专题一-集合-与简易逻辑

合集下载

高考总复习_第一章_集合与简易逻辑

高考总复习_第一章_集合与简易逻辑
..
..
第一Байду номын сангаас 集 合
[ 备考方向要明了 ]
考 什么
怎么考
1. 集合的含义与表示
(1) 了解集合的含义,体会元素与集合的属于
关系.
(2) 能用自然语言、图形语言、集合语言
(列
举法或描述法 ) 描述不同的具体问题.
2. 集合间的基本关系
1. 对集合的含义与表示的考查主要涉及集合 中元素的互异性以及元素与集合之间的关 系,考查利用所学的知识对集合的性质进行 初步探究的基本逻辑能力.如 ( 理 )2012 年全 国 T1,T1 等. ( 文 )2012 年 T9 等. 2. 对于两个集合之间关系的考查主要涉及以
当 m=- 1 时 M= {1,1,5} 不满足互异性.
∴ m的值为 3 或 1.
4. ( 教材改编题 ) 已知集合 A= {1,2} ,若 A∪B= {1,2} ,则集合 B 有 ________个.
解析:∵ A= {1,2} , A∪ B= {1,2} ,
∴ B? A,∴ B=? , {1} ,{2} , {1,2} .
关系
表示
文字语言
符号语言
相等
集合 A与集合 B中的所有元素都相同
A? B且 B? A? A =B
子集
A 中任意一个元素均为 B中的元素
A? B或 B? A
真子集
A中任意一个元素均为 B中的元素,且 B 中至少有一个 元素不是 A 中的元素
A B或 B A
空集
空集是任何集合的子集,是任何非空集合的真子集
(1) 理解集合之间包含与相等的含义,能识别
下两个方面:
给定集合的子集. (2) 在具体情境中,了解全集与空集的含义. 3. 集合的基本运算 (1) 理解两个集合的并集与交集的 含义,会求两个简单集合的并集与交集. (2) 理解在给定集合中一个子集的补集的含

集合与简易逻辑

集合与简易逻辑
都是不同的对象,相同的对象归入一个集合时,仅算一 个元素.
如:应把集合{1,2,2}改写成 {1,2}
(3) 无序性: 集合中的元素是平等的,没有先后顺序, 因此判定两个集合是否一样,仅需比较它们的元素是否 一样,不需考查排列顺序是否一样.
如:集合{1,2,3}和{1,3,2}表示同一集合。
二、元素与集合之间的关系: 若a是集合A的元素, 就说 a 属于集合 A , 记作 a∈A ; 若a不是集合A的元素, 则 a 不属于集合 A , 记作 aA。 例如:A={1,2,3,4,5}
Q 有理数集记作______;
R 实数集记作_______;
四、集合的常用表示方法:
“地球上的四大洋”组成的集合可以表示 为: {太平洋,大西洋,印度洋,北冰洋}.
方法一:列举法——把集合中的元素一一 列举出来写在大(花)括号{ }内表示集合的 方法。
例1:用列举法表示下列集合:
{ 2, 3, 5, 7 } (1)小于10的所有质数组成的集合__________; (2)由大于3小于10的整数组成的集合 { 4, 5, 6, 7 ,8 ,9 } ___________________; { -4, 4} (3)方程x2-16=0的实数解组成的集合_________;
3 则3∈A , A 2
集合常用大写字母A,B,C,D,……标记, 元素常用小写字母a,b,c,d,……标记。
三、常用数集及其记法:
数的集合简称数集。 一些常用数集及其记法:
N 非负整数集(即自然数集) 记作_______;

N*或 N+ 正整数集记作_____________;
Z 整数集记作_______;
例2:用描述法表示下列集合:

集合与简易逻辑知识点总结- 高三数学一轮复习

集合与简易逻辑知识点总结- 高三数学一轮复习

知识点总结1 集合与简易逻辑一、集合(一)元素与集合1.集合的含义某些指定对象的部分或全体构成一个集合.构成集合的元素除了常见的数、点等数学对象外,还可以是其他对象.2.集合元素的特征(1)确定性:集合中的元素必须是确定的,任何一个对象都能明确判断出它是否为该集合中的元素.(2)互异性:集合中任何两个元素都是互不相同的,即相同元素在同一个集合中不能重复出现.(3)无序性:集合与其组成元素的顺序无关.3.元素与集合的关系元素与集合之间的关系包括属于(记作a A ∈)和不属于(记作a A ∉)两种.4.集合的常用表示法集合的常用表示法有列举法、描述法、图示法(韦恩图).5.常用数集的表示 数集 自然数集 正整数集 整数集 有理数集 实数集符号 NN ∗或N + Z Q R (二)集合间的基本关系1.集合A 为集合B 的子集 ,记作A B ⊆(或B A ⊇),读作“A 包含于B ”(或“B 包含A ”).(2)真子集:若A B ⊆,且存在b B ∈,但b A ∉,则集合A 是集合B 的真子集,记作AB (或B A ⊃≠). 读作“A 真包含于B ”或“B 真包含A ”.(3)相等:对于两个集合A 与B ,如果A B ⊆,同时B A ⊆,那么集合A 与B 相等,记作A =B .(4)空集:把不含任何元素的集合叫做空集,记作∅;(三)集合的基本运算(1)交集:由所有属于集合A 且属于集合B 的元素组成的集合,叫做A 与B 的交集,记作A B ⋂, 即{}|A B x x A x B ⋂=∈∈且.(2) 并集:由所有属于集合A 或属于集合B 的元素组成的集合,叫做A 与B 的并集,记作A B ⋃,(3) 即{}|A B x x A x B ⋃=∈∈或.(3)补集:对于一个集合A ,由全集U 中不属于集合A 的所有元素组成的集合称为集合A 相对于全集U 的补集,简称为集合A 的补集,记作U C A ,即{|,}U C A x x U x A =∈∉且.(四)集合的运算性质(1)集合的运算性质:①交换律:A ∪B =B ∪A ;A ∩B =B ∩A ;②结合律:(A ∪B )∪C =A ∪(B ∪C );(A ∩B )∩C =A ∩(B ∩C );③分配律:(A ∩B )∪C =(A ∪C )∩(B ∪C );(A ∪B )∩C =(A ∩C )∪(B ∩C );【集合常用结论】1.子集个数:含有n个元素的有限集合M,其子集个数为2n;其真子集个数为2n-1;其非空子集个数为2n-1;其非空真子集个数为2n-2.2. 是任何集合的子集,是任何非空集合的真子集.3.∁U(A∪B)=(∁U A)∩(∁U B);∁U(A∩B)=(∁U A)∪(∁U B);4.A∪B=A⇔B⊆A;A∩B=B⇔B⊆A.5.集合运算中的常用方法若已知的集合是不等式的解集,用数轴求解;若已知的集合是点集,用数形结合法求解;若已知的集合是抽象集合,用Venn图求解.二、简易逻辑(一).全称命题、特称(存在性)命题及其否定(1)全称命题p:∀x∈M,p(x),其否定为特称(存在性)命题:¬p:∃x0∈M,¬p(x0).(2)特称(存在性)命题p:∃x0∈M,p(x0),其否定为全称命题:¬p:∀x∈M,¬p(x).(二).充分条件与必要条件的判定方法(1)定义法:若p⇒q,则p是q的充分条件(或q是p的必要条件);若p⇒q,且q⇏p,则p是q的充分不必要条件(或q是p的必要不充分条件).(2)集合法:利用集合间的包含关系。

专题1.1 集合与简易逻辑(测试卷)(原卷版)

专题1.1 集合与简易逻辑(测试卷)(原卷版)

