考点三 用空间向量求二面角
空间向量求立体几何二面角中准确快速写出坐标的技巧

空间向量求立体几何二面角中准确快速写出坐标的技巧技巧:
一、用“叉乘”结合三角函数求解立体几何二面角:
1、先求空间向量的叉乘,叉乘结果的方向量D是二个空间向量的法向量。
2、计算该法向量D的坐标与另一空间向量的点积,就可以得到立体几何二面角的三角函数形式。
3、由计算的三角函数,使用反三角函数,计算出来的角度值就是二面角的度数,这就是求出坐标的技巧。
二、使用质心坐标系求解立体几何二面角:
1、先求两个空间向量的质心坐标系,即二质心坐标的差值。
2、把这个差值换成极坐标形式,这样就可以求出二面角的三角函数形式。
3、由计算的三角函数,使用反三角函数,计算出来的角度值就是二面角的度数,这就是求出坐标的技巧。
- 1 -。
高中立体几何中二面角经典求法

高中立体几何中二面角求法摘要:在立体几何中,求二面角的大小是历届高考的热点,几乎每年必考,而对于求二面角方面的问题,同学们往往很难正确地找到作平面角的方法,本文对求二面角的方法作了一个总结,希望对学生有帮助。
(一)、二面角定义的回顾:从一条直线出发的两个半平面所组成的图形就叫做二面角。
二面角的大小是用二面角的平面角来衡量的。
而二面角的平面角是指在二面角的棱上任取一点O,分别在两个半平面内作射线,则为二面角的平面角。
(二)1、由定义作出二面角的平面角;2、利用三垂线定理(逆定理)作出二面角的平面角;3、作二面角棱的垂面,则垂面与二面角两个面的交线所成的角就是二面角的平面角。
4、空间坐标法求二面角的大小5、平移或延长(展)线(面)法6、射影公式S射影=S斜面cosθ7、化归为分别垂直于二面角的两个面的两条直线所成的角1、利用定义作出二面角的平面角,并设法求出其大小。
例1、如图,已知二面角α-а-β等于120°,PA⊥α,A∈α,PB⊥β,B∈β. 求∠APB的大小.解: 设平面∩PABα=OA,平面PAB∩β=OB。
同理PB⊥а ∴а⊥平面PAB又∵OA⊂平面PAB ∴а⊥OA同理а⊥OB.∴∠AOB是二面角α-а-β的平面角.在四边形PAOB中, ∠AOB=120°,.∠PAO=∠POB=90°, 所以∠APB=60°2、三垂线定理(逆定理)法由二面角的一个面上的斜线(或它的射影)与二面角的棱垂直,推得它位于二面角的另一的面上的射影(或斜线)也与二面角的棱垂直,从而确定二面角的平面角。
例2:如图,ABCD-A 1B 1C 1D 1是长方体,侧棱AA 1长为1,底面为正方体且边长为2,E是棱BC的中点,求面C 1DE与面CDE所成二面角的正切值.解:在长方体ABCD—A 1B 1C 1D 1中由三垂线定理可得:CD =2 CE=1, DE=3、找(作)公垂面法由二面角的平面角的定义可知两个面的公垂面与棱垂直,因此公垂面与两个面的交线所成的角,就是二面角的平面角。
空间向量应用-二面角

04
二面角的应用
在几何学中的应用
向量投影
在求解向量的投影时,可以利用二面 角的概念,通过计算向量在某一平面 上的投影长度,来得到该向量与该平 面的夹角。
向量夹角
二面角的概念可以用于计算两个向量 的夹角,通过比较两个向量的夹角与 二面角的夹角,可以判断两个向量的 方向关系。
在物理学中的应用
力的合成与分解
建筑设计
在建筑设计中,利用二面角的概念可以确定建筑物的位置、方向和高度等信息, 以保证建筑物的安全和稳定性。
05
空间向量与二面角的关系
向量与二面角的关联
