2-2Fluent基本操作演示详解
fluent教程

fluent教程Fluent是一款由Ansys开发的计算流体动力学(CFD)软件,广泛应用于工程领域,特别是在流体力学仿真方面。
本教程将介绍一些Fluent的基本操作,帮助初学者快速上手。
1. 启动Fluent首先,双击打开Fluent的图形用户界面(GUI)。
在启动页面上,选择“模拟”(Simulate)选项。
2. 创建几何模型在Fluent中,可以通过导入 CAD 几何模型或使用自带的几何建模工具来创建模型。
选择合适的方法,创建一个几何模型。
3. 定义网格在进入Fluent之前,必须生成一个网格。
选择合适的网格工具,如Ansys Meshing,并生成网格。
确保网格足够精细,以便准确地模拟流体力学现象。
4. 导入网格在Fluent的启动页面上,选择“导入”(Import)选项,并将所生成的网格文件导入到Fluent中。
5. 定义物理模型在Fluent中,需要定义所模拟流体的物理属性以及边界条件。
选择“物理模型”(Physics Models)选项,并根据实际情况设置不同的物理参数。
6. 设置边界条件在模型中,根据实际情况设置边界条件,如入口速度、出口压力等。
选择“边界条件”(Boundary Conditions)选项,并给出相应的数值或设置。
7. 定义求解器选项在Fluent中,可以选择不同的求解器来解决流体力学问题。
根据实际情况,在“求解器控制”(Solver Control)选项中选择一个合适的求解器,并设置相应的参数。
8. 运行仿真设置完所有的模型参数后,点击“计算”(Compute)选项,开始运行仿真。
等待仿真过程完成。
9. 后处理结果完成仿真后,可以进行结果的后处理,如流线图、压力分布图等。
选择“后处理”(Post-processing)选项,并根据需要选择相应的结果显示方式。
10. 分析结果在后处理过程中,可以进行结果的分析。
比较不同参数的变化,探索流体流动的特点等。
以上是使用Fluent进行流体力学仿真的基本流程。
2.Fluent基本操作演示

注意:确保最小体积不能是负值
平滑(或者交换)网格
点击按钮Smooth ,再点 击按钮 Swap ,直到 Fluent 报告没有需要 交换的面为止。
更改网格的长度单位
更改单位制: 在Define 的下拉 菜单中打开Set Units 对话框,进 行更改
Solve -> Monitors -> Surface...
保存case 文件
开始迭代计算
检查计算是否收敛
监测残差值
至少下降3个量级 能量方程残差下降6个量级(基于压力的算法) 组分方程残差下降5个量级
计算结果不再随着迭代的进行发生变化 整个系统的质量,动量,能量都守恒。
不平衡误差少于0.1% 员
存data 文件பைடு நூலகம்
后处理
可视化分析,文字报告
流场、涡旋、温度场、应力分布 矢量图、等值线图(云图)、X—Y坐标图 后处理软件TECPLOT
误差处理
显示初步计算结果
温度场
XY 曲线图
自定义函数
显示自定义函数
显示自定义函数
使用二阶离散化方法重新计算
Define -> Models -> Solver
• 先求解流场(可选择不使用能量方程),再求解温度场
应用FLUENT基本原则
1. 检查网格质量 2. 检查单位制,确保真实比例 3. 应用合适的物理模型 4. 能量方程的亚松弛因子设在0.95 和1之间 5. 如果是非结构的四面体网格,梯度的计算
采用“node-based gradients” 6. 用残差图监视收敛
显示网格
可以用鼠标右键检查区号和 相应的边界的对应关系
fluent操作实例

fluent操作实例Fluent操作是指在使用PHP Laravel框架的时候,通过链式调用的方式实现一个更加流畅的数据操作过程,在使用过程中,可以不用直接调用每一个操作的函数,而是在调用前一个函数时,直接在后面继续添加想要进行的操作,最终返回处理好的结果。
在本文中,我们将介绍如何对一个数据库表进行增、删、改、查等操作,以及具体的Fluent链式调用实例。
一、连接数据库在Laravel框架中,我们可以使用DB类连接数据库,DB类是Laravel内置的一个数据库操作类,它封装了对于数据库的操作,不必在每次操作数据库的时候都要重新连接,在连接数据库之前,请查看config/database.php文件是否正确地配置了您的数据库连接信息。
以下是连接数据库的样例代码:DB::connection()->getPdo();二、查询数据库表在Fluent中,我们查询数据库表时,可以通过DB类下的table 方法,传入表名来获取该表的所有数据。