专题一 集合与简易逻辑测试卷一.填空题(14*5=70分)1.【温州二外2016届上学期高三10月阶段性测试1】已知}22{≤≤-=x x M ,}1{x y x N -==,那么=N M .2.【江苏省泰州中学2015--2016学年度第一学期高三第二次月考】命题“02016,10200>-+->∃x x x ”的否定是 .3.【哈尔滨市第六中学2016届上学期期中考试】已知集合}1,1{-=M ,},4221|{1Z ∈<<=+x x N x ,则=⋂N M __________.4.【山东师范大学附属中学2016届高三上学期第二次模拟】已知集合{}cos0,sin 270A =,{}20B x x x =+=,则A B ⋂为 .5.【重庆市巴蜀中学2016级高三学期期中考试】已知命题1p :函数22x x y -=-在R 上为增函数,2p :函数22x x y -=+在R 上为减函数,在下列四个命题112:q p p ∨;212:q p p ∧;()312:q p p ⌝∨和()412:q p p ∧⌝中,真命题是 .6.【江苏省泰州中学2015--2016学年度第一学期高三第二次月考】已知命题1211:≤+-x p ,命题)0(012:22><-+-m m x x q ,若p 是q 的充分不必要条件,则实数m 的范围是 .7.【河北省衡水中学2016届高三二调】设全集{}1,3,5,6,8U =,集合{}1,6A =,集合{}5,6,8B =,则()U A B ⋂= .8.【江苏省清江中学2016届高三上学期周练】若函数()f x 是定义在R 上的函数,则“()00f =”是“函数()f x 为奇函数”的 条件(“充分不必要” “必要不充分” “充要” “既不充分也不必要”中选一个).9.【哈尔滨市第六中学2016届上学期期中】定义在R 上的函数)(x f y =满足5522f x f x ⎛⎫⎛⎫+=- ⎪ ⎪⎝⎭⎝⎭,5()02x f x ⎛⎫'-> ⎪⎝⎭,则对任意的21x x <,都有)()(21x f x f >是521<+x x 的 条件.10.【泰州市2015届高三第三次调研测试】给出下列三个命题:①“a >b ”是“3a >3b”的充分不必要条件; ②“α>β”是“cos α<co s β”的必要不充分条件;③“0a =”是“函数()()32f x x ax x =+∈R 为奇函数”的充要条件.其中正确命题的序号为 .11.【黑龙江省牡丹江市一高2016届高三10月】已知, a b 是两个非零向量,给定命题:p ⋅=a b a b ,命题:q t ∃∈R ,使得t =a b ,则p 是q 的________条件.12.【吉林省长春外国语学校2016届上学期高三第一次质量检测】设集合}log ,3{2a P =,{}b a Q ,=,若}0{=Q P ,则=Q P ________.13.【2016届河北省邯郸市馆陶县一中高三7月调研考试】下列说法中,正确的是________.①任取x >0,均有3x >2x ;②当a >0,且a ≠1时,有a 3>a 2; ③y =(3)-x 是增函数;④y =2|x |的最小值为1; ⑤在同一坐标系中,y =2x 与y =2-x的图象关于y 轴对称. 14.【2016届湖北省部分重点中学高三上学期起点考试】以A 表示值域为R 的函数组成的集合,B 表示具有如下性质的函数()x ϕ组成的集合:对于函数()x ϕ,存在一个正数M ,使得函数()x ϕ的值域包含于区间[,]MM -.例如,当31()x x ϕ=,2()s i n x x ϕ=时,1()x A ϕ∈,2()x B ϕ∈.现有如下命题: ①设函数()f x 的定义域为D ,则“()f x A ∈”的充要条件是“b ∀∈R ,a D ∃∈,()f a b =”;②函数()f x B∈的充要条件是()f x 有最大值和最小值; ③若函数()f x ,()g x 的定义域相同,且()f x A ∈,()g x B ∈,则()()f x g x B+∉; ④若函数2()ln(2)1x f x a x x =+++(2x >-,a ∈R )有最大值,则()f x B ∈. 其中的真命题有__________________.(写出所有真命题的序号)二.解答题(6*12=72分)15.【湖北宜昌一中、龙泉中学2016届高三十月联考】已知函数()(2)()f x x x m =-+-(其中2m >-),()22x g x =-﹒(1)若命题“2log ()1g x ≤”是真命题,求x 的取值范围;(2)设命题p :(1,)x ∀∈+∞,()0f x <或()0g x <,若p ⌝是假命题,求m 的取值范围﹒16.【江西临川一中2016届上学期高三期中】已知集合{}015A x ax =∈<+≤R ,()1202B x x a ⎧⎫=∈-<≤≠⎨⎬⎩⎭R . ⑴若B A =,求出实数a 的值;⑵若命题,:A x p ∈命题B x q ∈:且p 是q 的充分不必要条件,求实数a 的取值范围.17.【山东省潍坊第一中学2016届高三10月月考16】已知集合{}2log 8A x x =<,204x B x x ⎧⎫+=<⎨⎬-⎩⎭,{}|1C x a x a =<<+.(1)求集合A B ⋂; (2)若B C B ⋃=,求实数a 的取值范围.18.【山东省潍坊第一中学2016届高三10月月考】设命题p :函数1y kx =+在R 上是增函数,命题q :x ∃∈R ,2(23)10x k x +-+=,如果p q ∧是假命题,p q ∨是真命题,求k 的取值范围.19.【辽宁省葫芦岛市一高2016届上学期期中考试】已知命题p :函数()log 21a y x =+在定义域上单调递增;命题q :不等式2(2)2(2)40a x a x -+--<对任意实数x 恒成立,若p 且q ⌝为真命题,求实数a 的取值范围.20.【江苏省阜宁中学2016届高三年级第一次调研考试】已知命题p :指数函数()()26xf x a =-在R 上是单调减函数;命题q :关于x 的方程223210x ax a -++=的两根均大于3,若p 或q 为真,p 且q 为假,求实数a 的范围.。