向量是既有大小又有方向的量,其大 小和方向可以用来表示二面角的大小 和方向。
二面角的大小和方向可以通过两个向 量的夹角来描述,这个夹角就是二面 角的平面角。
二面角的向量定义
总结词
二面角的向量定义是通过向量的投影 和叉积来定义的,它是一个标量值, 其大小等于两个向量的叉积的绝对值 再除以两向量的模的乘积。
详细描述
二面角的向量定义是通过向量的投影和叉积来 描述的。设两非零向量a和b分别属于两个半平 面,那么二面角θ的大小可以用公式 ∣a×b∣/∣a∣∣b∣表示,其中a×b表示向量a和b 的叉积,∣a∣和∣b∣分别表示向量a和b的模。这 个标量值的大小就等于二面角θ的大小。
二面角的性质
总结词
二面角具有一些重要的性质,如二面角的取值范围是[0,π],二面角的大小与观察方向有关,以及二面角的补角等 于其平面角的补角等。
详细描述
首先,二面角的取值范围是[0,π],这是由其几何定义直接得出的。其次,二面角的大小与观察方向有关,即观察 方向的不同可能导致二面角的大小发生变化。最后,二面角的补角等于其平面角的补角,这是由向量的性质得出 的。
一轮复习课件872利用空间向量求二面角与空间距离3

【解析】选B.设α∩β=a,若直线l∥a,且l⊄α,l⊄β,则l∥α,l∥β,因此α不一 定平行于β,故A错误;由于l∥α,故在α内存在直线l′∥l.又因为l⊥β.所以 l′⊥β,故α⊥β,所以B正确;若α⊥β,在β内作交线的垂线l,则l⊥α,此时l 在平面β内,因此C错误;已知α⊥β,若α∩β=a,l∥a,且l不在平面α,β内, 则l∥α且l∥β,因此D错误.
【迁移应用】 平面α外有两条直线m和n,如果m和n在平面α内的射影分别是直线m1和直线n1, 给出下列四个命题:①m1⊥n1⇒m⊥n;②m⊥n⇒m1⊥n1;③m1与n1相交⇒m与n相交 或重合;④m1与n1平行⇒m与n平行或重合. 其中不正确的命题个数是( ) A.1 B.2 C.3 D.4
【解析】选D.如图,在正方体ABCD-A1B1C1D1中,AD1,AB1,B1C在底面上的射影分别 是A1D1,A1B1,B1C1.
第二课时 利用空间向量求 二面角与空间距离
内容索引
核心考点·精准研析 核心素养·微ቤተ መጻሕፍቲ ባይዱ题 核心素养测评
【思想方法】 构造法判断空间线面的位置关系 设l是直线,α,β是两个不同的平面,则下列命题正确的是世纪金榜导 学号( ) A.若l∥α,l∥β,则α∥β B.若l∥α,l⊥β,则α⊥β C.若α⊥β,l⊥α,则l⊥β D.若α⊥β,l∥α,则l⊥β
[构造法解题] 借助于长方体模型解决本题: 对于A,如图①,α与β可相交; 对于B,如图②,不论β在何位置,都有α⊥β; 对于C,如图③,l可与β平行或l⊂β内; 对于D,如图④,l⊥β或l⊂β或l∥β.
【思想方法指导】 (1)构造法实质上是结合题意构造适合题意的直观模型,然后将问题利用模型 直观地作出判断,这样减少了抽象性,避免了因考虑不全面而导致解题错误. (2)对于线面、面面平行、垂直的位置关系的判定,可构造长方体或正方体化 抽象为直观去判断.
向量法-求二面角大小

空间向量法---求二面角的大小
运用“空间向量法”---求“二面角的大小”的解题步骤:
① 建立空间直角坐标系; ② 求出所需各点的坐标; ③ 求出两个平面的法向量; ④ 求出两个法向量的夹角; ⑤ 写出所求二面角的大小。
空间向量法---求二面角的大小
运用“空间向量法”---求“二面角的大小”的解题步骤:
(1) 证明: AN⊥平面PAD .
