,某次跳跃最远水平距离为3m,最大竖直高度为1m.若在野兔起跳点前方2m处有高为0.8m的篱笆,则野兔此次跳跃______ (填“能”或“不能”)跃过篱笆.三、解答题(本大题共10小题,共60.0分。

24-25九年级数学第一次月考卷(考试版A4)【人教版九年级上册第二十一章~第二十二章】(贵州专用)

24-25九年级数学第一次月考卷(考试版A4)【人教版九年级上册第二十一章~第二十二章】(贵州专用)

2024-2025学年九年级数学上学期第一次月考卷(贵州专用)(考试时间:120分钟试卷满分:150分)注意事项:1.答卷前,考生务必将自己的姓名、准考证号填写在答题卡上。

2.回答选择题时,选出每小题答案后,用铅笔把答题卡上对应题目的答案标号涂黑。

如需改动,用橡皮擦干净后,再选涂其他答案标号。

回答非选择题时,将答案写在答题卡上。

写在本试卷上无效。

3.考试结束后,将本试卷和答题卡一并交回。

4.测试范围:人教版九年级上册第二十一章~第二十二章。

5.难度系数:0.8。

第一部分(选择题共36分)一、选择题:本题共12小题,每小题3分,共36分。

在每小题给出的四个选项中,只有一项是符合题目要求的。

1.若关于x的方程(m﹣2)x2+mx﹣1=0是一元二次方程,则m的取值范围是( )A.m≠2B.m=2C.m≥2D.m≠02.将抛物线y=x2+2x﹣1向右平移3个单位后得到新抛物线的顶点坐标为( )A.(﹣4,﹣1)B.(﹣4)C.(2,1)D.(2,﹣2)3.若一元二次方程ax2+bx+c=0(a≠0)的一个根是x=1,则a+b+c的值是( )A.0B.﹣1C.1D.不能确定4.延时课上,4个同学以接龙的方式解一元二次方程,每人负责完成一个步骤,如图所示,其中有一位同学所负责的步骤是错误的,则这位同学是( )A.小张B.小王C.小李D.小赵5.关于x的一元二次方程x2+bx﹣8=0的根的情况,下列判断正确的是( )A.只有一个实数根B.没有实数根C.有两个相等的实数根D.有两个不相等的实数根6.已知a,b,c为实数,且b+c=5﹣4a+3a2,c﹣b=1﹣2a+a2,则a,b,c之间的大小关系是( )A.a<b≤c B.b<a≤c C.b≤c<a D.c<a≤b7.新能源汽车销量的快速增长,促进了汽车企业持续的研发投入和技术创新.某上市公司今年1月份一品牌的新能源车单台的生产成本是13万元,由于技术改进和产能增长,生产成本逐月下降,3月份的生产成本为12.8万元.假设该公司今年一季度每个月生产成本的下降率都相同,设每个月生产成本的下降率为x,则根据题意所列方程正确的是( )A.13(1﹣x)2=12.8B.13(1﹣x2)=12.8C.12.8(1﹣x2)=13D.13(1+x)2=12.88.一次函数y=ax+b与二次函数y=ax2+bx在同一坐标系中的图象大致为( )A.B.C.D.9.已知抛物线y=ax2﹣2ax+b(a<0)的图象上三个点的坐标分别为A(3,y1),,C,则y1,y2,y3的大小关系为( )A.y3<y1<y2B.y2<y1<y3C.y1<y3<y2D.y1<y2<y310.点A(a,b1),B(a+2,b2)在函数y=﹣x2+2x+3的图象上,当a≤x≤a+2时,函数的最大值为4,最小值为b1,则a的取值范围是( )A.0≤a≤2B.﹣1≤a≤2C.﹣1≤a≤1D.﹣1≤a≤011.已知二次函数y=ax2+bx+c(a≠0)的图象如图所示,有下列4个结论:①abc>0;②b<a+c;③4a+2b+c >0;④b2﹣4ac>0;其中正确的结论有( )A.1个B.2个C.3个D.4个12.如图所示,在菱形ABCD中,AB=6,∠BAD=120°,△AEF为正三角形,点E、F分别在菱形的边BC.CD上滑动,且E、F不与B.C、D重合.当点E、F在BC、CD上滑动时,△CEF的面积最大值是( )A.4B.C.3D.第二部分(非选择题共114分)二、填空题:本题共4小题,每小题4分,共16分。

2024-2025学年安徽省阜阳市九年级上学期月考数学试题

2024-2025学年安徽省阜阳市九年级上学期月考数学试题

2024-2025学年安徽省阜阳市九年级上学期月考数学试题1.下列函数一定是二次函数的是()A.B.C.D.2.方程的二次项系数、一次项系数、常数项分别为()A.4、、B.4、2、C.4、、1D.4、2、13.若二次函数的图象经过点,则该图象必经过点()A.B.C.D.4.关于x的一元二次方程的根的情况是()A.实数根的个数由b的值确定B.有两个不相等的实数根C.有两个相等的实数根D.没有实数根5.下列关于二次函数的图象说法中,错误的是()A.它的对称轴是直线B.它的图象有最低点C.它的顶点坐标是D.在对称轴的左侧,y随着x的增大而增大6.若m、n是关于x的方程的两个根,则的值为()A.4B.C.D.7.一抛物线的形状、开口方向与抛物线相同,顶点为,则此抛物线的解析式为()A.B.C.D.8.《九章算术》中有这样一道题:“今有二人同所立.甲行率六,乙行率四.乙东行,甲南行十步而邪东北与乙会.问:甲、乙行各几何?”大意是说:已知甲、乙二人同时从同一地点出发,甲的速度为6,乙的速度为4.乙一直向东走,甲先向南走10步,后又斜向北偏东方向走了一段后与乙相遇.那么相遇时,甲走了多少步()A.24B.30C.32D.369.某校从本学期开始实施劳动教育,在学校靠墙(墙长22米)的一块空地上,开辟出一块矩形菜地,如图所示,矩形菜地的另外三边用一根长49米的绳子围成,并留1米宽的门,若想开辟成面积为300平方米的菜地,则菜地垂直于墙的一边的长为()A.10米B.12米C.15米D.不存在10.函数和()在同一平面直角坐标系中的图象可能是()A.B.C.D.11.二次函数的顶点坐标是______.12.由于制药技术的提高,某种疫苗的成本下降了很多,因此医院对该疫苗进行了两次降价,设平均降价率为x,已知该疫苗的原价为462元,降价后的价格为y元,则y与x之间的函数关系式为______.13.已知关于x的一元二次方程,其中a、b、c分别为三边的长,如果方程有两个相等的实数根,则的形状为______.14.抛物线的图象交y轴于点A,点A关于x轴的对称点为点B.(1)点B坐标为______;(2)点,,且线段CD与抛物线恰有一个公共点,则m的取值范是______.15.解方程:16.直线与抛物线交于点.(1)求a和n的值;(2)对于二次函数,当y随x的增大而增大时,求自变量x的取值范围.17.已知关于x的一元二次方程.(1)判断方程根的情况;(2)设,是方程的两个根,求的值.18.如图,将一些小圆按规律摆放:(1)第个图形有个小圆,第个图形有个小圆(用含的代数式表);(2)能用个小圆摆成这样的图形吗?如果能,请求出摆成的是第几个图形;如果不能,请说明理由.19.如图,在中,,,点M从点A开始沿AC以的速度向点C运动(到点C时停止),过点M作,交BC与点N,并设点M的运动时间为t s.(1)当t为何值时,的面积为?(2)若,求t的值.20.如图,抛物线与y轴交于点A,过点A作与x轴平行的直线,交抛物线相交于点B、C(点B在点C的左面),若,求m的值.21.已知二次函数.(1)求证:不论n取何值时,抛物线的顶点始终在一条直线上.(2)若点,都在二次函数图象上,求证:.22.某商店销售一款成本价为40元的洗发水,如果每瓶按60元销售,每天可卖20瓶.该商店通过调查发现,每瓶洗发水售价每降低1元,日销售量增加2瓶.(1)如果该商店想保持日利润不变,且尽快销售完这批洗发水,每瓶售价应定为多少元?(2)同城另一家商店也销售同款洗发水,标价为每瓶62.5元.为促进销售,提高利润,这家商品决定实行打折促销,且其销售价格不低于(1)中的售价且不高于60元,则洗发水至少需打几折?23.如图,抛物线与x轴相交于B,C两点(点B在点C的左边),与y轴相交于点A,直线AC的函数解析式为.(1)求点A,C的坐标;(2)求抛物线的解析式;(3)在直线AC上方的抛物线上有一点M,求四边形ABCM面积的最大值及此时点M的坐标.。

