1超细晶粒钢

合集下载

1超细晶粒钢

1超细晶粒钢

1 超细晶粒钢1.1分类传统钢中,晶粒尺寸在100 μm以下就称为细晶粒钢,即传统细晶粒钢。

随着冶金技术和生产工艺的不断进步,细晶的尺寸不断缩小,甚至达到了微米、亚微米。

本文提到的超细晶粒钢不包括传统细晶钢。

按超细晶粒钢发展进程和其尺寸大小,可分为以下几类。

(1) TMCP钢控轧后立即加速冷却所制造的钢,称为TMCP(Thermo-Mechanical Control Process)钢。

利用TMCP工艺在实验室中,晶粒尺寸可达到几个微米,但在实际工业生产中,所得钢的晶粒尺寸小于50 μm,最小可达10 μm。

这种钢满足了石油和天然气工业的需求,这种钢的高强高韧和低的碳当量为其提供了优良的焊接适应性。

(2) 新一代钢铁材料综合低合金高强钢不断进步的成功经验,充分利用合金化作用和生产工艺技术进步相结合的优势,发展新一代钢铁材料产品并进行其基础理论研究。

目前正处于研制阶段的新一代钢铁材料的主要特征:在充分考虑经济性的条件下,钢材具有高洁净度、超细晶粒、高均匀度的特征,强度比常用钢材提高一倍,钢材使用寿命增加一倍。

高洁净度,指S、P、O、N、H元素的总含量小于80×10-6,这样不但可提高钢材原有的性能,有时还可赋予钢新的性能;超细组织,晶粒尺寸在0.1~10 μm之间,细化晶粒是唯一能提高强度而不降低韧性甚至提高韧性的方法;高均匀度指的是成分、组织和性能很均匀,波动范围很小。

在钢的化学成分—工艺—组织—性能的关系中,强调了组织的主导地位,即其超细微观组织表现出优异的综合性能。

1.2化学成分和冶金特点细晶钢具有低碳和低碳当量以及低的杂质含量,不仅有益于其焊接性,同时也有利于改善钢的其他性能,如接头中HAZ和母材的韧性以及对氢致裂纹(HIC)、硫化物应力腐蚀裂纹(SSCC)抗力等。

细晶钢中也含有少量的Nb、V、Ti等微合金元素,其主要目的是为了形成碳、氮化合物,从而有效防止晶粒长大。

由于细晶钢低的S、P、N元素含量和控制加入的微合金元素,其氮化物形成元素的存在将使自由氮降低,减小了时效影响,有利于韧性的改善。

超细晶粒钢的生产工艺及发展概况

超细晶粒钢的生产工艺及发展概况

c n r l n e p a e t n f r t n a tr s g . o tol g t h s r so mai t a e t e i h a o l a Ke r s h a f e g an d se l h r l me h n c o t l d p o e s e e e p a t y wo d :u r — n r i e t e ;t e ma c a i a c n r l r c s ;s v r lsi i l o e c d fr t n e ma i o o
Te h oo y f rM a u a t rn t a f e Gr i e te n t v lp e t c n lg o n f cu i g Ulr - n a n d S e l d IsDe eo m n s i a
L u nln Y oS e  ̄ e, i n i G oX ab i a g g, a hn i L bn, u i o G o We o
(. eh o g e t f n a gSel o Ld, nh n14 0 , io ig C ia 1 T c nl yC ne o gn te C . t.A sa 1 0 9 La nn , hn ; o r A
2 H ebnIstt o e h oo t ia, ia 2 4 0 , h n o g C ia . a ri ntue f c n l a We iWe i 6 2 9 S ad n , hn ) i T y g h h
b e y dsu sd il r f ic se .De eo me t o e h oo isfrma ua tr g t e u r - n r ie te t v lp n s n tc n lge n fcu n h h a f e gan d se la o i i

攀钢研制超细晶粒钢

攀钢研制超细晶粒钢

路, 积累了经验 。
超细 晶 粒 钢 具 有 极 高 的强 度 和 极 高 的 韧 性. 是一 个全 球 性 的研究 大课 题 , 目前 国内外 尚 处 于实验室 试 验 阶段 。许 多专 家 、 者 大 量 的 学

