动量与角动量习题解答
大学物理习题及解答(运动学、动量及能量)

1-1.质点在Oxy 平面内运动,其运动方程为j t i t r )219(22-+=。
求:(1)质点的轨迹方程;(2)s .t 01=时的速度及切向和法向加速度。
1-2.一质点具有恒定加速度j i a 46+=,在0=t 时,其速度为零,位置矢量i r 100=。
求:(1)在任意时刻的速度和位置矢量;(2)质点在oxy 平面上的轨迹方程,并画出轨迹的示意图。
1-3. 一质点在半径为m .r 100=的圆周上运动,其角位置为342t +=θ。
(1)求在s .t 02=时质点的法向加速度和切向加速度。
(2)当切向加速度的大小恰等于总加速度大小的一半时,θ值为多少?(3)t 为多少时,法向加速度和切向加速度的值相等?题3解: (1)由于342t +=θ,则角速度212t dt d ==θω,在t = 2 s 时,法向加速度和切向加速度的数值分别为 222s 2t n s m 1030.2-=⋅⨯==ωr a22s t t s m 80.4d d -=⋅==t r a ω(2)当2t 2n t 212a a a a +==时,有2n 2t 3a a=,即 22212)24(3)r t (tr = s 29.0s 321==t此时刻的角位置为 rad.t 153423=+=θ (3)要使t n a a =,则有2212)24()t (r tr =s .t 550=3-1如图所示,在水平地面上,有一横截面2m 20.0=S 的直角弯管,管中有流速为1s m 0.3-⋅=v 的水通过,求弯管所受力的大小和方向。
解:在t ∆时间内,从管一端流入(或流出)水的质量为t vS m ∆=∆ρ,弯曲部分AB 的水的动量的增量则为()()A B A B v v t vS v v m p -∆=-∆=∆ρ依据动量定理p I ∆=,得到管壁对这部分水的平均冲力()A B v v I F -=∆=Sv t ρ从而可得水流对管壁作用力的大小为N 105.2232⨯-=-=-='Sv F F ρ作用力的方向则沿直角平分线指向弯管外侧。
《大学物理I》作业-No.03 角动量与角动量守恒-A-参考答案

《大学物理I 》作业 No.03 角动量 角动量守恒定律 (A 卷)班级 ________ 学号 ________ 姓名 _________ 成绩 _______一、选择题[ ]1、一质点沿直线做匀速率运动时,(A) 其动量一定守恒,角动量一定为零。
(B) 其动量一定守恒,角动量不一定为零。
(C) 其动量不一定守恒,角动量一定为零。
(D) 其动量不一定守恒,角动量不一定为零。
答案:B答案解析:质点作匀速直线运动,很显然运动过程中其速度不变,动量不变,即动量守恒;根据角动量的定义v m r L⨯=,质点的角动量因参考点(轴)而异。
本题中,只要参考点(轴)位于质点运动轨迹上,质点对其的角动量即为零,其余位置均不会为零。
故(B)是正确答案。
[ ]2. 两个均质圆盘A 和B 密度分别为A ρ和B ρ,若A ρ>B ρ,两圆盘质量与厚度相同,如两盘对通过盘心且垂直于盘面的轴的转动惯量各为A J 和B J ,则 (A) A J >B J(B) B J >A J(C) A J =B J(D) A J 、B J 哪个大,不能确定答案:B答案解析:设A 、B 联盘厚度为d ,半径分别为A R 和B R ,由题意,二者质量相等,即B B A A d R d R ρπρπ22=因为B A ρρ>,所以22B A R R <,由转动惯量221mR J =,则B A J J <。
[ ]3.对于绕定轴转动的刚体,如果它的角速度很大,则 (A) 作用在刚体上的力一定很大 (B) 作用在刚体上的外力矩一定很大(C) 作用在刚体上的力和力矩都很大 (D) 难以判断外力和力矩的大小答案:D 答案解析:由刚体质心运动定律和刚体定轴转动定律知:物体所受的合外力和合外力矩只影响物体运动的加速度和角加速度,因此无法通过刚体运动的角速度来判断外力矩的大小,正如无法通过速度来判断物体所受外力的大小一样。
角动量守恒解答

B
把轴上环C下移,使得两球离轴的距离缩
减钢为球r的2=角5 速cm度.w则=__3_6_r_a_d_/_s__.