重庆市育才中学教育集团2024-2025学年九年级上学期9月月考数学试题

重庆市育才中学教育集团2024-2025学年九年级上学期9月月考数学试题

重庆市育才中学教育集团2024-2025学年九年级上学期9月月考数学试题一、单选题1.下面这四个图形中,不是轴对称图形的是( )A .B .C .D . 2.要使分式12x x +-有意义,则x 的取值应满足( ) A .1x ≠-且2x ≠ B .0x ≠ C .1x ≠- D .2x ≠3.一元二次方程2312x x +=的根的情况是( )A .有两个不相等的实数根B .有两个相等的实数根C .无实数根D .无法判断4.甲流病毒是一种传染性极强的急性呼吸道传染病,感染者的临床以发热、乏力、干咳为主要表现.在“甲流”初期,若有一人感染了“甲流”,若得不到有效控制,则每轮传染平均一个人传染x 人,经过两轮传染后共有256人感染了“甲流”.则关于x 的方程为( ) A .(1)256x x x ++=B .2256x x +=C .1(1)256x x x +++=D .2(1)(1)256x x +++=5.根据下列表格的对应值,估计方程2430x x +-=的一个解的范围是( )A .0.40.5x <<B .0.50.6x <<C .0.60.7x <<D .0.70.8x << 6.下列命题中,错误的命题是( )A .一组对边平行且相等的四边形是平行四边形;B .两条对角线互相垂直且相等的四边形是正方形;C .对角线相等的平行四边形是矩形;D .对角线互相垂直的平行四边形是菱形. 7.2024年3月24日,长安汽车重庆马拉松在美丽的海棠烟雨公园鸣枪起跑.甲、乙两人参加了40千米的比赛,甲每小时比乙多跑了2千米,最终甲比乙早1小时到达.设乙的速度为每小时x 千米,则可列方程为( )A .404012x x =+-B .404012x x =--C .404012x x =++D .404012x x =-+ 8.函数2(0)y mx nx m =+≠与y mx n =+的图象可能是( )A .B .C .D .9.已知四边形ABCD 和DEFG 都是正方形,点F 在线段AB 上,连接,AE BD BD 、交FG 于点H .若AEF α∠=,则BHF ∠=( )A .2αB .45α︒+C .22.5α︒+D .90α︒+10.将有序实数对(),m n 进行操作后可得到一个新的有序实数对(),m n m n ---,将得到的新的有序实数对按上述规则继续操作下去,每得到一个新的有序实数对称为一次操作.例如:()2,1经过一次操作后得到()1,3-,()2,1经过二次操作后得到()4,2,…,下列说法: ①若(),5m 经过三次操作后得到有序实数对(),5x ,则25x =-;②在平面直角坐标系中,将()m,2所对应的点标记为点P ,将()m ,2经过二次操作、五次操作所得的有序实数对分别标记为点M ,点N ,若直线MN 垂直于x 轴,则PMN V 的面积为56;③若3x y +=,2xy =-且x y <,则()22,x y 经过三次操作后的结果为()26--. 其中正确的个数是( )A .0B .1C .2D .3二、填空题11.计算:)201222-⎛⎫+-+-π= ⎪⎝⎭. 12.某商品原价200元,连续两次降价后售价为128元,则平均每次降价的百分数为. 13.已知一个多边形的每一个外角都等于72︒,则这个多边形的边数是.14.已知四边形ABCD 是菱形,若(0,0),(3,1)A C ,则直线BD 与x 轴的交点的坐标为. 15.如图所示,抛物线形拱桥的顶点距水面2m 时,测得拱桥内水面宽为12m .当水面升高1m 后,拱桥内水面的宽度为m .16.若二次函数()2142y a x x =+--的图象与x 轴有两个公共点,且关于y 的不等式组2423210y a y -⎧<⎪⎨⎪--≤⎩至少有两个整数解,则符合条件的所有整数a 的和为. 17.如图,在矩形ABCD中,4,AB BC ==P 是BC 边上一点,连接AP ,以A 为中心,将线段AP 绕点A 逆时针旋转60︒得到AQ ,连接CQ DQ 、,且BCQ DCQ ∠=∠,则CQ 的长度为.18.一个各数位上的数字均不为0的四位自然数abcd ,若百位数字与十位数字的乘积等于千位数字与个位数字组成的两位数,即b c ad ⋅=,则称这个数为“功能数”例如:四位数1342,∵3412⨯=,∴1342是“功能数”.若349d 是一个“功能数”,则这个数为;对于一个“功能数”P ,将P 的千位数字和十位数字交换位置,百位数字和个位数字交换位置得到的新数记为P ',若4P P '+除以13的余数为P 的十位数字的2倍,则满足条件的P 的值为.三、解答题19.计算:(1)()()22x x y x y -++; (2)22111a a a a -⎛⎫+÷ ⎪+⎝⎭. 20.为了解学生的安全知识掌握情况,某校举办了安全知识竞赛.现从七、八年级的学生中各随机抽取20名学生的竞赛成绩(百分制)进行收集、整理、描述、分析.所有学生的成绩均高于60分(成绩得分用x 表示,共分成四组:A .6070x <≤;B .7080x <≤;C .8090x <≤;D .90100x <≤),下面给出了部分信息:七年级20名学生的竞赛成绩为:66,67,68,68,75,83,84,86,86,86,86,87,87,89,95,95,96,98,98,100.八年级20名学生的竞赛成绩在C 组的数据是:81,82,84,87,88,89.七、八年级所抽学生的竞赛成绩统计表根据以上信息,解答下列问题:(1)上述图表中a =______,b =______,m =______;(2)根据以上数据分析,你认为该校七、八年级中哪个年级学生的安全知识竞赛成绩较好?请说明理由(写出一条理由即可);(3)该校七年级有400名学生,八年级有500名学生参加了此次安全知识竞赛,估计该校七、八年级参加此次安全知识竞赛成绩优秀()90x >的学生人数是多少?21.在学习了矩形与菱形的相关知识后,小明同学进行了更深入的研究,他发现,过矩形的一条对角线的中点作这条对角线的垂线,与矩形两边相交的两点和这条对角线的两个端点构成的四边形是菱形,可利用证明三角形全等得到此结论.根据他的想法与思路,完成以下作图与填空:(1)如图,在矩形ABCD 中,点O 是对角线AC 的中点.用尺规过点O 作AC 的垂线,分别交AB ,CD 于点E ,F ,连接AF ,CE .(不写作法,保留作图痕迹) (2)已知:矩形ABCD ,点E ,F 分别在AB ,CD 上,EF 经过对角线AC 的中点O ,且EF AC ⊥.求证:四边形AECF 是菱形.证明:∵四边形ABCD 是矩形,∴AB CD ∥. ∴①,OCF OAE ∠=∠.∵点O 是AC 的中点, ∴②.∴CFO AEO ≅△△(AAS ). ∴③.又∵OA OC =,∴四边形AECF 是平行四边形.∵EF AC ⊥,∴四边形AECF 是菱形.进一步思考,如果四边形ABCD 是平行四边形呢?请你模仿题中表述,写出你猜想的结论:④.22.某水果店商家购进了一批哈密瓜和脆桃.商家用1600元购买哈密瓜,800元购买脆桃,每斤哈密瓜比每斤脆桃的进价贵6元,且购进脆桃的数量是哈密瓜的2倍.(1)求商家购买每斤哈密瓜和每斤脆桃的进价;(2)商家在销售过程中发现,当哈密瓜的售价为每斤14元,脆桃的售价为每斤5元时,平均每天可售出20斤哈密瓜,40斤脆桃.调查,哈密瓜的售价每降低0.5元平均每天可多售出5斤,且降价幅度不低于10%.商家在保证脆桃的售价和销量不变且不考虑其他因素的情况下,想使哈密瓜和胞桃平均每天的总获利为270元,则每斤哈密瓜的售价为多少元? 23.如图,在Rt ABC △中,90C ∠=︒,4AC =,3BC =,点D 是AC 的中点,动点P 以每秒1个单位长度的速度从点D 出发沿折线D A B →→方向运动,到达点B 时停止运动,设点P 的运动时间为x 秒,BCP V 的面积记为y .(1)请直接写出y 关于x 的函数表达式,并注明自变量x 的取值范围;(2)在给定的平面直角坐标系中画出这个函数的图象,并写出该函数的一条性质;(3)结合函数图象,若直线11y x b 2=+与该函数图象有且仅有两个交点,则b 的取值范围是______.24.如图,四边形ABCD 是休闲公园的人行步道.AC ,BD 是两条自行车道且相交于点O ,点B 是休闲公园入口.经测量,点A 在点D 的西偏南45︒方向,点C 在点D 的东偏南30︒方向,点C 在点A 的北偏东75︒方向,AD =(1)求自行车道AC 的长度(精确到个位数);(2)测得45AOB ∠=︒,小刚从A 点出发步行沿步道AB 去B 处取快餐,小刚步行的速度为60米每分钟,送餐员等待的时间不超过5分钟,请计算说明小刚能否在送餐员规定的时间内取1.414≈ 1.732≈2.449)25.如图,抛物线25y ax ax b =++经过点()1,5D --,且交x 轴于()6,0A -,B 两点(点A 在点B 的左侧),交y 轴于点C .(1)求抛物线的解析式.(2)如图1,过点D 作DM x ⊥轴,垂足为M ,点P 在直线AD 下方抛物线上运动,过点P 作PE AD ⊥,PF DM ⊥PF +的最大值,以及此时点P 的坐标.(3)将原抛物线沿射线CA G ,使得45CAG ∠=︒,请写出所有符合条件的点G 的横坐标,并写出其中一个的求解过程. 26.已知ABC V 为等边三角形,D 是边AB 上一点,连接CD ,点E 为CD 上一点,连接BE .(1)如图1,延长BE 交AC 于点F ,若45CBF ∠=︒,BF =CF 的长;(2)如图2,将BEC V 绕点C 顺时针旋转60︒到AGC V ,延长BC 至点H ,使得CH BD =,连接AH 交CG 于点N ,求证2CE DE GN =+;(3)如图3,4AB =,点H 是BC 上一点,且2BD CH =,连接DH ,点K 是AC 上一点,CK AD =,连接DK ,BK ,将△BKD 沿BK 翻折到BKQ V ,连接CQ ,当ADK △的周长最小时,直接写出CKQ V的面积.。