维普资讯
拉强 度 由 3 5 a提 高 到 40 a以上 , 1MP 9 MP 屈服 强度 由 2 5 a提 高 到 35 a以 上 , 1MP 4 MP 含有 台 金元素 的试 硷钢 强 度达 到 性 能要 求 ; 低精 轧 降 温度 有利 于性 能的提 高 .L 薄规 格 的试验 钢 , 车制
个亮 点 。
厂 家 。5年 前 , 个 厂 在 引 进 德 国 1二 架 微 张 这 力定 径机 时 , 选 了具 有 生 产 方 矩 管 能 力 的定 首 径机 . 为后 来 开 发 这 一 品 种 打 下 了基 础 该厂 选择 了 牛 产 难 度 晟 大 的 2 0 6 tr l0n × u n× 4 rm lmm 人断 面矩 形 管作 为攻 关 目标 . O .首批 方矩 管 试轧成 功后 , 如定 径 机架配 置 齐全 , 这个 可 生产 1 8种 L 同规 格 的方 矩形 无缝 钢管 不
近在攀钢钢研院进行了第一轮实验 。试验初步 研究了变形诱导铁素体相变对形成超细晶粒组 织的影响 , 制取了晶粒细化的普终确 定最 佳 的化 学 成 分 及轧 制工 艺 制度 , 制 成 功 超细 晶 粒钢 开 阔 思 研
以攀钢 生 产 的 Q 1 2 5普碳 钢 和 0 1 2 5基础 上成 分变 化的低 台 金 钢 作 为 试 验 钢 , 别 考察 了奥 分 氏体高温段 轧 制及 板坯厚 度 、 同精轧 温度 、 不 道 次压 下量 、 卷取 温度 对 试 验 钢 组织 和性 能 的影 响。试 验 结 果 表 明 : 验 钢 的 强 度 比 原 来 的 试 0 1 2 5钢和低 台 金钢 的强 度均有 较大 的提 高 , 抗

金属晶粒度评级标准

金属晶粒度评级标准

金属晶粒度评级标准金属晶粒度评级标准是指用来评估金属晶粒度大小的一种标准。

晶粒度是指金属内部晶体的大小,直接影响到金属材料的性能和质量。

因此,对于不同的金属材料,都有相应的晶粒度评级标准。

对于钢铁材料来说,晶粒度评级标准通常是按照ASTM E112标准来进行的。

根据ASTM E112标准,钢铁材料的晶粒度可以分为1-10级,其中1级晶粒度最小,10级晶粒度最大。

具体的标准如下:1级:小于8.0um2级:8.1um-16.0um3级:16.1um-32.0um4级:32.1um-64.0um5级:64.1um-128.0um6级:128.1um-256.0um7级:256.1um-512.0um8级:512.1um-1024.0um9级:1024.1um-2048.0um10级:大于2048.0um对于铝合金材料来说,晶粒度评级标准通常是按照GB/T 3880.3-2012标准来进行的。

根据GB/T 3880.3-2012标准,铝合金材料的晶粒度可以分为1-8级,其中1级晶粒度最小,8级晶粒度最大。

具体的标准如下:1级:小于20um2级:20um-50um3级:50um-100um4级:100um-200um5级:200um-400um6级:400um-800um7级:800um-1600um8级:大于1600um对于其他金属材料,也有相应的晶粒度评级标准。