C
系统对竖直轴的角动守量恒
0r12 / r22 36rad/ s
10、若作用于一力学系统上外力的合力为零,则外 力的合力矩___不__一_定______(填一定或不一定)为
零;这种情况下力学系统的动量、角动量、机械能 三个量中一定守恒的量是_____动__量_________.
8、我国第一颗人造卫星沿椭圆轨 [ ]
8、我国第一颗人造卫星沿椭圆轨道运动,地球的中心O为该椭圆的一个焦点.已知地球半径R=6378 km,卫星与地面的最近距离 =
道运动,地球的中心O为该椭圆的 439 km,与地面的最远距离 =2384 km.若卫星在近地点A1的速度v1=8.
(E) LB = LA,EKA < EKB.
是RA和RB.设卫星对应的角动量分别是LA、LB,动能分别是
EKA、EKB,则应有
(A) LB > LA,EKA > EKB. (B) LB > LA,EKA = EKB.
RB RA
BO
A
(C) LB = LA,EKA = EKB.
(D) LB < LA,EKA = EKB.
(E) LB = LA,EKA < EKB.
v' 为
时小球的横向速度.
v' 为往下拉时小.球的则横向物速度体.
O
这种情况下力学系统的动量、角动量、机械能三个量中一定守恒的量是________________.
(A) 动能不变,动量改变. (3) 因绳张力不做功,也不计非保守力的功,故机械能守恒. 1分
2分
(B) 动量不变,动能改变. 到 时,向下拉的速度为v,求下拉过程中拉力所作的功.
《大学物理AI》作业 No.03 角动量、角动量守恒(参考解答)

为为零零。;((bc))不不正正确确; ;角当动参量考还点与不参在考运点动的直选线择上有时关,,质只点要相参对考于点参不考选点在的运位动矢直r 是线在上变,化角动的量,就因可此能角不动
量
L
r
mv
也是会变化的;(d)不正确;作匀速率圆周运动的物体,其合外力指向圆心,属于有心
力,以圆心为参考点,质点的角动量守恒,角动量大小和方向都不改变。
端的水平轴在竖直平面内自由摆动,现将棒由水平位置静止释放,求:
(1)细棒和小球绕 A 端的水平轴的转动惯量,
A
B
(2)当下摆至 角时,细棒的角速度。
m
解:(1) J
J1
J2
ml 2
1 ml 2 3
4 ml 2 3
(2)根据转动定理: M
J
d dt
J
d d
d dt
J
d d
1、理解质点、质点系、定轴转动刚体的角动量的定义及其物理意义; 2、理解转动惯量、力矩的概念,会进行相关计算; 3、熟练掌握刚体定轴转动定律,会计算涉及转动的力学问题; 4、理解角冲量(冲量矩)概念,掌握质点、质点系、定轴转动刚体的角动量定理,熟练进行有关计算; 5、掌握角动量守恒的条件,熟练应用角动量守恒定律求解有关问题。
第4章动量和角动量

用多大的牵引力拉车厢? (摩擦忽略不计)
解 选取车厢和车厢里的煤 m 和即将 落入车厢的煤 d m 为研究的系统。取水平
v
dm
向右为正。
m
F
t 时刻系统的水平总动量:
m v dm 0mv
t + dt 时刻系统的水平总动量: m d v m (v m d m )v
dt 时间内水平总动量的增量: d p (m d m )v m v d v m
④ 动量和力是矢量,可沿坐标轴分解,当沿某坐标方向所受合 外力为零时,总动量沿该方向的分量守恒。
N
当Fx 0时,
mivix px 常量
i=1
当Fy 0时,
N
miviy py 常 量
i=1
当Fz 0时,
N
miviz pz 常 量
i=1
⑤ 动量守恒定律只适用于惯性系。
例题4-3 质量为M,仰角为α的炮车发射了一枚质量为m的炮
dt
F dtdp — 动量定理的微分式
2)积分形式: 对上式积分,
t2
v Fdt
t1
pv2 pv1
dpv
即:
t2
v Fdt
pv
— 动量定理的积分式
t1
在一个过程中,质点所受合力的冲量等于质点动量的增量。
说明
1、反映了过程量与状态量的关系。 2、I 与p 同向3、。 只适用于惯性系。