九年级数学月考试题(含答案)

九年级数学月考试题(含答案)

第五次月考一 选择题(共10小题,每小题3分,计30分)1. 如图,在⊿ABC 中,AC=3,BC=4,AB=5,则tanB 的值是( )A.43 B.34 C.53 D.542. △ABC 中,∠A 、∠B 都是锐角,且sin A =21,cos B =23,则△ABC 的形状是( )A.直角三角形B.钝角三角形C.锐角三角形D.不能确定3. .在△ABC 中,AB =AC =4,BC =2,则4cos B 等于( )A.1B.2C.15D.4154. 如果∠A 为锐角,且cos A =41,那么∠A 的范围是 A . 0°<∠A ≤30° B.30°<∠A <45° C. 45°<∠A <60°D.60°<∠A <90°5 如图,沿AC 方向开山修路,为了加快施工进度,要在小山的另一边同时施工。

从AC 上的一点B ,取∠ABD=145°,BD=500米,∠D=55°,要使A 、C 、E 成一直线,那么开挖点E 离点D 的距离是( )A. 500sin55°米B. 500cos55°米C. 500tan55°米D. 500tan35°米6. 下列各关系式中,属于二次函数的是(x 为自变量) ( )A.y =81x 2B.y =12-xC.y =21x D.y =a 2x7. 已知二次函数c bx ax y ++=2的图象如右图所示, 则a、b、c满足( )A. a <0,b <0,c >0 B. a <0,b <0, c <0 C. a <0,b >0,c >0 D. a >0,b <0, c >0 8. 下列说法错误的是 ( )BACA.二次函数y =3x 2中,当x >0时,y 随x 的增大而增大B.二次函数y =-6x 2中,当x =0时,y 有最大值0C.a 越大图象开口越小,a 越小图象开口越大D.不论a 是正数还是负数,抛物线y =ax 2(a ≠0)的顶点一定是坐标原点 9. 在同一坐标系中,作y =x 2,y =-21x 2,y =31x 2的图象,它们的共同特点是( ) A.抛物线的开口方向向上B.都是关于x 轴对称的抛物线,且y 随x 的增大而增大C.都是关于y 轴对称的抛物线,且y 随x 的增大而减小D.都是关于y 轴对称的抛物线,有公共的顶点10. 已知a <-1,点(a -1,y 1),(a ,y 2)(a +1,y 3)都在函数y =x 2的图象上,则( )A.y 1<y 2<y 3B.y 1<y 3<y 2C.y 3<y 2<y 1D.y 2<y 1<y 3二 填空题(共6小题,每小题3分,计18分)11. 如图,等腰三角形ABC 的顶角为1200,腰长为10,则底边上的高AD=12. 某段公路每前进100 m ,就升高4 m ,则路面的坡度约为_____13. 如果由点A 测得点B 在北偏西20°的方向,那么由点B 测得点A 的方向是______ 14. 若函数y =(k 2-4)x 2+(k +2)x +3是二次函数,则k ______15. 写出一个开口向上,顶点是y 轴上的二次函数的表达式:16. 在边长为6 cm 的正方形中间剪去一个边长为x cm(x <6)的小正方形,剩下的四方框形的面积为y ,y 与x 之间的函数关系是______ 三 解答题(共8小题,计52分,解答应写出过程)17(本题满分6分)求值:sin 245°- cos60°+ tan60°·cos 230°18.(本题满分10分)如图,一位篮球运动员跳起投篮,球沿抛物线21 3.55y x =-+运行,然后准确落入篮框内.已知篮框的中心离地面的距离为3.05米. (1)球在空中运行的最大高度为多少米?(2)如果该运动员跳投时,球出手离地面的高度为2.25米,请问他距离篮框中心的水平距离是多少?19. (本小题满分12 分)在一次实践活动中,某课题学习小组用测倾器、皮尺测量旗杆的高度,他们设计了如下方案(如图①所示):(1)在测点A 处安置测倾器,测得旗杆顶部 M 的仰角∠MCE =α;(2)量出测点A 到旗杆底部N 的水平距离AN = m ; (3)量出测倾器的高度AC = h .根据上述测量数据,即可求出旗杆的高度MN .如果测量工具不变,请仿照上述过程,设计一个测量某小山高度(如图②)的方案: (1)在图②中,画出你测量小山高度 MN 的示意图(标上适当字母); (2)写出你设计的方案.x20. (本小题满分12 分)有一座抛物线形拱桥,桥下面在正常水位时AB宽20米,水位上升3米就达到警戒线CD,这时水面宽度为10米;(1)在如图的坐标系中,求抛物线的表达式.(2)若洪水到来时,再持续多少小时才能到拱桥顶?(水位以每小时0.2米的速度上升)21(本小题满分12 分)如图,一单杠高2.2米,两立柱之间的距离为1.6米,将一根绳子的两端栓于立柱与铁杠结合处,绳子自然下垂呈抛物线状.1)一身高0.7米的小孩站在离立柱0.4米处,其头部刚好触上绳子,求绳子最低点到地面的距离;2)为供孩子们打秋千,把绳子剪断后,中间系一块长为0.4米的木板,除掉系木板用去的绳子后,两边的绳长正好各为2米,木板与地面平行.求这时木板到地面的距离(供选用数据:36.3≈1.8,64.3≈1.9,36.4≈2.1.)(1)(2)参考答案:一、1. A 2.B 3. A 4. D 5. B 6. A 7. A 8. C 9. D 10. C二、11.5 12. 1∶24.98 13. 南偏东20° 14. ≠±2 15. 21y x =+ 16. y =36-x 2三、17. 解:原式= 2212- (2分)=112244-+= (6分) 18.解:⑴ ∵抛物线 21 3.55y x =-+的顶点为(0,3.5) ∴最大高度为3.5米 (4分) ⑵ 在21 3.55y x =-+中 当 3.05y =时 213.05 3.55x =-+ ∴2 2.25x = ∴ 1.5x =±又∵x >0 ∴ 1.5x = …………………… (8分) 当 2.25y =时 212.25 3.55x =-+ ∴2 6.25x = ∴ 2.5x =± 又∵x <0 ∴ 2.5x =- …………………… (11分) 故运动员距离篮框中心水平距离为 1.5+2.5 = 4 …………………… (12分) 19.解:(1)正确画出示意图. (4分) (2)① 在测点A 处安置测倾器,测得此时山顶M 的仰角 ∠MCE = α;② 在测点A 与小山之间的B 处安置测倾器(A 、B 与N 在同一条直线上),测得此时山顶M 的仰角 ∠MDE = β;③ 量出测倾器的高度AC = BD = h ,以及测点A 、B 之间的距离AB = m . 根据上述测量数据,即可求出小山的高度MN . (12分)20.解:(1)设拱桥顶到警戒线的距离为m .∵抛物线顶点在(0,0)上,对称轴为y 轴, ∴设此抛物线的表达式为y =ax 2(a ≠0). 依题意:C (-5,-m ),A (-10,-m -3).∴⎩⎨⎧-=---=-.)10(3,)5(22a m a m ⎪⎩⎪⎨⎧-=-=∴.1,251m a ∴抛物线表达式为y =2125x -8分 (2)∵洪水到来时,水位以每小时0.2米的速度上升,|m |=1, ∴从警戒线开始再持续2.01=5(小时)到拱桥顶. 12分(1) (2)21解:(1)如图,建立直角坐标系, …………2分 设二次函数解析式为 y =ax 2+c …………3分 ∵ D (-0.4,0.7),B (0.8,2.2), …………4分∴ ⎩⎨⎧.=+,=+2.264.07.016.0c a c a …………5分∴ ⎪⎩⎪⎨⎧.=,=2.0528c a∴绳子最低点到地面的距离为0.2米. …………7分 (2)分别作EG ⊥AB 于G ,FH ⊥AB 于H …………8分 AG =21(AB -EF )=21(1.6-0.4)=0.6. 在Rt △AGE 中,AE =2, EG =22AG AE -=226.02 =64.3≈1.9. …………11分∴ 2.2-1.9=0.3(米).∴ 木板到地面的距离约为0.3米. …………12分。

上海市杨浦区复旦大学附属中学2024-2025学年九年级上学期9月月考数学试题(含答案)

2024~2025学年上海市复旦大学第二附属中学九年级上学期9月月考数学试卷(考试时间100分钟 满分150分)考生注意:1.带2B 铅笔、黑色签字笔、橡皮擦等参加考试,考试中途不得传借文具2.不携带具有传送功能的通讯设备,一经发现视为作弊。