在实际应用中,根据不同的需求和要求,可以选择不同的晶粒度等级的金属材料。

总之,金属晶粒度评级标准是非常重要的一项评估指标,可以直接影响到金属材料的性能和质量。

因此,在选择和应用金属材料时,需要根据具体情况选择合适的晶粒度等级。

钢材晶粒度评级

钢材晶粒度评级

钢材晶粒度评级一、引言钢材是一种重要的金属材料,广泛应用于建筑、机械、汽车等各个领域。

钢材的性能直接影响到产品的质量和使用寿命,而钢材晶粒度是决定钢材性能的重要因素之一。

本文将介绍钢材晶粒度评级的相关知识,帮助读者更好地了解钢材的质量和性能。

二、钢材晶粒度的定义钢材晶粒度是指钢材中晶粒的大小和形状。

晶粒是组成钢材的晶体,在钢材的冷却过程中形成。

晶粒的大小和形状会直接影响到钢材的力学性能、冲击韧性和耐腐蚀性能等。

三、钢材晶粒度的评级根据晶粒的大小和形状,钢材的晶粒度可以分为不同的等级。

一般情况下,晶粒越小,钢材的性能越好。

以下是常见的钢材晶粒度评级:1. 超细晶粒超细晶粒是指晶粒尺寸在纳米或亚微米级别的钢材。

这种钢材具有优异的机械性能和耐腐蚀性能,广泛应用于高强度钢材、航空航天材料等领域。

2. 细晶粒细晶粒是指晶粒尺寸在微米级别的钢材。

这种钢材具有较高的强度和韧性,适用于制造高负荷、高强度的结构件。

3. 中等晶粒中等晶粒是指晶粒尺寸在毫米级别的钢材。

这种钢材具有一定的强度和韧性,广泛应用于建筑、汽车等领域。

4. 粗晶粒粗晶粒是指晶粒尺寸在厘米级别的钢材。

这种钢材的强度和韧性相对较低,一般用于一些低要求的结构件。

四、影响钢材晶粒度的因素钢材晶粒度的形成与多个因素有关,主要包括以下几个方面:1. 冷却速率冷却速率是影响钢材晶粒度的重要因素之一。

快速冷却会使晶粒细化,而慢速冷却则会使晶粒变大。

2. 热处理工艺热处理工艺中的加热和冷却过程也会对钢材晶粒度产生影响。

合理的热处理工艺可以控制钢材的晶粒大小和形状。

3. 合金元素合金元素也是影响钢材晶粒度的重要因素之一。

适量添加某些合金元素可以细化钢材的晶粒。

五、控制钢材晶粒度的方法为了获得理想的钢材晶粒度,可以采取以下措施:1. 优化热处理工艺,控制加热和冷却速度,以实现晶粒细化。

2. 合理选择合金元素的含量和种类,以控制钢材的晶粒大小。

3. 使用先进的制备工艺,如快速凝固技术和等离子熔敷技术等,可以有效地控制钢材的晶粒度。

晶粒度等级标准

晶粒度等级标准

晶粒度等级标准是根据工业生产上的需求来划分的,共分为12级。

其中1~4级为粗晶粒,5~8级为细晶粒,9~12级为超细晶粒度。

晶粒度的评级可以通过三种方法进行:比较法、面积法和截点法。

比较法是根据标准系列图谱比较来确定晶粒度级别,评估值的重现性通常为±1.0级;面积法是通过单位面积内晶粒数目确定晶粒度级别,精度±0.25级,无偏差,重现性为±0.5级;截点法是通过计算一定长度的线段与晶界相交的截点数确定晶粒度级别,精度±0.25级,无偏差,重现性为±0.5级。

本质晶粒度是指钢在一定条件下奥氏体晶粒长大的倾向,在930±10℃保温3~8h后测定奥氏体晶粒。

晶粒度标准等级分为8级,1级最大,8级最小。

奥氏体晶粒在100倍显微镜下,其大小与标准的晶粒度进行对比,凡度晶粒为1~5级的定为本质粗晶粒钢,5~8级的定为本质细晶粒钢。

此外还有超细晶粒钢。

Ultra - fine Grain Steel(超级钢)

Ultra - fine Grain Steel(超级钢)