从动量定理可以知道,在相等的冲量作用下,不同质量的物体, 其速度变化是不相同的,但它们的动量的变化却是一样的,所以从 过程角度来看,动量比速度能更能恰当地反映了物体的运动状态。 因此,一般描述物体作机械运动时的状态参量,用动量比用速度更 确切些。动量是描述物体机械状态的状态参量。
力学2_习题

1、角动量和角动量守恒定律 (1) 角动量 r p r mv L
(2)两个质点的 角动量守恒定律
L1 L2 常矢量
2、角动量定理
(1)角动量的时间变化率 力矩
dL M r F dt
(2) 质点系的角动量定理
dL M外 r F dt (3)质点系的角动量守恒定律 dL M 外 0时, 0 dt
2 3m2v0 cos 1 M 3m M 2m gl
类似的例题
质量为m、半径为r的圆柱从一斜面的顶 端由静止滚下,斜面长为l,倾角为 , 摩擦力为f, 求圆柱体在斜面底端的速度。
根据动能守恒
l
1 2 1 mgl sin fl mv J 2 2 2
(2)在物体从A滑到B的过程中,物体对槽所作的功A。
(3)物体到达B时对槽的压力。
m
A R
M
B
解:
(1)取物体m、槽M和地球为系统。对地面参考系,设小球 离开槽底端时小球与槽的速度分别为v、V,由机械能守恒
1 1 2 mgR mv MV 2 2 2
又由水平方向动量守恒,有
mv MV 0
(2)保守力的判断
(3)势能
重力势能
弹性势能 引力势能
E p G
Ep mgh 1 2 E p kx 2 Mm
r
5、机械能守恒定律及能量守恒
1. 从一个半径为 R 的均匀薄圆板上挖去一个半径为 R/2 的圆板,所形 成的圆洞的中心在距圆薄板中心 R/2 处,所剩薄板的质量为 m 。求此时薄 板对通过圆中心与板面垂直的轴的转动惯量。
vc
棒和球组成的系统为研究对象。 碰撞后系统质心作匀速直线运动ห้องสมุดไป่ตู้同时 系统绕质心作匀速转动。
角动量复习题

角动量复习题角动量复习题角动量是物体运动的一个重要物理量,它描述了物体围绕某一轴心旋转的性质。
在物理学中,角动量的计算涉及到物体的质量、速度以及旋转半径等因素。
下面将介绍一些与角动量相关的复习题,帮助大家巩固对角动量的理解。
1. 一个半径为2米的旋转木马上,有一个质量为100kg的小孩坐在边缘处。
如果旋转木马以每秒2π弧度的角速度旋转,求小孩的角动量。
解析:角动量的计算公式为L = Iω,其中L为角动量,I为转动惯量,ω为角速度。
在此题中,旋转木马上的小孩可以视为一个质点,其转动惯量可以近似为mR^2,其中m为小孩的质量,R为旋转木马的半径。
代入数值计算可得L = 100kg × (2m)^2 × 2π rad/s = 800π kg·m^2/s。
2. 一个质量为2kg的物体以每秒4π弧度的角速度绕着一个半径为1米的圆周运动,求其角动量。
解析:同样利用角动量的计算公式L = Iω,其中I为转动惯量,ω为角速度。
在此题中,物体可以视为一个质点,转动惯量I = mR^2,其中m为物体质量,R为圆周半径。
代入数值计算可得L = 2kg × (1m)^2 × 4π rad/s = 8π kg·m^2/s。
3. 一个半径为3米的风车叶片以每秒3π弧度的角速度旋转,其转动惯量为10kg·m^2,求其角动量。
解析:根据角动量的计算公式L = Iω,其中L为角动量,I为转动惯量,ω为角速度。
代入数值计算可得L = 10kg·m^2 × 3π rad/s = 30π kg·m^2/s。
4. 一个质量为1kg的小球以每秒2π弧度的角速度绕着一个半径为2米的圆周运动,求其角动量。
解析:同样利用角动量的计算公式L = Iω,其中I为转动惯量,ω为角速度。
在此题中,小球可以视为一个质点,转动惯量I = mR^2,其中m为小球质量,R为圆周半径。
(上海交大)大学物理上册课后习题答案4动量和角动量

)s 习题44-1.如图所示的圆锥摆,绳长为l ,绳子一端固定,另一端系一质量为m 的质点,以匀角速ω绕铅直线作圆周运动,绳子与铅直线的夹角为θ。
在质点旋转一周的过程中,试求:(1)质点所受合外力的冲量I;(2)质点所受张力T 的冲量T I。