与考试无关的所有物品放置在考场外。

3.考试期间严格遵守考试纪律,听从监考员指挥,杜绝作弊,违者由教导处进行处分。

4.答题卡务必保持干净整洁,答题卡客观题建议检查好后再填涂。

若因填涂模糊导致无法识别的后果自负。

一、选择题(共6题,每题4分,满分24分)1.是同类二次根式,那么a 的值为()A.2 B.3 C.4 D.52.方程的根的情况是( )A.方程有两个不相等的实数根B.方程有两个相等的实数根C.方程没有实数根D.无法确定3.下列说法中错误的是()A.一个负数的绝对值是它的相反数B.数轴上离原点越远的点所表示的数越大C.任何有理数都有相反数D.正数都大于零4.某商场有一个可以自由转动的转盘(如图).规定:顾客购物100元以上可以获得一次转动转盘的机会,当转盘停止时,指针落在哪一个区域就获得相应的奖品.经过多次试行,发现转动n 次转盘时,其中指针有m 次落在“铅笔”区域,则估计“饮料”区域所在扇形的圆心角度数是( )A. B. C. D.5.已知一次函数的图象如图所示,则点所在的象限为()2220x x --=1360n m ⎛⎫-︒ ⎪⎝⎭1360m n ⎛⎫-︒ ⎪⎝⎭360m n ︒360n m︒()33y m x n =-++(),2P m n n -A.第一象限B.第二象限C.第三象限D.第四象限6.如图,一块矩形木板斜靠在墙边,,点A ,B ,C ,D ,O 在同一平面内,,,,则点A 到OC 的距离为( )A. B.C. D.二、填空题(共12题,每题4分,满分48分)7.在不等式中,m ,n 是常数且,当时,不等式的解集为_____8.已知关于x 的方程有实数根,则整数a 的最大值是_____9.在比例尺为1:3000的地图上,甲、乙两地的距离为5cm ,则甲、乙两地的实际距离为________米.10.已知:点与点关于原点成中心对称,则________11.一个三位正整数(其中a 、b 都是正整数,,),满足各数位上的数字互不相同.将n 的任意两个数位上的数字对调后得到三个不同的新三位数,把这三个新三位数的和记为.若,则_______12.张老师和李老师同时从学校出发,步行15千米去县城购买书籍,张老师比李老师每小时多走1千米,结果比李老师早到半小时,两位老师每小时各走多少千米?设李老师每小时走x 千米,依题意,得到的方程是_______13.小明希望测量出电线杆的高度,于是在阳光明媚的一天,他在电线杆旁的点处立一标杆.使标杆的影子与电线杆的影子部分重叠(即点E ,C ,A 在一直线上),量得,,,则电线杆的长为______m.14.如图,正方形的边长为a ,E ,F 分别是对角线上的两点,过点E ,F 分别作,的平行线,则图中阴影部分的面积之和为________.ABCD OC OB ⊥1AB =4AD =BCO α∠=tan 4sin αα+tan 4cos αα+sin 4cos αα+cos 4sin αα+0mx n +>0m ≠0m <()21230a x x +-+=()2025,1A -(),B a b O a b +=100103n a b =++19a ≤≤19b ≤≤()M n ()999M n =a b +=AB D CD DE BE 2m ED =6m DB =1.3m CD =AB ABCD BD AD AB15.如图,中,G 是重心,,,那么________16.在中,点,分别为,的中点,与交于点O ,已知四边形DFOE 的周长为4,的周长为_______.17.对于二次函数(a 是常数),下列结论:①将这个函数的图像向下平移3个单位长度后得到的图像经过原点;②当时,这个函数的图像在函数图像的上方;③若,则当时,函数值y 随自变量x 增大而增大;④这个函数的最小值不大于3.其中正确的是________(填写序号)18.如图,中,,,,将线段绕点B 逆时针旋转90°得到线段,取的中点E ,连接,用含m ,n 的式子表示的长是________.三、解答题(满分78分)19.计算:20.解不等式组:.21.如图是一种躺椅及其结构示意图,扶手与底座都平行于地面,前支架与后支架分ABC △GD BC ⊥AH BC ⊥GD AH=ABCD □E F AD AB AC BD ABCD □223y x ax =-+1a =-y x =-1a ≥1x >ABC △135BAC ∠=︒AB m =AC n =BC BD AD BE 212tan 602-⎛⎫︒+ ⎪⎝⎭()3121223x x x x ⎧->+⎪⎨+>-⎪⎩AB CD EF OE OF别与交于点和点,与交于点,.(1)求证:;(2)若平分,,求:扶手与靠背的夹角的度数.22.2024年春晚吉祥物“龙辰辰”,以十二生肖龙的专属汉字“辰”为名.某厂家生产大小两种型号的“龙辰辰”,大号“龙辰辰”单价比小号“龙辰辰”单价贵15元,且用2400元购进小号“龙辰辰”的数量是用2200元购进大号“龙辰辰”数量的1.5倍,(1)求:大号“龙辰辰”的单价(2)某网店在该厂家购进了两种型号的“龙辰辰”共60个,且大号“龙辰辰”的个数不超过小号“龙辰辰”个数的一半,小号“龙辰辰”售价为60元,大号“龙辰辰”的售价比小号“龙辰辰”的售价多30%.若两种型号的“龙辰辰”全部售出,求:该网店所获的最大利润23.如图,在中,,过点C 的直线,D 为边上一点,过点D 作,垂足为F ,交直线于E ,连接,.(1)求证:;(2)当D 为AB 中点时,当满足什么条件时,四边形BECD 是正方形?24.已知:如图1,二次函数的图像交x 轴于A ,B 两点(A 在B 的左侧),过点A 的直线交该二次函数的图像于另一点,交y 轴于M .CD G D AB DM N AOE BNM ∠=∠OE DM ∥OE AOF ∠30ODC ∠=︒AB DM AND ∠Rt ABC △90ACB ∠=︒MN AB ∥AB DE BC ⊥MN CD BE CE AD =ABC △2344y ax ax =++134y kx k k ⎛⎫=+> ⎪⎝⎭()11,C x y(1)直接写出A 点坐标,并求该二次函数的解析式;(2)过点B 作交于D ,若且点Q 是线段上的一个动点,求出当与相似时点Q 的坐标:(3)设,图2中连接交二次函数的图像于另一点,连接交y 轴于N ,请你探究的值的变化情况,若变化,求其变化范围;若不变,求其值25.如图,在中,AD 平分交BC 边于点D ,在CA 边上取点E ,使得,连接DE .(1)如图1,当时,求:的正切值(2)如图2,过点C 作于点F ,当时,请:的值(3)如图3,在(2)问的条件下,连接BE ,当时,若四边形ABDE 内部的点Q 到四边形ABDE 四条边的距离相等,求:的值BD AC ⊥AC (M DC DBQ △AOM △()1,2P --CP ()22,E x y AE OM ON ⋅ABC △CAB ∠CE CD =120ABC ∠=︒ADE ∠CF ED ⊥AB BC =AD CFBE AD ⊥sin QEB ∠参考答案及部分评分标准选择题(1~6题)CABBDD填空题(7~18题)7. 8.-1 9.150 10.2024 11.6 12.13.5.2 14. 15. 16.8 17.①②④解答题(19~25题)19.原式=720.21.(1)证内错角相等即可(2)85°22.(1)55(2)126023.(1)证:平行四边形ADEC(2)当时24.(1)(2)或(3)值不变,25.(1(2)2(3n x m <-1515112x x -=+22a 1334x <<45A ∠=︒()3,0A -21344x y x ++=(1,Q -(2Q -92。

安徽省宿州市砀山县2023-2024学年九年级上学期月考数学试题(含答案)

九年级数学(北师大版)(试题卷)注意事项:1.你拿到的试卷满分为150分,考试时间为120分钟;2.试卷包括“试题卷”和“答题卷”两部分,请务必在“答题卷”上答题,在“试题卷”上答题是无效的;3.考试结束后,请将“试题卷”和“答题卷”一并交回。