(2) 求二面角C-AM-N的大小 .
P
M
A
D
B
NC
【练习3】 如图, 在四棱锥P-ABCD中, 底面是边长为2的菱形, ∠ABC=60O , PA⊥底面ABCD,PA=2, M,N分别为PC,BC的中点.
(1) 证明: AN⊥平面PAD .
(2) 求二面角C-AM-N的大小 .
∴ cosq =
6
3
得 tanq =
2
2
∴
所求面SCD与面SBA所成二面角的正切值是22
【练习2】 已知点E、F分别是正方体ABCD-A1B1C1D1的棱BB1、 CC1上的点, 且 BE1=2EB, CF=2FC1 .
(1) 求面AEF与面ABC所成二面角的正切值 .
【练习3】 如图, 在四棱锥P-ABCD中, 底面是边长为2的菱形, ∠ABC=60O , PA⊥底面ABCD,PA=2, M,N分别为PC,BC的中点.
=
3 3
由条件知,二面角A-CD-E为锐角,∴
所求二面角的余弦值为
3 3
【练习1】 如下图, 在底面是直角梯形的四棱锥S-ABCD中,
∠ABC=90O
,
SA⊥面ABCD,SA=AB=BC=1,
AD=
1 2
.
空间向量法求二面角

徐沟中学高二年级数学学案 命制人: 董晓燕 郭凯丽 复查人:段红蕊空间向量法求二面角学习目标:1.让学生初步理解用与二面角的平面角两边平行的向量的夹角计算二面角大小的方法;让学生初步了解二面角的平面角与两个面的法向量的夹角的关系;并能解决与之有关的简单问题.新知自学:让学生观察两平面的法向量的夹角与二面角的平面角之间的关系,引导学生用法向量的夹角解图1 图2课堂互学:例1;在长方体ABCD —A 1B 1C 1D 1中,AB=2,BC=4,AA 1=2,点Q 是BC 的中点,求此时二面角A —A 1D —Q 的大小.例2.如图,AB ⊥平面BCD ,BD CD ⊥,若2AB BC BD ==,求二面角B ACD --的正弦值例3:如图5,在底面是直角梯形的四棱锥S —A BCD 中,AD//BC ,∠A BC=900,S A ⊥面A BCD ,S A =21,A B=BC=1,A D=21。
求侧面SCD 与面SB A 所成的二面角的大小。
总结提炼:随堂检测:1.如图,正三棱柱111ABC A B C -的所有棱长都为2,D 为1CC 中点.(Ⅰ)求证:1AB ⊥平面1A BD ; (Ⅱ)求二面角11C B A A --的大小;能力提升:1.如图,在直三棱柱ABC-A 1B 1C 1中,平面A 1BC ⊥侧面A 1ABB 1,且AA 1=AB=2.(1)求证:AB ⊥BC ;(2)若直线AC 与平面A 1BC 所成的角为6π,求锐二面角A-A 1C-B 的大小.A BC DEF ϕω θ βlα2n 1nθ β lαϕ1n2n O (A ) B A 1 C 1 B 1D 1 D CQ zy x 图4AzyDCBS 图5ABCD1A1C1B。
二面角的求法和利用空间向量解决立体几何问题

二面角的定义:
1、定义
从一条直线出发的两个半平面所组成
的图形叫做二面角, 这条直线叫做二面角
l
的棱, 这两个半平面叫做二面角的面.