具体样例代码如下:$users = DB::table('users')->get();如果您只需要获取表中的一条数据,可以在get后跟上first方法,如下代码所示:$user = DB::table('users')->where('name', 'John')->first();您也可以使用select语句筛选需要查询的字段,如下代码所示:$user = DB::table('users')->select('id', 'name')->get();三、插入数据如果需要插入一条新的数据进入数据库表,可以使用insert方法。
下面是插入一条用户数据的样例代码:DB::table('users')->insert(['name'=>'JohnDoe','email'=>'****************'] );四、更新数据如果需要更新数据,可以通过其中的update方法来实现,下面是更新一条用户数据的样例代码:DB::table('users')->where('id', 1)->update(['votes' => 1]);以上代码将在名为users的表中更新所有id为1的数据,并将其votes值设为1。
Fluent使用指南2

Fluent使用指南2第一步:网格1、读入网格(File→Read→Case)2、检查网格(Grid→Check)3、平滑网格(Grid→Smooth/Swap)4、更改网格的长度单位(Grid→Scale)5、显示网格(Display→Grid)第二步:建立求解模型1、保持求解器的默认设置不变(定常)2、开启标准K-ε湍流模型和标准壁面函数Define→Models→Viscous第三步:设置流体的物理属性ari→Density→1.225viscosity→1.7894e-0.5第四步:设置边界条件对outflow、velocity-inlet、wall 采用默认值第五步:求解1、Solv→Controls→Solution中,Discretitation→Pressure→standardPressure→0.2 Momentum→0.52、Solution Initialization→ all zone3、Residual Monitors→Plot第六步:迭代第七步:进行后处理第八步:1、Define→Model→Evlerian2、在Vissous Model→K-epsilon Multiphase Model→Mixture 第九步:在Define Phase Model→Discrete phase ModelInteraction↓选中→Interaction With Continuous Phase Nomber of Continuous PhaseInteractions per DPM Interaction第十步:设置物理属性第十一步:Define→Operating →重力加速度Define→Boondary Conditionsflvid→Mixture→选中Sovrce Terms 其他默认Phase-1→选中Sovrce Terms 其他默认Phase-2→选中Sovrce Terms 其他默认inflow→Mixture→全部默认Phase-1→全部默认Phase-2→Multiphase→Volume Fraction→0.0003其他默认outflow→Mixture→默认Phase-1→默认Phase-2→默认wall→Mixture→全部默认Phase-1→默认Phase-2默认第十二步:Slove→Controls→Slution Controls→Pressure→0.2 Momentum→0.5 其余默认第十三步:千万不能再使用初始化第十四步:进行迭代计算截Z轴上的图:在Surface→iso↓Surface of constant↓Grid↓然后选x、y、z轴(根据具体情况而定)↓在Iso-Values→选取位置C的设置在New Surface Name中输入新各字→点创建然后在Display→Grid→Edge type→Feature→选中刚创建的那个面,然后Display查看刚才那面是否创建对最后在Display→Contours→Options→Filled→Surface→选中面,然后Display。
Fluent使用指南2