一、选择题(本大题共10小题,每小题4分,满分40分)每小题都给出A 、B 、C 、D 四个选项,其中只有一个是符合题目要求的。

1.若,相似比为,则与的面积的比为( )A .B .C .D .2.如图,,则的度数是()A .B .C .D .3.如图,四边形的两条对角线相交于点,且互相平分.添加下列条件,仍不能判定四边形为菱形的是()A .B .C .D .4.如图,一个游戏转盘中,红、黄、蓝三个扇形的圆心角度数分别为,,.让转盘自由转动,指针停止后落在黄色区域的概率是()A.B .C .D .5.某公司今年1月的营业额为250万元,按计划第1季度的营业额要达到900万元,设该公司2、3月的营业ABC A B C '''∽△△1:2ABC △A B C '''△1:22:11:44:1ABC DEF ∽△△E ∠45 60 65 70ABCD O ABCD AC BD ⊥AB AD =AC BD =ABD CBD∠=∠60 90 210 161413712额的月平均增长率为,根据题意列方程正确的是( )A .B .C .D .6.已知点是线段的黄金分割点,且,若,则短线段的长度是( )ABCD .7.方程的根的情况是( )A .有两个相等的实数根B .只有一个实数根C .没有实数根D .有两个不相等的实数根8.下列各组不同长度的线段是成比例线段的是()A .,,,B .,,,C .,,,D .,,,9.如图,在中,,,,则( )A .13B .12C .10D .910.如图,在正方形中,是等边三角形,、的延长线分别交于点、,连接、,与相交于点,给出下列结论:其中正确的是( )①;②;③;④A .①②③B .②③C .①②④D .①③④二、填空题(本大题共4小题,每小题5分,满分20分)11.若,则__________.12.三张背面完全相同的卡片,正面分别写着数字1,2,3,背面朝上,随机抽取一张记下数字后,放回搅匀,再随机抽取一张,则两次取出的数字之和是偶数的概率为__________.x 2250(1)900x +=2250(1%)900x +=()22501250(1)900x x +++=()22502501250(1)900x x ++++=P AB AP BP >2cm AB =1-32230x x --=3cm 9cm 2cm 6cm 2cm 5cm 0.6dm 8cm 3cm 6cm 7cm 9cm 1cm 2cm 3cm 4cm ABC △DE BC ∥12AD DB =8BCED S =梯形ABC S =△ABCD BPC △BP CP AD E F BD DP BD CF H 2BE AE =DFP BPH ∽△△PFD PDB ∽△△2DP PH PC=⋅13a b =a b b+=13.如图,在矩形纸片中,,,点在上,将沿折叠,使点落在对角线上的点处,则的长为__________.14.如图,是正方形内一点,,,.请完成下列问题:(1)__________;(2)正方形的面积是__________.三、(本大题共2小题,每小题8分,满分16分)15.解方程:.16.如图,在平面直角坐标系中,的顶点的坐标为,顶点,都在小正方形的格点上.(1)点的坐标为__________,点的坐标为__________;(2)以原点为位似中心,在所给的网格中画出一个,使得与位似,且相似比为.四、(本大题共2小题,每小题8分,满分16分)17.经销店为厂家代销一种新型环保水泥,当每吨售价为260元时,月销售量为45吨,每售出1吨这种水泥共需支付厂家费用和其他费用共100元.该经销店为扩大销售量、提高经营利润,计划采取降价的方式进行促销,经市场调查发现,当每吨售价每下降10元时,月销售量就会增加7.5吨.ABCD 12AB =5BC =E AB DAE △DE A BD A 'AE P ABCD 1AP =2BP =3CP =APB ∠=ABCD 22210x x --=ABC △A ()3,1--B C B C O 111A B C △111A B C △ABC △2:1(1)当每吨售价是240元时,此时的月销售量是多少吨?(2)该经销店计划月利润为9000元而且尽可能地扩大销售量,则售价应定为每吨多少元?18.周末,小华和小亮想用所学的数学知识测量家门前小河的宽,测量时,他们选择了河对岸边的一棵大树,将其底部作为点,在他们所在的岸边选择了点,使得与河岸垂直,并在点竖起标杆,再在的延长线上选择点竖起标杆,使得点与点、共线.已知:,,测得,,.测量示意图如图所示.请根据相关测量信息,求河宽.五、(本大题共2小题,每小题10分,满分20分)19.如图,,,,.(1)求的长;(2)若,求证:.20.在一个不透明的口袋里装有颜色不同的红、白两种颜色的球共5个,某学习小组做摸球试验,将球搅匀后从中随机摸出一个球记下颜色,再把它放回袋中,不断重复,如表是活动进行中的一组统计数据:摸球的次数1001502005008001000摸到白球的次数5996116295484601摸到白球的频率0.590.640.580.590.6050.601(1)请估计:当很大时,摸到白球的频率将会接近__________;(精确到0.1)(2)试估算口袋中红球有多少个?(3)请画树状图或列表计算:从中先摸出一球,不放回,再摸出一球,这两个球颜色不同的概率是多少?六、(本题满分12分)21.如图,在矩形中,是边上一点,连接并延长,交的延长线于点.(1)求证:;(2)若,求的值.A B AB B BC AB D DE E C A CB AD ⊥ED AD ⊥1m BC = 1.5m DE =8.5m BD =AB FE CD ∥3AF =5AD =4AE =AC 253AB =ADE ABC ∽△△n m m nn ABCD P BC DP AB Q DCP QBP ∽△△13BP PC =AB AQ七、(本题满分12分)22.如图,在平行四边形中,过点作,垂足为,连接,为线段上一点,且.(1)求证:;(2)若,的长.八、(本题满分14分)23.如图,在正方形中,点是边上的一点(不与,重合),点在边的延长线上,且满足,连接,,与边交于点.