2、二面角的表示方法
二面角-AB-
A
C
B
二面角- l-
D
l
B
A
二面角C-AB- D
F
E
A
B
D
C
二面角C-AB- E
二面角的平面角:
以二面角的棱上任意一点为端
点, 在两个面内分别作垂直于棱的 两条射线, 这两条射线所成的角叫 做二面角的平面角。
面面平行
∥ n1 ∥ n2 n1 kn2
二、垂直关系:
设直线 l, m 的方向向量分别为 AB,CD ,
平面 , 的法向量分别为 n1 , n2 , 线线垂直:
l ⊥ m AB ⊥ CD AB • CD 0 ;
Bl
A
平面 内的两个相交向量垂直
(4)解方程组,令其中一个量的值求另外两个, 即得法向量。
一、平行关系:
设直线 l, m 的方向向量分别为 AB,CD ,
lm
BD
平面 , 的法向量分别为
线线平行:
n1
, n2
,
l ∥ m AB ∥ CD AB kCD
;
x1 y1
=
A
x2 y2
=
C
x3 y3
线面平行
AB
l ∥ AB n1 AB n1 0 ;
分别作垂直于a 的两条射线OA,OB,则∠AOB就 是此二面角的平面角。
2、垂线法: 在一个平面 内选一点A向另一平面 作 垂线AB,
垂足为B,再过点B向棱a作垂线BO,垂足 为O, 连结AO,则∠AOB就是二面角的平面角。
2024年高考数学复习培优讲义专题15---几何法求二面角,线面角(含解析)

专题3-1几何法求二面角,线面角立体几何空间向量求解过程,丧失了立体几何求解的乐趣,无形中也降低了学生的空间想象能力。
这是空间向量求解的巨大优点,也是缺点,就这么共存着。
其实不建系而直接计算真的很比较锻炼空间想象的能力,方法上也更灵活一些,对于备考的中档学生来说,2种方法都要熟练掌握。
方法介绍一、定义法:交线上取点 等腰三角形共底边时作二面角步骤第一步:在交线l上取一点O第二步:在α平面内过O点作l的垂线OA第三步:在β平面内过O点作l的垂线OB∠AOB即为二面角,余弦定理求角αβl OAB二、三垂线法(先作面的垂直)—后续计算小使用情况:已知其中某个平面的垂线段第二步:过垂直B作l的垂线OB∠AOB即为二面角且△AOB为直角三角形,邻比斜三、作2次交线的垂线作二面角步骤第一步:作AO⊥l第二步:作OB⊥l连接AB,∠AOB即为二面角,余弦定理求角四、转换成线面角作二面角步骤第一步:作AO⊥l第二步:作AB⊥β(找不到垂足B的位置用等体积求AB长)连接AB,∠AOB即为二面角△AOB为直角三角形,邻比斜五、转换成线线角—计算小,也是法向量的原理提问:什么时候用?若α平面存在垂线AB,且β平面存在垂线AC则α平面与β平面的夹角等于直线AC与AB的夹角αβlOABαβlOABβαOABCαβlOAB六、投影面积法——面积比(三垂线法进阶)将cos θ=边之比∣面积之比,从一维到二维,可多角度求出两面积,最后求解如图△ABC 在平面α上的投影为△A 1BC , 则平面α与平面ABC 的夹角余弦值1cos A BCABCθ=△△即cos θ=投影原S S补充:即使交线没有画出来也可以直接用例题:一题多解2023汕头二模T20如图在正方体ABCD -A 1B 1C 1D 1中,PQ 是所在棱上的中点.1C 1CD ABA B 1αBCAA 1D(1)求平面APQ 与平面ABCD 夹角的余弦值 (2)补全截面APQ2023全国乙卷数学(理)T9——由二面角求线面角P C 1CDABA B 1P C 1DABA B 1P C 1CDABA B 1P C 1DABA B 1P C 1CDABA B 1PC 1DABA B 11.已知ABC 为等腰直角三角形,AB 为斜边,ABD △为等边三角形,若二面角C AB D −−为150︒,则直线CD 与平面ABC 所成角的正切值为( )A .15B .25C .35D .252021·新高考1卷·T20——由二面角求线段长2.