第三章 聚合物溶液

合集下载

第三章 高分子的溶液性质

第三章 高分子的溶液性质

3、高分子溶液的混合自由能 ΔFM= ΔHM-TΔSM=RT(n1ln φ1+n2ln φ2+ χ1n1φ2) 溶液中溶剂的化学位变化和溶质的化学位变化Δμ1、 Δμ2
分别为:
Δμ1 =RT[lnφ1+(1-1/x)φ2+χ1φ22] Δμ2 = RT[lnφ2+(x-1)φ1+xχ1φ12] lnp1/p10= Δμ1/RT= ln(1-φ2)+(1-1/x)φ2+χ1φ22 注意:由高分子溶液蒸汽压p1和纯溶剂蒸汽压p10的测量
4、混合溶剂, δ混= Φ1 δ1 + Φ2 δ2,有时混合溶剂的溶
解能力强于纯溶剂。
第二节 高分子溶液的热力学性质
理想液体的概念:溶液中溶质分子间、溶剂分子 间和溶剂溶质分子间的相互作用能均相等,溶 解过程没有体积的变化,也没有焓的变化。 理想溶液实际上是不存在的,高分子溶液与 理想溶液的偏差在于两个方面:一是溶剂分子 之间、高分子重复单元之间以及溶剂与重复单 元之间的相互作用能都不相等,因此混合热不 为零;二是高分子具有一定的柔顺性,每个分 子本身可以采取许多构象,因此高分子溶液中 分子的排列方式比同样分子数目的小分子溶液 的排列方式多,即其混合熵高于理想溶液的混 合熵。
2、对于真实的高分子在溶液中的排斥体积分为两部分:外排 斥体积和内排斥体积。外排斥体积是由于溶剂与高分子链段的 作用能大于高分子链段之间的作用能,高分子被溶剂化而扩张, 使两个高分子不能相互靠近而引起的;内排斥体积是由于高分 子有一定的粗细,链的一部分不能同时停留在已为链的另一部 分所占据的空间所引起的。当溶液无限稀释时,外排斥体积可 以接近零,而内排斥体积永远不为零。如果链段比较刚性或链 段之间排斥作用比较大,则内排斥体积为正;相反,链相互接 触的两部分体积可以小于它们各自的体积之和,则内排斥体积 为负。这种内排斥体积为负的链称为坍陷线团。

高分子物理第三章 高分子溶液

高分子物理第三章  高分子溶液

晶同组分的溶液已不太合理,更 不用说用它来处理高分子溶液了,在此理论中又假定高分子 结构单元与溶剂分子具有相同的晶格形式,就更显牵强了。 2、在计算时,并没有考虑到(2-2)、(1-1)、(1-2)之 间有着不同的相互作用。也没有考虑到高分子在溶解前后由 于所处环境不同而引起的高分子构象的改变。 3、高分子结构单元均匀分布的假设只是在浓溶液中才比较 合理,而在稀溶液中高分子结构单元的分布是不均匀的。
第三章 高分子溶液 (Polymer Solutions)
什么是高分子溶液?
是指聚合物以分子分子状态分散溶剂中所形成的均 相体系。 溶液只有一相,包含一种以上成分,可以是气体、 液体和固体。 高分子溶液可用作粘合剂、涂料等,研究单个高 分子的行为都是在稀溶液中进行的。
传统上 广义上
高分子+溶剂 高分子+高分子
溶胀分为有限溶胀和无限溶胀
无限溶胀是指聚合物能无限制地吸收溶剂 分子直至形成均相地溶液,即为溶解; 有限溶胀是指聚合物吸收溶剂到一定程度 后,不管与溶剂接触时间多场,溶剂吸入 量不再增加,聚合物地体系也不再增大, 高分子链段不能挣脱其他链段地束缚,不 能很好地让溶剂扩散,体系始终保持两相 状态。
2、粘度大
S解取向高分子
S解取向高分子
Z 1 = kN 2 [ln x + ( x 1) ln ] e
代入(*)式整理可求得
S M = k[ N1 ln φ1 + N 2 ln φ2 ]
φ ---体积分数
N1 φ1 = N1 + xN 2
而理想溶液:
i M
= R[n1 ln φ1 + n2 ln φ2 ]
χ1 ∝ W12
W12 表示高分子与溶剂混合时相互作用能的变化。