解:(1)设周期为τ,因质点转动一周的过程中,速度没有变化,12v v =,由I mv =∆ ,∴旋转一周的冲量0I =;(2)如图该质点受的外力有重力和拉力,且cos T mg θ=,∴张力T 旋转一周的冲量:2cos T I T j mg j πθτω=⋅=⋅所以拉力产生的冲量为2mgπω,方向竖直向上。
4-2.一物体在多个外力作用下作匀速直线运动,速度4/v m s =。
已知其中一力F方向恒与运动方向一致,大小随时间变化内关系曲线为半个椭圆,如图。
求:(1)力F在1s 到3s 间所做的功;(2)其他力在1s 到3s 间所做的功。
解:(1)半椭圆面积⋅====⋅=⎰⎰⎰⎰v t F v t Fv x F x F A d d d dJ 6.12540201214==⨯⨯⨯=ππ(2)由动能定理可知,当物体速度不变时,外力做的总功为零,所以当该F做的功为125.6J 时,其他的力 的功为-125.6J 。
4-3.质量为m 的质点在Oxy 平面内运动,运动学方程为cos sin r a t i b t j ωω=+,求:(1)质点在任一时刻的动量;(2)从0=t 到ωπ/2=t 的时间内质点受到的冲量。
解:(1)根据动量的定义:P mv = ,而drv dt== sin cos a t i b t j ωωωω-+ , ∴()(sin cos )P t m a t i b t j ωωω=-- ;(2)由2()(0)0I mv P P m b j m b j πωωω=∆=-=-= , 所以冲量为零。
4-4.质量为M =2.0kg 的物体(不考虑体积),用一根长为l =1.0m 的细绳悬挂在天花板上。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
第三章 动量与动量守恒定律习题一选择题1. 一辆洒水车正在马路上工作,要使车匀速直线行驶,则车受到的合外力:( )A. 必为零;B. 必不为零,合力方向与行进方向相同;C. 必不为零,合力方向与行进方向相反;D. 必不为零,合力方向是任意的。
解:答案是C 。
简要提示:根据动量定理,合力F 的冲量F d t = d p = d (m v )=m d v +v d m =v d m 。
因d m <0,所以F 的方向与车行进速度v 的方向相反。
2. 两大小和质量均相同的小球,一为弹性球,另一为非弹性球,它们从同一高度落下与地面碰撞时,则有:()A. 地面给予两球的冲量相同;B. 地面给予弹性球的冲量较大;C. 地面给予非弹性球的冲量较大;A. 无法确定反冲量谁大谁小。
解:答案是B 。
简要提示:)(12v v -=m I3. 质量为m 的铁锤竖直向下打在桩上而静止,设打击时间为∆t ,打击前锤的速率为v ,则打击时铁锤受到的合外力大小应为:()A .mg t m +∆v B .mg C .mg t m -∆v D .tm ∆v 解:答案是D 。
简要提示:v m t F =∆⋅4. 将一长木板安上轮子放在光滑平面上,两质量不同的人从板的两端以相同速率相向行走,则板的运动状况是:() 选择题4图A. 静止不动;B. 朝质量大的人行走的方向移动;C. 朝质量小的人行走的方向移动;D. 无法确定。
解:答案是B 。
简要提示:取m 1的运动方向为正方向,由动量守恒:02211='+-v v v M m m ,得:M m m /)(21v v --='如果m 1> m 2,则v ′< 0。
5. 一只猴子用绳子拉着一个和它质量相同的石头,在一水平的无摩擦的地面上运动,开始时猴子和石头都保持静止,然后猴子以相对绳子的速度u 拉绳,则石头的速率为:()A. uB. u /2C. u /4D. 0解:答案是B 。
简要提示:由动量守恒:0v v =+2211m m ,u =-12v v ;得2/2u =v 。
6. 高空悬停一气球,气球下吊挂一软梯,梯上站一人,当人相对梯子由静止开始匀速上爬时,则气球:()A.仍静止;B.匀速上升;C.匀速下降;D.匀加速上升。
解:答案是C 。
简要提示:由质心运动定理,系统的质心位置不变。
7. 一背书包的小学生位于湖中心光滑的冰面上,为到达岸边,应采取的正确方法是:()A. 用力蹬冰面B. 不断划动手臂C. 躺在冰面上爬行D. 用力将书包抛出解:答案是D 。