二.晶粒细化的方法
将钢由室温 加热至稍高 于Ac3的温度, 在此温度下 短时间保温, 然后快速淬 火冷却至室 温,再重复 此过程。 再结晶奥氏 体晶粒细化 作用以及快 速加热情况 下铁素体晶 粒有转变为 多个奥氏体 晶粒的倾向 隋忠祥对 50CrVA弹簧 钢循环淬火 后晶粒尺寸 可达到13~ 14级 生产周期较 长,操作不 方便
二.晶粒细化的方法
微合金化
变质处理
铌(Nb)
影响
形成NbC, NbN;阻止 奥氏体回复、再结晶
钛(Ti)
生成难溶的碳化物质点 ,富集在晶界处,阻止 晶粒粗化 阻止奥氏体晶粒长大, 并提高钢的粗化温度
钒(V)
二.晶粒细化的方法
Ar3温度
铁素体的自由能 晶粒尺寸
相变驱动力
形核数目
宏观偏析
塑性抛光 控轧控 冷技术 超声波
其他细化晶粒的方法和大塑性变形方法的结合
三.性能及应用
组织细密,强度高,而且即 使不添加镍、铜等元素也能 够保持很高的强度。
呈现2倍于一般钢铁的超可塑性。
超级钢没有焊接痕迹没有因此而发 生的强度劣化现象。
三.性能及应用
宝钢、鞍钢、武钢 等主要钢铁企业都 在积极开发AHSS
二.晶粒细化的方法
等径角挤压法
以纯剪切的 方式实现材 料的大塑性 变形 组织致密 性高,组 织性能均 一 JiHunKima等 人利用等通道 角挤压法获得 超细晶6061 铝合金 产品尺寸 受到很大 限制
A 机理 B 组织 C 研究 D 局限
二.晶粒细化的方法
工艺简单、成本低 优点与局限
组织的均匀性难以控制 锻造后残余应力难以去除
超细晶钢
Contents
1

棒材超细晶粒钢自动控制系统研发

棒材超细晶粒钢自动控制系统研发

棒材超细晶粒钢自动控制系统的研发摘要:超细晶粒钢是中小型型钢生产中的一种新钢种,它的研发生产对我们的自动控制系统提出了很大的挑战。

本文详细讲述在18架轧机的中小型型钢生产线上,开发出新钢种超细晶粒钢,并修复了机械设备改造对活套控制、微张力控制、速度控制和成品的长度计算等的影响,完善控制系统。

关键词:淬冷;检测设备;速度级联;测长中图分类号:tg335文献标识码:a文章编号:1007-9599 (2013) 07-0000-021引言超细晶粒钢在莱钢中小型线这样一条老线上调试成功可谓是老树开出新花,但它对我们的自动控制系统提出了很大的挑战。

首先投入淬冷设备要增加部分水泵和阀门的控制,更重要的是在淬冷设备取代了精轧区11、12或者13、14号轧机的时候,会导致替换区域的检测元件不能有效的检测,而且切断了轧钢的连续性,导致后续轧机的活套控制、微张力控制、速度控制、和成品的长度计算等都要重新进行整定,来修复原有的控制功能。

2设备概况中小型车间整条轧线由粗轧区6台轧机,中轧区6台轧机,精轧区6台轧机,及轧机间的检测设备和3台剪子组成。

在超细晶粒钢的生产中,根据所轧制的规格不同,轧机的替换方案也分为两种,前期测试时,在精轧区的13至14架轧机区域,目前也可在11#、12#轧机处用穿水设备代替。

轧线区域的主要硬件设备和穿水淬冷系统的主要硬件设备如图1所示。

图1轧线区域及穿水主要设备fig1 the main equipment of rolling line area为了节省成本,减少投入,新投入设备自动化控制功能在原来的rmc3站实现,信号使用rmc3的备用点。

轧线的速度级联,轧件的测长等功能分别在原来的rmc2和rmc5实现。

3穿水功能实现虽然现在最终主要选择11、12号轧机为替代区域,但在我们的自动化控制系统中,实现了可以选择的11、12替换或者13、14替换两套方案。

在rsp5241画面上增加了超精细粒钢穿水监控功能,可以对各个阀门进行操作,并监控各个阀门的状态。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