第一步:网格1、读入网格(File→Read→Case)2、检查网格(Grid→Check)3、平滑网格(Grid→Smooth/Swap)4、更改网格的长度单位(Grid→Scale)5、显示网格(Display→Grid)第二步:建立求解模型1、保持求解器的默认设置不变(定常)2、开启标准K-ε湍流模型和标准壁面函数Define→Models→Viscous第三步:设置流体的物理属性ari→Density→viscosity→第四步:设置边界条件对outflow、velocity-inlet、wall 采用默认值第五步:求解1、Solv→Controls→Solution中,Discretitation→Pressure→standardPressure→Momentum→2、Solution Initialization→all zone3、Residual Monitors→Plot第六步:迭代第七步:进行后处理第八步:1、Define→Model→Evlerian2、在Vissous Model→K-epsilon Multiphase Model→Mixture 第九步:在Define Phase Model→Discrete phase ModelInteraction↓选中→Interaction With Continuous PhaseNomber of Continuous PhaseInteractions per DPM Interaction第十步:设置物理属性第十一步:Define→Operating →重力加速度Define→Boondary Conditionsflvid→Mixture→选中Sovrce Terms 其他默认Phase-1→选中Sovrce Terms 其他默认Phase-2→选中Sovrce Terms 其他默认inflow→Mixture→全部默认Phase-1→全部默认Phase-2→Multiphase→Volume Fraction→其他默认outflow→Mixture→默认Phase-1→默认Phase-2→默认wall→Mixture→全部默认Phase-1→默认Phase-2默认第十二步:Slove→Controls→Slution Controls→Pressure→Momentum→其余默认第十三步:千万不能再使用初始化第十四步:进行迭代计算截Z轴上的图:在Surface→iso↓Surface of constant↓Grid↓然后选x、y、z轴(根据具体情况而定)↓在Iso-Values→选取位置C的设置在New Surface Name中输入新各字→点创建然后在Display→Grid→Edge type→Feature→选中刚创建的那个面,然后Display查看刚才那面是否创建对最后在Display→Contours→Options→Filled→Surface→选中面,然后Display。
FLUENT入门(3)-FLUENT整体界面

FLUENT⼊门(3)-FLUENT整体界⾯1、整体界⾯⾃12.0版本之后,FLUENT采⽤了树形菜单的处理流程操作⽅式。
在启动界⾯上点击OK按钮后即进⼊FLUENT图形界⾯窗⼝。
如下图所⽰。
按照其不同的功能将其分为6个区域。
区域1:菜单栏。
包括软件操作的所有菜单。
区域2:⼯具栏。
包括软件常⽤操作功能,如⽂件操作、视图操作等功能。
区域3:模型操作树。
按照CFD仿真操作流程安排的树形菜单,在后续将会详细描述。
区域4:参数设置⾯板。
在描述模型操作树时详细描述。
区域5:图形显⽰区。
主要显⽰前处理⽹格模型及后处理数据图形等。
区域6:TUI窗⼝。
可以进⾏TUI命令操作及软件信息显⽰。
2、菜单栏FLUENT的菜单如下图所⽰。
主要包括的菜单:1. File:⽂件操作菜单。
包括⽂件的读⼊、写出、导⼊、输出等功能,同时包含图形窗⼝的图⽚输出功能。
2. Mesh:包括⽹格检查、⽹格分割等⽹格基本操作功能。
3. Define:定义物理模型及边界条件信息。
4. Solve:定义求解控制参数及监控参数等。
5. Adapt:主要是为⽹格⾃适应准备的菜单,也常常⽤于Patch操作。
6. Surface:定义⾯,常⽤于后处理操作。
7. Display:后处理操作及设置。
8. Report:后处理数据输出。
9. Parallel:并⾏计算设置。
10. View:视图设置。
11. Help:帮助菜单。
3、⼯具栏⼯具栏按钮如下图所⽰。
各按钮从左⾄右依次为:1. ⽂件打开按钮。
包含File菜单中的部分内容。
2. ⽂件保存按钮。
3. 输出图像按钮。
通过此按钮可以输出图形窗⼝中的图形。
4. 帮助⽂档按钮。
5. 旋转视图按钮。
6. 平移视图按钮。
7. 放⼤视图按钮。
8. 区域放⼤按钮。
9. Probe按钮,获取⿏标点击位置的信息。
10. Fit view按钮,窗⼝适应按钮。
11. Set view按钮,设置视图显⽰。
12. 排列窗⼝按钮。
13. 图形窗⼝分栏按钮。
FLUENT软件使用说明(适合初学者)