二填空题1. 两个飞船通过置于它们之间的少量炸药爆炸而分离开来,若两飞船的质量分别为1200kg 和1800kg ,爆炸力产生的冲量为600Ns ,则两船分离的相对速率为ms –1。
解:答案为:5/6 ms –1简要提示:由动量定理:11v m I =,22v m I =得:11s m 2/1-⋅=v ,12s m 3/1-⋅=v所以分离速度为12112s m 6/5-⋅=+=v v v2. 一小车质量m 1 = 200 kg ,车上放一装有沙子的箱子,质量m 2= 100 kg ,已知小车与砂箱以v 0 = 3.5 kmh –1的速率一起在光滑的直线轨道上前进,现将一质量m 3 = 50 kg 的物体A 垂直落入砂箱中,如图所示,则此后小车的运动速率为kmh –1。
解:答案为:3.0 kmh –1简要提示:系统在水平方向上不受力的作用,所以水平方向的动量守恒:v v )()(321021m m m m m ++=+, 1h km 0.3-⋅=∴v 3. 初始质量为M 0的火箭在地面附近空间以相对于火箭的速率u 垂直向下喷射燃料,每秒钟消耗的燃料d m /d t 为常数,设火箭初始速度为0,则火箭上升的速率v 与时间函数关系为。
解:答案为:gt MM u -=0lnv 简要提示:由动量定理得到: m u m t mg d d d +=-v 两边积分: ⎰⎰⎰+=-M M t mm u t g 0d d d 00v v ,得到 0ln M M u gt +=-v , 即 gt M M u -=0lnv , 式中t tm M M d d 0-= 4. 机关枪每分钟发射240发子弹,每颗子弹的质量为10g ,出射速度为900 ms –1,则机关枪的平均反冲力为。
解:答案为:36 N简要提示:每个子弹受到的冲量为:v m I =单位时间内子弹受到的平均冲力,即机关枪的平均反冲力:)N (366090010102403=⨯⨯⨯=∆=-∑t I F 5. 乐队队长的指挥棒,是由长为l 的细杆,其两端分别附着两个质量为m 1和m 2的物体所组成,将指挥棒抛入空中,其质心的加速度为,质心的轨迹为。
解:答案为:g ; 抛物线。
A 3 m 2 m 1 填空题2图简要提示:根据质心运动定理。
6. 质量为m =0.2kg 的小球系于轻绳的一端,并置于光滑的平板上,绳的另一端穿过平板上的光滑小孔后下垂用手握住。
开始时,小球以速率v 1=2.0 ms –1作半径为r 1 = 0.5m 的圆周运动;然后将手缓慢下移,直至小球运动半径变为r 2=0.1m 。
此时小球的运动速率为。
解:答案为:10 ms –1简要提示:由角动量守恒定律得:2211r m r m v v =,2112/r r v v =7. 哈雷彗星在椭圆轨道上绕日运行,其近日点距离太阳1010m ,远日点距离太阳1012m ,则哈雷彗星在近日点时的速率与远日点时的速率之比为。
解:答案为:简要提示:角动量守恒定律三计算题1. 一位高尔夫球运动员打击高尔夫球,给球以大小为50ms –1、方向与水平面成30° 向上的初速度,设球的质量为0.025 kg ,棒与球接触时间为,试求棒、球各受到的冲量大小,球受到的平均冲力大小。
解:以球为对象,由动量原理,球受到的冲量大小为I = mv - 0= mv = ′ 50 =S N 25.1 ⋅==-=I I ′,大小仍为′棒受到的冲量是I IN)(12501.025.1 ==∆=t I F 为:球受到的平均冲力大小 2. 一股水流从水管中喷射到墙上,若水的速率为5 ms –1,水管每秒喷出的水为310-4m 3,若水不溅散开来,其密度r 为103 kgm –3,试求水作用于墙上的平均冲力。
解:以质量为D m 的水流为对象,有 00)(v v v m m t F ∆-=-∆=∆00v v tV t m F ∆∆-=∆∆-=ρ 由牛顿第三定律,墙受到的冲力大小N)(5.15110310430=⨯⨯⨯=∆∆=-=-v t V F F ρ′ 方向与水流速同向。
3. 一辆质量为M 的铁路平板车静止于一条无摩擦的水平直线轨道上,车上站有n 个质量均为m 的人,为使车获得向前的速度,一是n 个人均以相对车为u 的速率一起向后跳下,另一种是n 个人依次以相对车为u 的速率先后跳下车,求证依次跳比一起跳使车获得的速度更大。