1 超细晶粒钢1.1 分类传统钢中,晶粒尺寸在100 (im以下就称为细晶粒钢,即传统细晶粒钢。

随着冶金技术和生产工艺的不断进步,细晶的尺寸不断缩小,甚至达到了微米、亚微米。

本文提到的超细晶粒钢不包括传统细晶钢。

按超细晶粒钢发展进程和其尺寸大小,可分为以下几类。

(1) TMCP 钢控轧后立即加速冷却所制造的钢,称为TMCP(Thermo-Mechanical Control Process) 钢。

利用TMCPT艺在实验室中,晶粒尺寸可达到几个微米,但在实际工业生产中,所得钢的晶粒尺寸小于50卩m最小可达10卩m>这种钢满足了石油和天然气工业的需求,这种钢的高强高韧和低的碳当量为其提供了优良的焊接适应性。

(2) 新一代钢铁材料综合低合金高强钢不断进步的成功经验,充分利用合金化作用和生产工艺技术进步相结合的优势,发展新一代钢铁材料产品并进行其基础理论研究。

目前正处于研制阶段的新一代钢铁材料的主要特征:在充分考虑经济性的条件下,钢材具有高洁净度、超细晶粒、高均匀度的特征,强度比常用钢材提高一倍,钢材使用寿命增加一倍。

高洁净度,指S、P、O、N、H元素的总含量小于80X 10-6,这样不但可提高钢材原有的性能,有时还可赋予钢新的性能;超细组织,晶粒尺寸在0.1〜10 um之间,细化晶粒是唯一能提高强度而不降低韧性甚至提高韧性的方法;高均匀度指的是成分、组织和性能很均匀,波动范围很小。

在钢的化学成分—工艺—组织—性能的关系中,强调了组织的主导地位,即其超细微观组织表现出优异的综合性能。

1.2 化学成分和冶金特点细晶钢具有低碳和低碳当量以及低的杂质含量,不仅有益于其焊接性,同时也有利于改善钢的其他性能,如接头中HAZ和母材的韧性以及对氢致裂纹(HIC)、硫化物应力腐蚀裂纹(SSCC)抗力等。

细晶钢中也含有少量的NbVTi等微合金元素,其主要目的是为了形成碳、氮化合物,从而有效防止晶粒长大。

由于细晶钢低的S、P、N元素含量和控制加入的微合金元素,其氮化物形成元素的存在将使自由氮降低,减小了时效影响,有利于韧性的改善。

生产高洁净度、高均匀度的细晶钢的冶金特点主要是针对如何提高其洁净度,即减少S、P、N O和H等元素的含量,其冶金和生产工艺技术已有很大的进步:由“分段精炼”这一思想而建立的铁水“三脱”(脱硅、脱硫和脱磷)工艺和转炉少渣冶炼工艺;为满足石油管线钢抗H2S腐蚀的要求,确立了铁水包Mg-Ca脱硫预处理工艺、真空喷粉脱硫工艺;炉外精炼;无缺陷连铸坯的生产工艺等。

1.3 工艺方法和强韧化特点为获得超细晶粒钢,已开发出多种工艺方法:同一快速加热条件下的热处理反复多次作用、金属粉末机械研磨、控轧、控冷、TMCP复合TMCP法等。

利用生产工艺技术是获得超细晶粒的主要手段,是超细晶粒钢具有优良强韧综合性能的决定因素,因此超细晶粒钢与传统钢所不同的是其化学成分不能用于预测钢种的强度。

超细晶粒钢与同等强度的传统钢相比,其化学成分的主要特点是碳含量低,这有利于提高其焊接性,因此其强化手段不是通过增加碳含量和合金元素含量,而是通过晶粒细化、相变强化、析出强化等相结合的方法来达到提高强韧化的目的。

晶粒细化(包括变形细化和相变细化)是唯一能够同时提高钢强度和韧性的方法,因而成为超细晶粒钢最佳的强化机制。

利用第二相粒子析出的沉淀强化是超细晶粒钢采用的另一种强化机制,高温时在奥氏体内形成的粒子虽然对控制晶粒长大有效,但不会造成强化,强化粒子是低温时在奥氏体或铁素体内形成的,位错与亚结构强化也是一种有效的强化方式。