如图,在三棱锥A BCD −中,平面ABD ⊥平面BCD ,AB AD =,O 为BD 的中点.(1)证明:OA CD ⊥;(2)若OCD 是边长为1的等边三角形,点E 在棱AD 上,2DE EA =,且二面角E BC D −−的大小为45︒,求三棱锥A BCD −的体积.题型一 定义法1.如图,在三棱锥S—ABC 中,SC ⊥平面ABC ,点P 、M 分别是SC 和SB 的中点,设PM=AC =1,∠ACB =90°,直线AM 与直线SC 所成的角为60°.(1)求证:平面MAP ⊥平面SAC . (2)求二面角M—AC—B 的平面角的正切值;2.(湛江期末)如图,在三棱锥P -ABC 中,PA ⊥平面ABC ,点M ,N 分别是PB ,AC 的中点,且MN ⊥A C . (1)证明:BC ⊥平面PA C .(2)若PA =4,AC =BC =22,求平面PBC 与平面AMC 夹角的余弦值.(几何法比较简单)3.如图1,在平行四边形ABCD 中,60,2,4A AD AB ∠=︒==,将ABD △沿BD 折起,使得点A 到达点P ,如图2.重点题型·归类精讲(1)证明:平面BCD⊥平面P AD;(2)当二面角D PA B−−的平面角的正切值为6时,求直线BD与平面PBC夹角的正弦值.题型二三垂线法4.(佛山期末)如图,四棱锥P-ABCD中,AB∥CD,∠BAD=90°,12PA AD AB CD===,侧面PAD⊥底面ABCD,E为PC的中点.(1)求证:BE⊥平面PCD;(2)若PA=PD,求二面角P-BC-D的余弦值.5.如图,在四棱锥P -ABCD 中,△P AD 是以AD 为斜边的等腰直角三角形,,,224,23BC AD CD AD AD CD BC PB ⊥====∥ (2023广州一模T19)(1) 求证:AD PB ⊥;(2)求平面P AB 与平面ABCD 交角的正弦值.6.如图,在三棱锥A BCD −中,平面ABD ⊥平面BCD ,AB AD =,O 为BD 的中点.(1)证明:OA CD ⊥;(2)若OCD 是边长为2的等边三角形,点E 在棱AD 上,2DE EA =且二面角E BC D −−的大小为60,求三棱锥A BCD −的体积.7.(2023·浙江·统考二模)如图,在三棱柱111ABCA B C 中,底面ABC ⊥平面11AA B B ,ABC 是正三角形,D 是棱BC 上一点,且3CD DB =,11A A A B =.(1)求证:111B C A D ⊥;(2)若2AB =且二面角11A BC B −−的余弦值为35,求点A 到侧面11BB C C 的距离.8.如图,在多面体ABCDE 中,平面ACD ⊥平面ABC ,BE ⊥平面ABC ,ABC 和ACD 均为正三角形,4AC =,3BE =.(1)在线段AC 上是否存在点F ,使得BF ∥平面ADE ?说明理由; (2)求平面CDE 与平面ABC 所成的锐二面角的正切值.题型三 作2次交线的垂线9.在三棱锥S ABC −中,底面△ABC 为等腰直角三角形,90SAB SCB ABC ∠=∠=∠=︒. (杭州二模) (1)求证:AC ⊥SB ;(2)若AB =2,22SC =,求平面SAC 与平面SBC 夹角的余弦值.题型四 找交线10.如图,在四棱锥P -ABCD 中,底面ABCI )是平行四边形,∠ABC =120°,AB =1,BC =2,PD ⊥C D . (1)证明:AB ⊥PB ;(2)若平面PAB ⊥平面PCD ,且102PA =,求直线AC 与平面PBC 所成角的正弦值. (广东省二模T19)题型五 转换成线线角湖北省武汉市江汉区2023届高三上学期7月新起点考试11.在直三棱柱111ABC A B C −中,已知侧面11ABB A 为正方形,2BA BC ==,D ,,E F 分别为AC ,BC ,CC 1的中点,BF ⊥B 1D .