沿一条边或一个面在其上生成的一个虚拟顶点的位置
平滑顶点 输入顶点位置参数u和v的值。 输入新的点的位置的坐标。
Connect Vertices 连接顶点 Disconnect Vertices 分离顶点
连接实际和/或虚拟顶点,分离 两个或多个实体的公共顶点
连接/分离边
Connect/Disconnect Edges 命令按钮允许用户进行以下操作。
图标
Create Real Conic Arc 命令允许用户生成二次曲线形边。要生成一条二次曲线形边,用户必须设定如 下参数: Start 点——指定起始端点 Shoulder 点——指定弧顶点 End 点——指定末端点 Shape Parameter点——指定弧的一般形状(椭圆形,抛物形或者双曲形)
edit 编辑进程名称 编辑文本文件 建立和编辑参数 编辑程序默认属性
操作工具板
操作工具板在GUI的右上角。它由一系列命令按钮组成,每个 按钮在创建和网格模型过程中起到特定的功能。
总体控制工具板
总体控制工具板在GUI的右下角。它的目的是让你对显示在特殊 象限中的模型控制其版面设计和图形窗口的操作和模型的外观。
分辨率trltrl鼠标右键捕捉点鼠标右键捕捉点由点连成线由点连成线verticesvertices表明组成直线两端点节点的编号表明组成直线两端点节点的编号创建圆弧边鼠标右键创建圆弧边鼠标右键下拉菜单下拉菜单选择点选择点shiftshift鼠标左键鼠标左键创建管嘴创建管嘴由点连成线由点连成线由线组成面由线组成面第三步第三步确定边界线的内部节点分布并创建网格确定边界线的内部节点分布并创建网格successiveradiosuccessiveradio等比序列等比序列doublesideddoublesided内部节点取单双向分布内部节点取单双向分布radioradio内部节点间距间距离的公比内部节点间距间距离的公比spacingspacing分布设置分布设置intervalsizeintervalsize节点间距离节点间距离intervalcountintervalcount节点数量节点数量schemescheme操作方式操作方式applyapply表示不按默认的方式按所设置的方式进行表示不按默认的方式按所设置的方式进行关闭网格显示关闭网格显示第五步第五步输出网格输出网格二平滑和交换网格二平滑和交换网格确保网格质量确保网格质量三确定长度的单位三确定长度的单位四显示网格四显示网格五建立求解模型五建立求解模型segregatedsegregated离散求解离散求解coupledcoupled耦合求解耦合求解implicitimplicit隐式求解器隐式求解器explicitexplicit显示求解器显示求解器求解器求解器离散求解器离散求解器主要用于不可压或主要用于不可压或低马赫数压缩性流体的流动
FLUENT中文全教程_部分2

Radio Buttons这类按钮中,只有一个选项可以打开。
Text EntryInteger Number Entry一般说来用鼠标点击上下箭头,会增加或者减少1。
如果结合键盘点击一次鼠标就可以增加更多的数量。
用法如下表:Key Factor of IncreaseShift 10Ctrl 100Real Number Entry可以输入实数如10, -10.538, 50000.45和5.e-4),一般都会带有相应的单位。
单选列表许多面板响应鼠标的双击功能,在实践中多试几次就熟练了多选列表鼠标点击一次选上;再点击一次取消选择下拉菜单使用方法和Windows的一样。
标尺可以用鼠标操作,也可以用鼠标选择之后再用键盘左右选择图形显示窗口Figure 1: 图形显示窗口的例子显示选项面板可以控制图形显示的属性也可以打开另一个显示窗口。
鼠标按钮面板可以用于设定鼠标在图形显示窗口点击时所执行的操作。
当为图形显示处理数据时要取消显示操作可以按Ctrl+C,已经开始画图的话就无法取消操作了。
输出图形显示窗口是Windows NT系统的特有功能,UNIX系统没有此项功能。
页面设置面板也是Windows NT系统独有的功能Windows NT系统的特有的输出图形显示窗口功能如果你选择的是Windows NT版本的FLUENT,点击图形窗口的左上角便可以显示图形窗口系统菜单,该菜单包括常用系统命令如:move,size和close。
连同系统命令一起,FLUENT 为支持打印机和剪贴板增加了三条命令:1.复制到剪贴板:将当前图形复制到Windows的剪贴板。
可以用页面设置面板改变复制的属性。
图形窗口的大小影响了图形中所使用的字的大小。
2.打印:将当前图形复制到打印机。
可以用页面设置面板改变打印的属性。
3.页面设置:显示页面设置面板。