第三章 高分子的溶液性质_1

第三章  高分子的溶液性质_1
分子量大的溶解度小,分子量小的溶解度大。
2014-3-20
高分子课程教学
2
3、溶解性与聚合物的结构有关
线形和支化聚合物可以溶解;
交联聚合物只能溶胀,不能溶解,交联度大的溶胀度小,
交联度小的溶胀度大。
4、溶解速度与聚集态结构有关
非晶态聚合物:溶剂分子容易渗入高聚物内部使之溶胀和 溶解。 晶态高聚物:溶解困难。加热到熔点附近才能溶解;如果 发生强烈的相互作用,例如形成氢键,则在室温下也可溶
xn2 V2 n1 xn2
相互作用不同 破坏混合过程的随机性 熵值的减小 结果偏高。
解取向态有许多构象不能实现;溶液中有可能表现出来 结果偏低。 对于多分散性的高聚物:
Sm = -k(N1lnV1 + NilnVi) = -R[n1lnV1 + nilnVi]
2014-3-20
Hildebrand溶度公式来计算混合热H m:
Hm = VmV1V2(1-2)2
Vm混合后溶液的总体积; V:体积分数;1、2分别表示溶剂和溶质。 因此只要当聚合物与溶剂的溶度参数相差足够小时,才能 溶解。
2014-3-20
高分子课程教学
7
注意
Hildebrand公式只适用于非极性的溶质和溶剂的混合,
2014-3-20
高分子课程教学
20
2.无热溶液
Hm = Hmi = 0;Sm S mi
3.规则溶液
Hm Hmi ;Sm = S mi
4.不规则溶液(一般溶液)
Hm Hmi ;Sm Smi
2014-3-20
高分子课程教学
21
三.Flory-Huggins高分子溶液理论
ln N! N ln N N

第三章 高分子溶液讲解

第三章 高分子溶液讲解
第二个链节:
N-xj
N xj 1 Z ( ) N
Z-配位数
N xj 2 ( Z 1) ( ) N
第三个链节:
第四个链节:
( Z 1) (
N xj 3 ) N
W j 1 Z ( Z 1)
x2
N xj 1 N xj x 1 ( N xj)( )( ) N N
θ状态 溶解过程的自发趋势更强
良溶剂
不良溶剂
3.3 高分子溶液的相平衡
3.3.1 渗透压
Osmotic pressure
Solution
Pure solvent
Semipermeable membrane
渗透压等于单位体积溶剂的化学位,即:
1 1 v1 V1
V1与v1分别为溶剂的偏摩尔体积与摩尔体积。 由于为稀溶液,所以近似相等。
E 内聚能密度 V
E为一个分子的气化能,是该分子从纯态解 离必须破坏的其相邻分子相互作用的能量。 V为分子的体积
内聚能密度可表示分子间作用力
定义溶度参数为内聚能密度的平方根
E V
所以:
(J/cm3)1/2
△Hm=φ 1φ 2[δ 1-δ 2]2Vm
|δ1-δ2|<1.7,大概可以溶解;
分子量50000的聚乙烯,50000 cm3 /mol
内聚能: 13,100,000 J/mol
C-C键能:83kcal/mol = 346,940 J/mol
分子间力远远大于键能,故大分子不能气化
溶度参数的测定方法
溶剂的溶度参数可以通过溶剂的蒸发热直接测定
聚合物不可气化,故采用相对方法
(1) 特性粘度法:
N1 xN2 S M k[ N1 ln N 2 ln ] N N

《高分子物理》第三章-高分子溶液

《高分子物理》第三章-高分子溶液

可计算出
3.溶度参数的测定
(2)聚合物的溶度参数 2 :
由于聚合物不能气化,因此它的溶度参 数只能用间接方法测定,通常用粘度法 和交联后的溶胀度法,另外还可用直接 计算法。
A粘度法原理:如果高聚物的溶度参数与溶剂的溶度
参数相同,那么此溶剂就是该高聚物的良溶剂,高分 子链在此良溶剂中就会充分伸展,扩张。因而,溶液 粘度最大。我们选用各种溶度参数的液体作溶剂,分 别溶解同一种聚合物,然后在同等条件下测溶液的粘 度,选粘度最大的溶液所用的溶剂的溶度参数作为该
H VM 12 (1 2 )2
由式中可知:
VM——溶液总体积 1 ——溶剂的体积分数 2 ——溶质的体积分数
1 ——溶剂的溶度参数 2 ——溶质的溶度参数
① H >0
② 1 和 2 越接近,H 越小,则越能满足 GM 0 的条件,能自发溶解
③溶度参数
EPR 16.0 0.65 17.0 0.35 16.35 J
cm3
1 2
丁酮(δ =18.4 )和正己烷(δ =14.7 ) 的混合溶剂能否溶解PE (δ =16.5 ) ?
答:不能。
如果非晶是可溶的,但PE总是高度结晶的。 因而要加热到120℃(接近PE熔点),此时正 己烷早已沸腾(沸点69℃)。
概述
科学研究中: 由于高分子稀溶液是处于热力学平衡态的真溶液,所 以可以用热力学状态函数来描述,因此高分子稀溶液 已被广泛和深入的研究过,也是高分子领域中理论比 较成熟的一个领域,已经取得较大的成就。通过对高 分子溶液的研究,可以帮助了解高分子的化学结构, 构象,分子量,分子量分布;利用高分子溶液的特性 (蒸汽压,渗透压,沸点,冰点,粘度,光散射 等),建立了一系列高分子的测定手段,这在高分子 的研究工作和生产质量控制上都是必不可少的手段。