2 超细晶粒钢的焊接性超细晶粒钢的强韧化机制与传统钢不同,因而必须全面考虑其焊接问题,其中存在的两个主要问题:①由于其超细晶粒,在焊接热作用下,晶粒长大的驱动力很大,必然导致HAZ 晶粒严重粗化,这将影响整个接头性能与母材性能相匹配;②为获得与母材相等性能的焊接接头,进行焊接材料、焊接方法及焊接工艺的合理选择。

2.1 HAZ的性能2.1.1 HAZ的晶粒长大倾向在新一代微合金高强高韧钢中,研究400 MPa和800 MPa两种强度级别的超细晶粒钢,400 MPa级细晶钢是指在普通Q235钢的基础上进行细化晶粒和纯净化处理,使其强度提高一倍,寿命增加一倍的新一代钢铁材料。

400 MPa级细晶钢焊接时,薄弱环节出现在HAZ因细晶粒本身已使得晶粒长大驱动力很大(驱动力与晶粒尺寸成反比),又因400 MPa的细晶钢中没有或含有极少碳、氮化物形成元素,所以其焊接热影响区有严重的晶粒长大倾向,粗大的晶粒将损害HAZ的性能,晶粒较粗大时,强度和韧性会随之下降。

因此,对于400 MPa 的细晶钢最主要的问题是探索400 MPa细晶钢的合适焊接方法、研究其晶粒长大规律、动力学和可控因素,从而寻找防止晶粒长大的有效措施。

800 MPa级细晶钢是指在X65管线钢的基础上进行细化晶粒和纯净化处理,使其强度提高一倍,寿命增加一倍的新一代钢铁材料。

利用高洁净度X65钢和普通市售X65钢,采取一定的工艺措施获得细晶粒钢,细晶组织如图1其平均粒径分别为1.393卩m(图1(a))、2.665卩m(图1(b)),屈服强度达到了800 MPa再经峰值温度1 350 C, 18/5分别为3.5 s和8 s的焊接热循环,模拟其粗晶区,所得金相组织如图2、3,其奥氏体的平均粒径分别为:21 卩m(图2(a))、28卩m(图2(b))、26卩m(图3(a))、52卩m(图3(b))。

从以上例子可知:800 MPa级细晶钢焊接时,即使t8/5很小,HAZ也出现较严重的晶粒粗化现象,且随着18/5 的增加,晶粒粗化就更为严重。

图1 X65细晶钢显微组织Fig.1 Mircrostructure of ultra-fi ne gra ined X65 steel(a)高洁净度;(b)普通Xr 曲拿3遵图2 高洁净度X65细晶钢显微组织(峰值温度1350 C )Fig.2 Mircrostructure of high-purity,ultra-fi ne gra inedX65 steel(peak temperature:1350(a) 18/5 = 3.5 s ; (b) t 8/5 = 8 s图3 X65细晶钢显微组织(峰值1350 C)Fig.3 Mircrostructure of ultra-fi ne grained X65steel(peak temperature:1350 C)(a) 18/5 = 3.5 s ; (b) t 8/5 = 8 s2.1.2 HAZ 淬硬性在靠近熔合线的HAZ ,奥氏体晶粒易粗化和硬化。