(1)证明:平面B 1DE ⊥平面BCC 1B 1;(2)求平面BC 1D 与平面1B DE 夹角的余弦值六、 题型六 投影面积法12.(2022·惠州第一次调研)如图,在四棱锥P -ABCD 中,已知//AB CD ,AD ⊥CD ,BC BP =,CD =2AB=4,△ADP 是等边三角形,E 为DP 的中点.(1)证明:AE ⊥平面PCD ;(2)若2,PA =求平面PBC 与平面PAD 夹角的余弦值13.(2022深圳高二期末)如图(1),在直角梯形ABCD 中,AB //CD ,AB ⊥BC ,且12,2BC CD AB ===取AB 的中点O ,连结OD ,并将△AOD 沿着OD 翻折,翻折后23AC =M ,N 分别是线段AD ,AB 的中点,如图(2).(1)求证:AC⊥OM.(2)求平面OMN与平面OBCD夹角的余弦值.专题3-1几何法求二面角,线面角立体几何空间向量求解过程,丧失了立体几何求解的乐趣,无形中也降低了学生的空间想象能力。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
考点三用空间向量求二面角
【例3】(2019·北京海淀区模拟)如图1,在高为6的等腰梯形ABCD中,AB∥CD,且CD=6,AB=12,将它沿对称轴OO1折起,使平面ADO1O⊥平面BCO1O,如图2,点P为BC的中点,点E在线段AB上(不同于A,B两点),连接OE并延长至点Q,使AQ∥OB.
(1)(一题多解)证明:OD⊥平面P AQ;
(2)若BE=2AE,求二面角C-BQ-A的余弦值.
(1)证明法一取OO1的中点F,连接AF,PF,如图所示.
∵P为BC的中点,∴PF∥OB,
∵AQ∥OB,∴PF∥AQ,
∴P,F,A,Q四点共面.
由题图1可知OB⊥OO1,
∵平面ADO1O⊥平面BCO1O,且平面ADO1O∩平面BCO1O=OO1,OB⊂平面BCO1O,
∴OB⊥平面ADO1O,
∴PF⊥平面ADO1O,
又OD⊂平面ADO1O,∴PF⊥OD.
由题意知,AO=OO1,OF=O1D,∠AOF=∠OO1D,
∴△AOF≌△OO1D,
∴∠F AO =∠DOO 1,
∴∠F AO +∠AOD =∠DOO 1+∠AOD =90°,∴AF ⊥OD .
∵AF ∩PF =F ,且AF ⊂平面P AQ ,PF ⊂平面P AQ ,
∴OD ⊥平面P AQ .
法二 由题设知OA ,OB ,OO 1两两垂直,∴以O 为坐标原点,OA ,OB ,OO 1所在直线分别为x 轴,y 轴,z 轴建立如图所示的空间直角坐标系,
设AQ 的长为m ,则O (0,0,0),A (6,0,0),B (0,6,0),C (0,3,6),D (3,0,6),Q (6,m ,0).
∵点P 为BC 的中点,∴P ⎝ ⎛⎭
⎪⎫0,92,3, ∴OD →=(3,0,6),AQ →=(0,m ,0),PQ →=⎝ ⎛⎭
⎪⎫6,m -92,-3. ∵OD
→·AQ →=0,OD →·PQ →=0, ∴OD
→⊥AQ →,OD →⊥PQ →,又AQ →与PQ →不共线, ∴OD ⊥平面P AQ .
(2)解 ∵BE =2AE ,AQ ∥OB ,∴AQ =12OB =3,
则Q (6,3,0),∴QB
→=(-6,3,0),BC →=(0,-3,6). 设平面CBQ 的法向量为n 1=(x ,y ,z ),
由⎩⎪⎨⎪⎧n 1·QB →=0,n 1·BC →=0,得⎩
⎨⎧-6x +3y =0,-3y +6z =0, 令z =1,则y =2,x =1,n 1=(1,2,1).
易得平面ABQ 的一个法向量为n 2=(0,0,1).
设二面角C -BQ -A 的大小为θ,由图可知,θ为锐角,
则cos θ=⎪⎪⎪⎪⎪⎪n 1·n 2|n 1|·|n 2|=66,。