高分子物理第3章高分子溶液

高分子物理第3章高分子溶液

1 和 2 的差越小,ΔHm越小,越有利于溶解。因此,
δ称作为溶度参数。
如何测定溶度参数
(a) 溶胀法:用交联聚合物,使其在不同溶剂中达到溶胀平 衡后测其溶胀度,溶胀度最大的溶剂的溶度参数即为该聚 合物的溶度参数。
(b) 粘度法即按照溶度参数原则,溶度参数越接近相溶 性越好,相溶越好溶液粘度最大。所以把高分子在不 同溶剂中溶解,测其粘度,粘度最大时对应的溶剂的 溶度参数即为此高分子的溶度参数。
• 通常在常温下,下列聚合物溶解最困难的是()
(a) 非晶态非极性聚合物
(b)非晶态极性聚合物
(c) 晶态非极性聚合物
(d) 晶态极性聚合物
(c)
晶态非极性聚合物分子排列紧密,溶剂分子深入困难,非极 性溶剂与非极性高分子相互作用若,需要加热到晶态非 极性聚合物熔点才能溶解。
• 下列聚合物中不能熔融纺丝的是()
• 解释为什么 =8.1的苯乙烯-丁二烯共聚物不能溶于 =7.1 的戊烷,也不能溶于 =9.1的乙酸乙酯,却能溶于这两种 溶剂的1:1的混合溶剂中。
和它们的溶度参数相差较大,所以不溶。 混合溶剂的溶度参数可按下式估算:
混合 A A B B
这两种溶剂1:1混合的混合溶剂的溶度参数为=8.1,与苯乙 烯-丁二烯共聚物的溶度参数相同,根据溶度参数相近原 则,苯乙烯-丁二烯共聚物可溶于该混合溶剂中。
式中,T是溶解温度,ΔSm和ΔHm分别为混合熵和混
合热焓。
在溶解过程中,分子排列趋于混乱,ΔSm>0。 因此ΔGm的正负主要取决于ΔHm的正负及大小。
(1) 若溶解时ΔHm<0,即溶解时系统放热,必有 ΔGm<0,说明溶解能自动进行。通常是极性高分子溶解
在极性溶剂中。
(2)若溶解时ΔHm=0,即溶解时系统无热交换,必有 ΔGm<0,说明溶解能自动进行。通常是非极性高分子溶

聚合物溶液

聚合物溶液
一般描述平秱扩散现象的数学表达式有fick第一定律和fick第二
定律,但是对高分子溶液来说,扩散系数还有浓度依赖性和分
子量依赖性,而fick定律并未考虑这点,所以下面引入zimm模 型来描述秲溶液中高分子的平秱扩散现象
15
聚合物稀溶液
高分子在溶液中的扩散
zimm模型 在稀溶液中,聚合物链中单元间的流体力学相互作用非常强,在 扩张体积内,单元与溶剂间的流体力学相互作用也非常强。当聚 合物发生移动时,它实际上拖拽着其扩张体积内的溶剂一起运动, 而zimm模型将链的扩张体积看作一个穿过其周围溶剂运动的固体, 所以其为描绘稀溶液中聚合物运动学的最佳模型 zimm模型中分子链的扩散系数公式:
3
汇报提纲
聚合物溶液概述 聚合物的溶解
聚合物秲溶液
聚合物浓溶液
聚合物的分子量及分子量分布的测定
4
聚合物的溶解
聚合物的溶解
溶胀
由于聚合物分子与溶剂分子大小相差悬殊,溶剂分子向聚合物渗透 快,而聚合物分子向溶剂扩散慢,结果溶剂分子向聚合物分子链间
的空隙渗入,使之体积胀大,但整个分子链还不能做扩散运动
10
聚合物稀溶液
几个概念介绍
聚合物溶液的θ 状态
1 2 1 =RT 1 2 2
E
在一定温度和溶剂条件下,聚合物与溶剂间的相互作用参 数 1 / 2 时, E 0 聚合物溶液的热力学行为与理想溶 1 1 液相同, 此状态称为 θ 状态, 此时的温度称为 θ 温度, 此溶剂称为 θ 溶剂
聚合物秲溶液
聚合物浓溶液
聚合物的分子量及分子量分布的测定
9
聚合物稀溶液
几个概念介绍
流体力学相互作用