(1)求证:;(2)若,求证:;(3)交于点,若,求的值(用含的代数式表示).九年级数学(北师大版)参考答案及评分标准一、选择题(本大题共10小题,每小题4分,满分40分)题号12345678910答案CCCBDDDADC二、填空题(本大题共4小题,每小题5分,满分20分)11. 12. 13.ABCD A AE BC ⊥E DE F DE AFE B ∠=∠ADF DEC ∽△△8AB =AD =AF =AE ABCD M BC B C N CD 90MAN ∠= MN AC MN AD E AM AN =2CAD NAD ∠=∠2AM AE =⋅MN AC O CM k BM =OMONk 435910314.(1)135;(2)解析:(1)四边形是正方形,,,如图,将绕点顺时针旋转得到,连接,则,,,,是等腰直角三角形,.在中,,,,,,,;(2)如图,过点作,交延长线于点,,,,.在中,,,.故答案为:(1)135;(2).三、(本大题共2小题,每小题8分,满分16分)15.解:,,,,5+ ABCD 90ABC ∴∠= AB BC =ABP △B 90 BCE △PE 2BE BP ==1CE AP ==90PBE ∠= CEB APB ∠=∠PBE ∴△PE ∴==45BPE BEP ∠=∠= PCE △PE =1CE =3CP =222PE CE CP ∴+=90PEC ∴∠= 9045135BEC PEC BEP ∴∠=∠+∠=+= 135APB BEC ∴∠=∠= B BH CE ⊥CE H 90PEC ∠= BH PE ∴∥45HBE BEP ∴∠=∠= BH EH BE ∴===Rt BCH △BH =1CH CE EH =+=22222(15BC BH CH ∴=+=+=+25ABCD S BC ∴==+正方形5+2a = 2b =-1c =-()2Δ(2)42148120∴=--⨯⨯-=+=>,.16.解:(1)由题意得:点的坐标是,点的坐标是,故答案为:,;(2)如图所示,即为所求.四、(本大题共2小题,每小题8分,满分16分)17.解:(1)吨;(2)设售价每吨为元,根据题意列方程为:,化简得,解得,(舍去),因此,将售价定为200元时销量最大.18.解:,,,,,,又,,,,,,即河宽为.五、(本大题共2小题,每小题10分,满分20分)19.解:(1),,,,,,解得:;(2)证明:,,,,,,.20.解:(1)当很大时,摸到白球的频率将会接近0.6;故答案为:0.6;x ∴==1x ∴=2x =B ()1,2C ()2,3-()1,2()2,3-111A B C △260240457.56010-+⨯=x ()260100457.5900010x x -⎛⎫-+⨯= ⎪⎝⎭2420440000x x -+=1200x =2220x =CB AD ⊥ ED AD ⊥90CBA EDA ∴∠=∠= CAB EAD ∠=∠ ABC ADE ∴∽△△AD DE AB BC∴=AD AB BD =+ 8.5BD =1BC = 1.5DE =8.5 1.51AB AB +∴=17AB ∴=17m EF CD ∥ AF AE AD AC ∴=3AF = 5AD =4AE =345AC∴=203AC =253AB = 5AD =4AE =203AC =35AD AE AB AC ∴==A A ∠=∠ ADE ABC ∴∽△△n(2)由(1)知摸到白球的概率为0.6,则摸到红球的概率为,所以可估计口袋中红球的个数为:(个);(3)画树状图为:共有20种等可能的结果数,其中两个球颜色不同占12种,所以两个球颜色不同的概率.六、(本题满分12分)21.解:(1)证明:四边形是矩形,,,;(2)四边形是矩形,,由(1)知,,,.七、(本题满分12分)22.解:(1)证明:四边形是平行四边形,,,,.,,.在与中,,;(2)四边形是平行四边形,.由(1)知,,.,,,,在中,由勾股定理得:.八、(本题满分14分)23.解:(1)证明:四边形是正方形,,,,,,,,,,10.60.4-=50.42⨯=123205== ABCD CD AB ∴∥CD BQ ∴∥DCPQBP ∴∽△△ ABCD AB CD∴=DCP QBP ∽△△13BQ PB CD CP ∴==13BQ AB ∴=34AB AB AQ AB BQ ∴==+ ABCD AB CD ∴∥AD BC ∥180C B ∴∠+∠= ADF DEC ∠=∠180AFD AFE ∠+∠= AFE B ∠=∠AFD C ∴∠=∠ADF △DEC △AFD CADF DEC∠=∠⎧⎨∠=∠⎩ADF DEC ∴∽△△ ABCD 8CD AB ∴==ADF DEC ∽△△AD AFDE CD ∴=12AD CD DE AF ⋅∴===AD BC ∥ AE BC ⊥AE AD ∴⊥90EAD ∴∠= Rt ADE △6AE === ABCD AB AD ∴=45CAD ACB ∠=∠= 90BAD CDA B ∠=∠=∠= 90BAM MAD ∴∠+∠= 90MAN ∠= 90MAD DAN ∴∠+∠= BAM DAN ∴∠=∠AD AB = 90ABC ADN ∠=∠=,;(2)证明:,,,,,,,又,,,.,,;(3)如图,过点作交于点,设,,,,即,,,,,.()ABM ADN ASA∴≌△△AM AN∴=AM AN=90MAN∠= 45MNA∴∠=245CAD NAD∠=∠=22.5NAD∴∠=22.5CAM MAN CAD NAD∴∠=∠-∠-∠=CAM NAD∴∠=∠45ACB MNA∠=∠= AMC AEN∴∽△△AM ACAE AN∴=AM AN AC AE∴⋅=⋅AM AN=AC=2AM AE∴=⋅M MF AB∥AC F BM a=CMkBM=CM ka∴=()1BC k a∴=+ND BM a==()1AB CD BC k a===+MF AB CD∥∥1MF CM kAB CB k∴==+MF ka∴=()112OM MF ka kON CN k a k∴===+++。