为了减少冷裂和接头韧性的损失,通常限制HAZ 的最大硬度。

如造船用结构钢和破冰船, 其硬度限制在 HV 300〜350之间。

为避免应力腐蚀,硬度值也被限制,如在湿的 H 2S 环境下,管线钢的硬度限制在 HV 248。

HAZ 的最大硬度随着冷却时间 t 8/5的增加而减小。

2.1.3 HAZ 的韧性和微观组织下贝氏体和低碳马氏体均有较好的韧性,且下贝氏体的韧性优于低碳马氏体, 随着冷却 时间的增加,上贝氏体的含量越来越多, 韧性逐渐降低。

上贝氏体和侧板条铁素体均有很低 的韧性。

晶界铁素体是冷却时在原奥氏体晶粒边界上析出的, 从晶界铁素体向晶内生长。

一般把粗晶热影响区 (CGHAZ) 和临界粗晶热影响C)且上贝氏体和侧板条件铁素体区(IRCGHAZ) 称作“局部脆性区”(LBZ) ,铁素体中固溶的碳小于奥氏体中固溶的碳,奥氏体分解过程中碳从相变铁素体析出且在没有相变的奥氏体中偏聚,这将推迟奥氏体相变且导致残余奥氏体+高碳马氏体(碳含量大于1 %) 的混合组织(即M-A 组元)形成,当钢在临界点之间的温度区域加热时,奥氏体和铁素体共存,将造成奥氏体中碳的偏析且导致硬化能力增加,在冷却时转化为M-A 组元,它对HAZ 的韧性极为不利,当晶粒粗大时,更为不利,HAZ 的韧性强烈依赖M-A组元的体积分数。

文献[1 ]报道局部脆性区(LBZ)的影响在夏氏V型冲击试验中不明显,但在热模拟HAZ 试样的CTOD 试验中却很明显。

此外,当焊缝采用高匹配时,也将使HAZ 的韧性损失,但与组织所引起的韧性损失相比,是很小的。

HAZ 的低韧性不仅是由于M-A 组元所占的体积分数所决定,也由其大的断裂晶面尺寸所决定,因此可通过以下措施改善韧性:①可探索采用合适的焊接工艺,以减小LBZ区的整体面积;②减小形成M-A 组元的合金元素,如B、N、C元素含量;③减小Si、Al、P元素含量,可促进M-A组元的分解;④当钢中细小弥散的析岀物在接近熔点时仍很稳定,则能有效细化HAZ中的粗大奥氏体,导致上贝氏体和侧板条铁素体的细化;⑤由于针状铁素体的断裂晶面尺寸小,韧性好,所以若添加一些细小稳定的氧化物,不仅可降低HAZ 粗晶区的晶粒尺寸,而且还可作为晶内针状铁素体的形核场地。

2.1.4 HAZ 的软化超细晶粒钢主要是在形变条件下获取细晶的,不能通过热处理手段来恢复,所以焊后HAZ会岀现软化,尤其当高热输入时,就更加明显。

不过这种局部软化对接头整体强度的影响是受其他因素控制的,如局部软化区的宽度、板厚和焊缝强度匹配等因素。

对于低强度级别的400 MPa 钢而言,在高强匹配下,更高强度的焊缝和没有受热影响的母材对软化区有强的拘束作用,所以采用高匹配是防止或减小HAZ 软化的有效措施之一。

2.2 焊缝金属的性能通常焊缝金属的强度应与母材等强匹配或稍高于母材。

大多数焊接结构是在焊后状态下使用的,焊缝金属的强化依然要靠合金元素来实现,因此,焊缝金属的碳当量将全面高于母材,且当熔敷金属的强度提高时,其强度和韧性将对热输入很敏感,此时应考虑合适的焊接工艺。

所以当母材强度提高时,获得合适的焊缝强度就变得较困难。

400 MPa 细晶钢的焊缝金属性能与HAZ 性能相比,不是主要矛盾。

对于400 MPa 级细晶钢而言,焊缝金属要获得优良的强度和韧性,焊缝金属的理想组织应为针状铁素体,这就要严格控制焊接材料的化学成分,如Ti-B系列的焊条、焊剂和Ni-Cr-Mo-V 系列的焊丝。

当焊接大于800 MPa 或更高强度级别的细晶钢时,需全面考虑接头性能。

焊缝和HAZ 都有可能出现问题,HAZ 的粗化问题可借鉴400 MPa 级细晶钢的有效防止措施,如合适的焊接方法、焊接工艺及其他焊接条件,但随钢强度级别的提高,800 MPa 细晶钢焊缝中易出现冷裂倾向,因此,对于800 MPa 级的细晶钢而言,主要问题便是解决焊缝金属的性能,即必须研制、开发与母材性能相匹配的焊接材料,焊缝金属要获得优良的强度和韧性,其焊缝金属的理想组织应为超低碳贝氏体,这方面的工作目前还没有较成熟经验,因而需全面开发以这种微观组织为主的焊接材料。

相关文档
最新文档