Windows NT系统独有的页面设置面板功能:在图形显示窗口的system菜单中点击Page Setup..菜单,弹出页面设置面板如下:第一个Color:允许你选择是否使用彩色图第二个Color:选择彩色图形Gray Scale:选择灰度比例图Monochrome:选择黑白图Color Quality:允许你指定图形的色彩模式True Color:创建一个由RGB值定义的图,这假定了你的打印机或者显示器有至少65536个色彩或无限色彩。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
可视化分析,文字报告
流场、涡旋、温度场、应力分布 矢量图、等值线图(云图)、X—Y坐标图 后处理软件TECPLOT
误差处理
显示初步计算结果
温度场
XY 曲线图
自定义函数
显示自定义函数
显示自定义函数
使用二阶离散化方法重新计算
Define -> Models -> Solver
建立求解模型
明确目的 建立模型
网格生成
Gambit 热力学参数
几何模型 数学模型
物性参数的输入
化学反应及其动力学参数 耦合或分离解法器 稳态或非稳态 层流、湍流或无粘流模型 边界条件的处理 差分格式 初始条件 迭代收敛判据
选用合适CFD 软件 及相应模块 确定数值方法 求解并监视收敛 后处理
应用FLUENT基本原则
1. 2. 3. 4. 5. 检查网格质量 检查单位制,确保真实比例 应用合适的物理模型 能量方程的亚松弛因子设在0.95 和1之间 如果是非结构的四面体网格,梯度的计算 采用“node-based gradients” 6. 用残差图监视收敛
至少下降3个量级 能量方程残差下降6个量级(基于压力的算法) 组分方程残差下降5个量级
边界条件
数学模型:控制方程
雷诺数为2.03× 10 求温度分布
5
湍流模型方程
能量方程
确定数值方法与CFD程序
有限体积法 网格生成 算法参数 并行算法
Fluent Gambit 在Fluent中设定
Fluent求解
网格生成 Gambit 热力学参数 物性参数的输入 化学反应及其动力学参数 耦合或分离解法器 稳态或非稳态 层流、湍流或无粘流模型 边界条件的处理 差分格式 初始条件 迭代收敛判据
保存case 文件
开始迭代计算
检查计算是否收敛
监测残差值
至少下降3个量级 能量方程残差下降6个量级(基于压力的算法) 组分方程残差下降5个量级
计算结果不再随着迭代的进行发生变化 整个系统的质量,动量,能量都守恒。
不平衡误差少于0.1% 员
存data 文件
后处理
应用FLUENT基本原则
7. 最终结果必须采用高阶离散格式(一般二 阶) 8. 监视待求变量,确保相邻两次迭代变化微 小。 9. 验证守恒性 10.检验网格无关性 11.检验与工程常识是否相符
物理模型
边界条件
求解控制参数
结果显示与输出
建立求解模型
建立求解模型
建立求解模型
设置流体的物理属性
设置边界条件
设置主入口的边界条件
设置主入口的边界条件
设置小入口的边界条件
设置出口的边界条件
设置壁面边界条件
求解
监视残差
监视待求物理量
Solve -> Monitors -> Surface...
物理模型
边界条件
求解控制参数
结果显示与输出
FLUENT 计算步骤及对应菜单项
建立网格
Gambit文件:.jou, .trn, .dbs, .lok, .msh
Fluent读取网格文件
网格检查
网格在X 轴和Y轴上的最大和最小值(SI 单 位制) 最大、最小网格单元 网格质量 网格其它特性 报告网格错误
使用二阶离散化方法重新计算
重新计算
监视的出口平均温度
查看二阶方法所得的温度分布
自适应网格功能
自适应网格功能
重新计算
查看温度分布
(2)
(1)
(3)
总结
后面计算的温度分布扩 散的程度没有前者大。
一阶格式以一阶离散化方法计算出一个结果,在此结果为基础, 改进网格和使用二阶离散化计算方法求解更佳的结果。 • 先求解流场(可选择不使用能量方程),再求解温度场
Fluent基本操作
Fluent算例(一)
冷热流体在弯管中混合
求解步骤
明确目的 建立模型 选用合适CFD 软件 及相应模块 确定数值方法 求解并监视收敛 后处理
Fluent
目的
计算出弯管内流体交汇处附近的流场和温 度场分布,设计合适的入口管道位置
建立模型
几 何 建 模
物性参数
注意:确保最小体积不能是负值
平滑(或者交换)网格
点击按钮Smooth ,再点 击按钮 Swap ,直到 Fluent 报告没有需要 交换的面为止。
更改网格的长度单位
更改单位制: 在Define 的下拉 菜单中打开Set Units 对话框,进 行更改
显示网格
可以用鼠标右键检查区号和 相应的边界的对应关系