广东省深圳市明德外语实验学校2024-2025学年九年级上学期9月月考数学试题

广东省深圳市明德外语实验学校2024-2025学年九年级上学期9月月考数学试题一、单选题1.方程2430x x ++=的两个根为( )A .121,3x x ==B .121,3x x =-=C .121,3x x ==-D .121,3x x =-=- 2.已知关于x 的一元二次方程2610x x k -++=的两个实数根为1x ,2x ,且221224x x +=,则k 的值为( )A .5B .6C .7D .83.下列四种说法:①矩形的两条对角线相等且互相垂直;②菱形的对角线相等且互相平分;③有两边相等的平行四边形是菱形;④有一组邻边相等的菱形是正方形.其中正确的有( ) A .0个 B .1个 C .2个 D .3个4.根据下列表格的对应值:由此可判断方程212150x x +-=必有一个根满足( )A .1 1.1x <<B .1.1 1.2x <<C .1.2 1.3x <<D . 1.3x >5.若关于x 的一元二次方程()2500ax bx a ++=≠的一个解是=1x -,则2017a b -+的值是( )A .2016B .2018C .2020D .20226.如图,▱ABCD 的对角线AC 、BD 相交于点O ,那么下列条件中,能判断▱ABCD 是菱形的为( )A.AO=CO B.AO=BO C.∠AOB=∠BOC D.∠BAD=∠ABC 7.如图,在矩形ABCD中,对角线AC、BD交于点O,自点A作AE⊥BD于点E,且BE:ED=1:3,过点O作OF⊥AD于点F,若OF=3cm,则BD的长为()cm.A.6 B.9 C.12 D.158.如图,在菱形ABCD中,菱形的边长为5,对角线AC的长为8,延长AB至E,BF平分CBE,则ACGV的面积为()A.20B.C.12D.249.如图,在菱形ABCD中,P是对角线AC上一动点,过点P作PE⊥BC于点E,PF⊥AB 于点F.若菱形ABCD的周长为20,面积为24,则PE+PF的值为()A.4 B.245C.6 D.48510.如图,在矩形ABCD中,AB=2,AD=1,E为AB的中点,F为EC上一动点,P为DF 中点,连接PB,则PB的最小值是()A .2B .4C .D .2二、填空题11.若关于x 的方程2(1)210k x x +--=有实数根,则k 的取值范围是.12.如图,三个边长均为2的正方形重叠在一起,1O 、2O 是其中两个正方形的中心,则阴影部分的面积是.13.已知:如图所示,E 是正方形ABCD 边BC 延长线一点,若EC AC =,AE 交CD 于F ,则AFC ∠=度.14.如图,在菱形ABCD 中,AC =24,BD =10,AC 、BD 相交于点O ,若CE //BD ,BE //AC ,连接OE ,则OE 的长是.15.如图,菱形ABCD 中,∠ABC =60°,AB =2,E 、F 分别是边BC 和对角线BD 上的动点,且BE =DF ,则AE +AF 的最小值为 .三、解答题16.解方程:(1)22950x x --=(2)244x x x -=-17.阅读下面的例题:分解因式:221x x +-.解:令2210x x +-=得到一个关于x 的一元二次方程,121a b c ===-Q ,,,1x ∴===-解得11x =-21x =-()()(((212211111x x x x x x x x x x ⎡⎤⎡⎤∴+-=--=----=++⎣⎦⎣⎦. 这种因式分解的方法叫求根法,请你利用这种方法完成下面问题:(1)已知代数式22x x k --对应的方程解为5-和7,则代数式22x x k --分解后为 ;(2)将代数式231x x --分解因式.18.如图,在矩形ABCD 的BC 边上取一点E ,连接AE ,使得AE =EC ,在AD 边上取一点F ,使得DF =BE ,连接CF .过点D 作DG ⊥AE 于G .(1)求证:四边形AECF 是菱形;(2)若AB =4,BE =3,求DG 的长.19.某农场要建一个饲养场(矩形ABCD )两面靠现有墙(AD 位置的墙最大可用长度为27米,AB 位置的墙最大可用长度为15米),另两边用木栏围成,中间也用木栏隔开,分成两个场地及一处通道,并在如图所示的三处各留1米宽的门(不用木栏).建成后木栏总长45米.设饲养场(矩形ABCD )的一边AB 长为x 米.(1)饲养场另一边BC=____米(用含x 的代数式表示).(2)若饲养场的面积为180平方米,求x 的值.20.如图,已知在菱形ABCD 中,对角线AC 与BD 交于点O ,延长DC 到点E ,使C E C D =,延长BC 到点F ,使CF BC =,顺次连接点B ,E ,F ,D ,且1BD =,AC =(1)求菱形ABCD 的面积;(2)求证:四边形BEFD 是矩形;(3)求四边形BEFD 的周长及面积.21.数学课上,师生们以“利用正方形和矩形纸片折叠特殊角”为主题开展数学活动.(1)操作判断小明利用正方形纸片进行折叠,过程如下:步骤①:如图1,对折正方形纸片ABCD ,使AD 与BC 重合,得到折痕EF ,把纸片展平;步骤②:连接AF ,BF .可以判定ABF △的形状是: .(直接写出结论) 小华利用矩形纸片进行折叠,过程如下:如图2,先类似小明的步骤①,得到折痕EF 后把纸片展平;在BC 上选一点P ,沿AP 折叠AB ,使点B 恰好落在折痕EF 上的一点M 处,连接AM .小华得出的结论是:30BAP PAM MAD ∠=∠=∠=︒.请你帮助小华说明理由.(2)迁移探究小明受小华的启发,继续利用正方形纸片进行探究,过程如下:如图3,第一步与步骤①一样;然后连接AF ,将AD 沿AF 折叠,使点D 落在正方形内的一点M 处,连接FM 并延长交BC 于点P ,连接AP ,可以得到:PAF ∠= ︒(直接写出结论);同时,若正方形的边长是4,可以求出BP 的长,请你完成求解过程.(3)拓展应用如图4,在矩形ABCD 中,6AB =,8BC =.点P 为BC 上的一点(不与B 点重合,可以与C 点重合),将ABP V 沿着AP 折叠,点B 的对应点为M 落在矩形的内部,连接MA ,MD ,当△MAD 为等腰三角形时,可求得BP 的长为 .(直接写出结论) 22.如图1,在正方形ABCD 和正方形BEFG 中,点,,A B E 在同一条直线上,P 是线段DF 的中点,连接PG ,PC .(1)探究PG 与PC 的位置关系及PG PC的值(写出结论,不需要证明); (2)如图2,将原问题中的正方形ABCD 和正方形BEFG 换成菱形ABCD 和菱形BEFG ,且60ABC BEF ∠=∠=度.探究PG 与PC 的位置关系及PG PC的值,写出你的猜想并加以证明; (3)如图3,将图2中的菱形BEFG 绕点B 顺时针旋转,使菱形BEFG 的边BG 恰好与菱形ABCD 的边AB 在同一条直线上,问题(2)中的其他条件不变.你在(2)中得到的两个结论是否发生变化?写出你的猜想并加以证明.。