解:取平板车和n 个人为研究对象,由于在水平方向上无外力作用,故系统在该方向上动量守恒。
选平板车运动方向为正方向,则有0)(=-+u nm M v v所以n 个人同时跳下时,平板车的速度为u nmM nm +=v 若一个人、一个人依次跳下,情况就不同了。
第一个人跳下时,有动量守恒定律 0)(])1([11=-+-+u m m n M v v第二个人跳下时有122])1([)(])2([v v v m n M u m m n M -+=-+-+mN M mu )1(12-+=-v v 以次类推,得到当第n 个人跳下时,有1)()(-+=-+n n n m M u m M v v v , mM mu n n +=--1v v 联立解得: )1211(nm M m M m M mu n ++++++=Λv 因为nm M m M m M +>>+>+1211Λ,所以v v =+>nmM n mu n 。
4.三物体A 、B 、C 的质量均为m ,连接如图,开始时B 和C 紧依靠,两者之间有长为0.5m 的绳相连,忽略绳和滑轮质量,不计所有摩擦。
求:(1)A 、B开始运动后经多少时间C 也开始运动(2)B 和C 拉紧后C 开始运动时的速度大小。
解:(1)以A ,B 为对象,由牛顿第二定律得mg - T = maT = ma 解得g a 21= 计算题4图 AC B得由221at s =s 45.042===g S a s t ( 2 ) 以A ,B ,C 系统内力远大于外力,动量守恒v v v '=+m m m 3,其中1s m 2.221-⋅===gt at v 所以1s m 47.132-⋅==v v ′ 5.质量为M 的人,手握一质量为m 的物体,此人沿与地面成a 角的方向以初速率v 0跳出,当他到达最高点时,将m 以相对速率u 水平向后抛出,试求其跳出距离的增加量。
解:在最高点,抛物瞬间人和物体在水平方向上无外力作用,由水平方向的系统动量守恒αcos )(0v v v M m M m +=+′其中u -=v v ′ 代入求得人到达最高点时的速率u Mm m ++=αcos 0v v 人的水平速度增量u mM m +=-=∆αcos 0v v v 由运动学可求出人从最高点到落地的跳跃时间g g H t αsin 20v == 故增加距离αsin )(0gM m mu t x +=∆=∆v v 6. 将一空盒放在秤盘上,并将秤的读数归零。
然后从高出盒底4.9M 处,将小石子流以每秒100个的速率注入盒中。
假设每一石子的质量为20克,都从同一高度落下,且落入盒内就停止运动,求石子从开始注入到10秒时秤的读数解:单位时间内石子对盒子的平均冲力为:其中v tm F ∆∆=其中gh 2=v 所以10秒时秤的读数为盒内石子的重量与该平均冲力的和,即:N)(6.2151966.19=+=∆∆+∆∆=+=tg tm t m Mg F F 2gh 7. 一质量为6000 kg 的火箭竖直发射,设喷气速率为1000ms –1,试问要产生克服火箭重力所需推力和要使火箭获得最初向上的加速度20ms –2,这两种情况下火箭每秒应分别喷出多少气体解:在气体d m 喷出前后,系统的动量变化为m u m m u m m m p d d ))(d ()d )(d (d +=---+++=v v v v v考虑到重力作用,t mg t F d d -=由系统的动量定理,p t F d d =,得到:m u m t mg d d d +=-v ,即mg tm u t m --=d d d d v 要产生克服火箭重力所需的最小推力(无向上加速度),可由0d d =tv 求出 )s kg (8.5810008.96000d d 1-⋅-=⨯-=-=u mg t m 要使火箭获得最初向上的加速度a ,可由a t=d d v 求出 ma mg tm u =--d d )s kg (4.1761000)208.9(6000)(d d 1-⋅-=+⨯-=+-=u a g m t m 8. 求半圆形均匀薄板的质心,薄板的半径为R 。