高分子物理 第三章_高分子溶液

高分子物理  第三章_高分子溶液
过量化学位 超额化学位
1i RT ln X1 RT ln 1 X 2 RTX 2
1 2 1 1 RT ( 1 ) 2 2
E i 1
表示高分子溶液与理想(小分子)溶液相比多出的部分,反 映了高分子溶液的非理想状态,称溶剂的“超额化学位变化”
1 2 1 RT [ln 1 (1 ) 2 1 2 ] x 1 1 2 RT [ 2 ( 1 ) 2 ]
高分子物理
第三章 高分子溶液
广义上的溶解
一种物质(溶质)分散于另一种物质(溶 剂)中的过程。
溶解是指溶剂分子和溶质分子或离子吸引并结合的过程

What ?
Why ? How ?


What is
研究
polymer solution?
高分子溶液是研究单个高分子链结构的最佳方法。 应用研究如高分子溶液的流变性能与成型工艺的关系等。
与理想溶液的△GM作比较,主要差别为:
1、以体积分数代替了摩尔分数(分子量高的影响)。 2、增加了含有1的第三项-反映了△HM ≠0对△GM的影响
溶剂的化学位变化
GM RT n1 ln 1 n2 ln 2 1n12
溶剂的 化学位 变化
(GM ) 1 2 1 RT [ln (1 ) 1 2 1 2] x n1 T , P ,n2
高分子溶液的混合熵SM
N1个溶剂小分子和N2个高分子占的总格子数 N N1 xN2
计算N1个溶剂分子和N2个高分子链在(N1+xN2)个格子中的排列方式总数
混合排列方式数Ω与熵S
S k ln
S M S solution S disorientation S solvent
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