九年级上册第二次月考数学试卷

20 -20 学年九年级第一学期第二次月考数学学科试卷学校: 班级: 姓名: 考号:一、选择题(本大题共10小题,每小题4分,满分40分)每小题都给出A ,B ,C ,D 四个选项,其中只有一个是符合题目要求的。

1.抛物线2(2020)2021y x =-+的顶点坐标是( )A .(2020,2021)-B .(2020,2021)C .(2020,2021)-D .(2020,2021)-- 2.已知是方程x 2﹣3x +c =0的一个根,则c 的值是( )A .﹣6B .6C .D .23.为了解学生假期每天帮忙家长做家务活动情况,学校团委随机抽取了部分学生进行线上调查,并将调查结果绘制成频数直方图(不完整,每组含最小值,不含最大值),并且知道80~100分钟占所抽查学生的17.5%,根据提供信息,以下说法不正确的是( )A.本次共随机抽取了40名学生;B.抽取学生中每天做家务时间的中位数落在40~60分钟这一组;C.如果全校有800名学生,那么每天做家务时间超过1小时的大约有300人;D.扇形统计图中0~20分钟这一组的扇形圆心角的度数是30°; 4.抛物线y =2x 2与y =﹣2x 2相同的性质是( ) A .开口向下 B .对称轴是y 轴C .有最低点D .对称轴是x 轴5.某校高一年级今年计划招四个班的新生,并采取随机摇号的方法分班,小明和小红既是该校的高一新生,又是好朋友,那么小明和小红分在同一个班的机会是( ) A .B .C .D .6.如图,在⊙O 中,弦AC ∥半径OB ,∠BOC =48°,则∠OAB 的度数为( ) A .24°B .30°C .50°D .60°7.如图,△COD 是△AOB 绕点O 顺时针方向旋转30°后所得的图形,点C 恰好在AB 上,则∠A 的度数为( ) A .30°B .60°C .70°D .75° 8.若二次函数y =x 2+mx 的对称轴是x =4,则关于x 的方程x 2+mx =9的根为( ) A .x 1=0,x 2=8B .x 1=1,x 2=9C .x 1=1,x 2=﹣9D .x 1=﹣1,x 2=99.已知等腰三角形的两边长分别是一元二次方程x 2﹣6x +8=0的两根,则该等腰三角形的底边长为( ) A .2B .4C .8D .2或410.如图,二次函数y =ax 2+bx +c 的图象与y 轴正半轴相交,其顶点坐标为(,1),下列结论:①abc <0;②b 2﹣4ac >0;③a +b <0;④2a +c <0,其中正确的个数是( ) A .1个B .2个C .3个D .4个二、填空题(本大题共4小题,每小题5分,满分20分) 11.点M (1,2)关于原点的对称点的坐标为 .12.如图,AB 为⊙O 的直径,弦CD ⊥AB 于点H ,若AB =10,CD =8,则BH 的长度为 . 13.若一个圆锥的母线长为4,底面半径是1,则它的侧面展开图的面积是______. 14.我国魏晋时期的数学家刘徽首创“割圆术”,利用圆的内接正多边形逐步逼近圆来近似计算圆的周长,进而确定圆周率.某圆的半径为R ,其内接正十二边形的周长为C .若R =,则C = ,≈ (结果精确到0.01,参考数据:≈2.449,≈1.414).三、(本大题共2小题,每小题8分,满分16分)15.解方程: 3x (x +1)=3x +316.某汽车专卖店经销某种型号的汽车.已知该型号汽车的进价为15万元/辆,经销一段时间后发现:当该型号汽车售价定为25万元/辆时,平均每周售出8辆;售价每降低0.5万元,平均每周多售出1辆. (1)当售价为22万元/辆时,求平均每周的销售利润.(2)若该店计划平均每周的销售利润是90万元,为了尽快减少库存,求每辆汽车的售价. 四、(本大题共2小题,每小题8分,满分16分)17.如图,在平面直角坐标系中,ΔABC 三个顶点的坐标分别为A (1,1)、B (4,2)、C (3,5)。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

九年级数学2016-2017年第一学月考试题
选择题 (本大题共10小题,每小题3分,共30分。

在每小题列出的四个选项中,
只有一项符合题目要求)
1.下列方程是一元二次方程的是( ). A . B .
C .
D .
2.已知关于x 的方程是一元二次方程,
则的取值范围是( ).
A .
B .
C .
D .
3.将方程化成一元二次方程的一般形式后,二次项系数、一次项系数和常数
项系数可以是( )
A . 3,2,-1
B . 3,-2,-1
C . 3,-2,1
D . -3,-2,1 4.方程的解是( ).
A
. B .
C .
D .
5.已知长方形的面积为.若它的长比宽多2 cm ,则它的宽为 ( ).
A .8 cm
B .6 cm
C .4 cm
D .2 cm 6.某商场将某种商品的售价从原来的每件200元经两次调价后调至每件162元.设平均每次调价的百分率为x ,列出方程正确的是( ). A .
B .
C .
D .
7.一个多边形有9条对角线,则这个多边形的边数是( ) .
A .5
B .6
C .7
D .8 8.下列函数关系中,是二次函数的是( )
A .当距离s 一定时,火车行驶的时间t 与速度v 之间的关系;
B .等边三角形周长
C 与边长a 之间的关系; C .半圆的面积S 与半径r 之间的关系;
D .在弹性限度内,弹簧的长度y 与所挂物体质量x 之间的关系.
9.将进货单价为70元的某种商品按零售价100元一个售出时,每天能卖出20个,若这种商品的零售价在一定范围内每降价1元,其日销量就增加1个,为了获取最大利润则应降价( ).
A .20元
B .15元
C .10元
D .5元
10.心理学家研究发现,某年龄段的学生,30min 内对概念的接受能力与提出概念所用时间之间满足函数关系.则学生接受概念的能力最强的时间是( ).
A .13 min
B .26 min
C .43 min
D .59.9 min 二,填空(10X3=30)
1. 已知关于的方程方程
当m 满足__________时,它是一元
一次方程;当
满足___________时,它是一元二次方程.
2. 是方程
的一个根,那么
=_________.
3. 方程的解是____________________. 4. 方程
的解是___________________.
5. 已知二次函数 y =2(x -1)2当x______时,函数值y 随x 的增大而减小;当x______
时,函数值y 随x 的增大而增大;当x =______时,函数取得最______值y =______。

※※※ 密 ※※※ ※※ ※※※ 封 ※※※ ※※ ※※※ 线 ※※※
三.解下列的方程: (5X4=20)
(1) (x-2)(1-3x)=6 (2)
(3)
(4)
四,根据题意,列出方程:(2X5=10)
(1)有一面积为60m 2的长方形,将它的一边剪去5m ,另一边剪去2m ,恰好变成正方形,试求正方形的边长.
(2)如图,一块长和宽分别为60厘米和40厘米的长方形铁皮,要在它的四角截去四个相等的小正方形,折成一个无盖的长方体水槽,使它的底面积为800平方厘米.若设截去小正方形的边长为x 厘米,则应列出的方程为 .
五,写出二次函数
的图象的开口方向、对称轴、顶点坐标.它是由y=-4x 2怎样平移得到的? 10分
1)2(42
+--=x y。

相关文档
最新文档