第一章《集合与简易逻辑》练习题.docx

第一章《集合与简易逻辑》练习题.docx

第一章《集合与简易逻辑》练习题一. 选择题1.若关于 x 的不等式 ax 2bx c 0 (a 0) 的解集是空集 , 则( )( A ) a0且 b 2 4ac(B)a0且 b 2 4ac( C ) a 0且 b 2 4ac 0 (D)a 0且b 24ac2.如果命题“ p 或 q ”与命题“非p ”都是真命题,那么()( A )命题 p 不一定是假命题 ( B )不一定是真命题( C )命题 q 一定是真命题( D )命题 p 与命题 q 真值相同3.设全集 U=R ,集合22UM={ x ︱ x -2x - 3>0}, N={ x ︱ 3+2x - x >0}。

则 M ( C N )等于( )( A ) M( B ) N( C ) C U M(D ) C U N4.下列说法准确的是( )( A ) x ≥ 3 是 x>5 的充分不必要条件 ( B ) x ≠± 1 是 x ≠1 的充要条件 ( C )若﹁ p ﹁ q ,则 p 是 q 的充分条件( D )一个四边形是矩形的充分条件是它是平行四边形5.若 A ∩ B={ a , b }, A ∪ B={ a , b , c , d },则符合条件的不同的集合A 、B 有()( A ) 16 对 ( B )8 对 ( C ) 4 对 ( D )3 对6.已知集合 M{ x | x 1} , P { x | x t} ,若 M P,则实数t 应该满足的φ条件是 ( )( A ) t 1 ( B ) t 1( C ) t 1(D ) t 17.方程 mx 2 2x 1 0 至少有一个负根,则()( A ) 0 m 1 或 m 0( B ) 0m 1 ( C ) m 1( D ) m 18.当 a0 时,关于 x 的不等式 x 2 4ax 5a 2 0的解集是 ( )( A ) { x | x 5a 或 x a } ( B ) { x | x 5a 或 x a }( C ) { x | a x 5a }( D ){ x | 5a x a }9. 抛 物 线 yax 2 bx c 与 X 轴 的 两 个 交 点 为2, 0 , 2, 0 则 不 等 式ax 2 bxc0 的解集为()(A)x 2 x 2(B) x x 2或 x 2( C ) x x2(D)不确定 , 与 a 值相关 . 10.“ x 2+2x-8=0 ”是“ x-2=2 x ”的 ()(A) 充分不必要条件 (B)必要不充分条件(C) 充要条件 (D) 既不充分也不必要条件11.已知集合 A={y|y=-x2∈R}, B={y|y=-x+3,x ∈ R}, 则 A ∩ B=()+3,x (A){(0,3),(1,2)} (B){0,1}(C){3,2}(D){y|y ≤ 3}12.已知集合 A={x|x1 0 },B={x|x ≤ a} ,若 A ∩ B=B,则 a 的取值范围是( )x2(A)a ≥ 1 (B)a ≥2(C)a ≤ -2 (D) a<-213.设全集为 S,对任意子集合 A, B 若 A B , 则下列集合为空集的是 ( )(A) A C S B(B)C S AC S B(C)C S AB(D)AB14.“ a 2 b 20 ”的含义是 ( )(A)a, b 全不为 0(B) a, b不全为 0(C) a, b至少有一个为 0 (D) a, b至少有一个不为 015.已知 P :∣ 2x -3∣>1; q :10 ;则﹁ p 是﹁ q 的()条件x2x 6( A )充分不必要条件 ( B )必要不充分条件( C )充分必要条件( D )既非充分条件又非必要条件16.