通过共混可以获得原单一组分没有的一些新的综合性能, 并且可通过混合组分的调配(调节各组分的相对含量)来获得 所需性能的材料。
3.2 聚 合 物 浓 溶 液
绝大多数聚合物共混体系中,不同聚合物组分间并不能达到热 力学上的完全混溶,往往是各自聚集形成两相或多相的微相分 离结构。但若两种聚合物共混时相容性太差,混合程度(相互 的分散程度)很低时,易出现宏观的相分离,达不到共混的目 的,无实用价值。
(i)溶胀:由于聚合物分子与溶剂分子大小相差悬殊,溶剂分 子向聚合物渗透快,而聚合物分子向溶剂扩散慢,结果溶剂分 子向聚合物分子链间的空隙渗入,使之体积胀大,但整个分子 链还不能做扩散运动,体系表现为两相;
3.1 聚 合 物 的 溶 解
(ii)溶解:随着溶剂分子的不断渗入,聚合物分子链间的空 隙增大,并且渗入的溶剂分子还能使高分子链溶剂化,从而削 弱了分子链间的相互作用,使链段得以运动,直至脱离其他链 段的作用,转入溶解。当所有的高分子都进入溶液后,溶解过 程方告完成。 有些聚合物仅能溶胀或依条件仅停留在溶胀阶段,根据聚合 物在其他条件不变仅延长时间最终能否溶解可将聚合物溶胀可 分为无限溶胀和有限溶胀。
3.1 聚 合 物 的 溶 解
3.1.2 聚合物溶剂的选择 (1)极性相似原则
“相似者相容”,极性-极性;非极性-非极性 (2)溶度参数相近原则: 溶度参数是反映分子间相互作用力大小的一个参数。 定义为单位体积汽化能的平方根。用d来表示。常见溶剂的 溶度参数可查手册。 若难以找到合适的单一溶剂,可选择混合溶剂。混合溶 剂的溶度参数计算如下式: δm = φ1δ1 +φ2δ2 (φ为体积分数)
但是为了获得优良的物理力学性能,往往必须选择物性相差较 大的聚合物相共混。为了改善共混体系的相容性,可加入对两 种聚合物都具有一定相容性的相容剂(增容剂)。 通过共混可带来多方面的好处:(1)改善高分子材料的机械性 能;(2)提高耐老化性能;(3)改善材料的加工性能;(4) 有利于废弃聚合物的再利用。
无限溶胀是指聚合物能无限制地吸收溶剂分子直至形成均相 的溶液;
3.1 聚 合 物 的 溶 解
有限溶胀是指聚合物吸收一定量溶剂后,若其它条件不变,不 管与溶剂接触时间多长,溶剂渗入量不再增加,聚合物体积也 不再增大,高分子链段不能挣脱彼此的束缚,不能很好地向溶 剂扩散,体系始终保持两相状态。 有些有限溶胀的聚合物在升温条件下,由于分子链运动加 剧,可促进彼此分离而发生溶解。升温可促进溶解,增加溶解 度。
聚合物溶解缓慢且溶解速度与分子量有关→药物缓释
(3)聚合物的溶解与聚合物的聚集态结构有关 非晶态聚合物中,分子链堆砌比较松散,相互作用较弱, 溶剂小分子易渗入聚合物内的空隙中,使之溶胀和溶解。 晶态聚合物中,分子排列规整,堆砌紧密,分子链相互作 用强,溶剂小分子难渗入,溶解比较困难。只有当其晶格被 破坏后才能溶解。
3.2 聚 合 物 浓 溶 液
聚合物浓溶液在聚合物的加工和使用中经常遇到,例如增塑聚 合物、纺丝液、粘合剂、涂料、冻胶、凝胶、聚合物共混物等 均属聚合物浓溶液的范畴 所谓聚合物共混物 (polymer blend)是通过物理或化学方法 将两种或两种以上的聚合物混合而成的宏观上均匀、连续的固 体聚合物材料,也称聚合物合金。
对于一些交联聚合物,由于交联的束缚(链与链之间形成 化学键),即使升高温度也不能使分子链挣脱化学键的束缚, 因此不能溶解。但交联点之间的链段可发生弯曲和伸展,因此 可发生溶胀。
3.1 聚 合 物 的 溶 解
(2)聚合物的溶解度越大,溶解越快。
3.1 聚 合 物 的 溶 解
非极性晶态聚合物与极性晶态聚合物又具有不同的溶解特性: 非极性晶态聚合物,由于其与溶剂的相互作用较弱,在室 温下没有足够的能量破坏其晶格,通常只能微弱溶胀;只有 升温到其熔点附近,使其晶态结构熔化为非晶态,才能溶解。 如线形聚乙烯。 极性晶态聚合物,由于其中的非晶部分可与渗入的极性溶 剂之间形成氢键等强的相互作用,而氢键的生成热可破坏晶 格,使溶解得以进行。因此极性晶态聚合物常可在室温下溶 于适宜的极性溶剂中。 对于同种聚合物,结晶可降低聚合物的溶解度,结晶度越高, 溶解越困难,溶解度越小。
第三章 聚合物溶液
聚合物溶液是指聚合物以分子状态分散在溶剂中所形成的均相 混合体系,可分为聚合物浓溶液和聚合物稀溶液。 浓和稀并不是指溶液浓度而是溶液性质。 聚合物稀溶液中,聚合物分子以孤立的分子形式存在,相互作 用小,溶液粘度低且稳定,若无化学变化,其性质不随时间而 改变,是一个热力学稳定体系; 聚合物浓溶液中,聚合物分子链彼此接近甚至相互贯穿、纠缠, 相互作用强,可因缠结而产生物理交联,溶液粘度较高、稳定 性较差,甚至产生凝胶和冻胶,成为不能流动的半固体。
3.1 聚 合 物 的 溶 解
(3)溶剂化原则 溶剂分子可与高分子链发生较强的相互作用,从而减弱高 分子链间的相互作用,使链分离而发生溶胀,直到溶解。 溶剂化作用要求聚合物和溶剂中,一方是电子受体(亲电 性),另一方是电子给体(亲核性),通过两者的相互作用产 生溶剂化。 常见的亲电性基团及其强弱: -SO3H > -COOH > -C6H4OH > =CHCN > =CHNO2 > -CHCl2 > =CHCl 常见的亲核性基团及其强弱: -CH2NH2 > -C6H4NH2 > -CON(CH3)2 > -CONH- > -CH2COCH2- > -CH2OCOCH2- > -CH2-O-CH2-
3.1 聚 合 物 的 溶 解
3.1.1 聚合物的溶解特性 由于聚合物分子量大,具有多分散性,可有线形、支化和交 联等多种分子形态,聚集态又可表现为晶态、非晶态等,因此 聚合物的溶解现象比小分子化合物复杂得多,具有许多与小分 子化合物溶解不同的特性: (1)聚合物的溶解是一个缓慢过程,包括两个阶段:
相关文档
最新文档