如果命题“ P 或 Q ”是真命题,命题“ P 且 Q ”是假命题,那么()(A)命题 P 和命题 Q 都是假命题(B)命题 P 和命题 Q 都是真命题 ( C )命题 P 和命题“非 Q ”真值不同(D) 命题 Q 和命题“非 P ”真值相同17.满足关系 {1}B{11 , 2,3, 4} 的集合 B 有( )( A ) 5 个( B ) 7 个( C ) 8 个( D ) 6 个18. a 、 b ∈R +是 a+b > 2 ab 的()( A )充分条件但不是必要条件 ( B ) 必要条件但不是充分条件( C )充分必要条件( D ) 既不充分也不必要条件29.已知 I=R , M={x ︱( x-2 )( 3-x )> 0} , N={x ︱x1> 2} ,则 C U M ∩N 是()x 1( A ) { x | x 3 }( B ) { x | 2 x1 }( C ) { x | 3 x 2 }( D )ф20.如果集合 Mx | xk 1, Nk 1 , k Z ,那么()2 , k Zy | y2( ) M N44(B) MN (C)MN (D)MNA21.下列命题中假命题 是()...( A )“正三角形边长与高的比是2︰ 3 ”的逆否命题( B )“若 x,y 不全为0,则 x 2y 2 0 ”的否命题 ( C )“ p 或 q 是假命题”是“非 p 为真命题”的充分条件( D )若 A B A C ,则 B C22.已知集合( A )φA 是全集 S 的任一子集,下列关系中准确的是() C S A ( B ) C S A S( C )( A ∩ C S A ) =φ ( D )( A ∪ C S A )S23.设全集 U={(x,y)|x∈R,y ∈ R},集合 M={(x,y)|y22( A )( C U M )∩( C U N ) (B )( C U M ≠ x})∪ N,N={(x,y)|y≠ -x},则集合( C )( C U M )∪( C U N )(D ) M ∪( C U N )24.下列说法:①若一个命题的否命题是真命题,则这个命题不一定是真命题;②若一个命题的逆否命题是真命题,则这个命题是真命题;③若一个命题的逆命题是真命题,则这个命题不一定是真命题;④若一个命题的逆命题和否命题都是真命题,则这个命题一定是真命题;其中准确的说法是( )( A )①②( B )①③④ ( C )②③④( D )①②③25.若二次不等式 ax 2+bx+c>0 的解集是x | 1 x1,那么不等式 2cx 2-2bx-a<0 的解54集是( )( A ) x | x 10或 x 1 ( B ) ( C ) x | 4x 5( D )1x1x |5 4 x | 5 x426.集合 {x-1 , x 2-1, 2} 中的 x 不能取值个数是()( A ) 2( B ) 3( C )4( D ) 527.设 M={2,a 2-3a+5,5},N={1,a2-6a+10,3},且 M ∩ N={2,3} 则 a 的值是 ( ) ( A ) 1 或 2 ( B ) 2 或 4( C ) 2( D ) 1二.填空题28. x>y 是x >1 成立的 _________________________________________ 条件 .y29.若集合 A 1,3, x , B1, x 2 ,且 AB 1,3, x ,则 x30.使x 2 x 2成立的充要条件是 _______________________________.x 2 3xx 23x31.写出命题“个位数是5 的自然数能被 5 整除”的逆命题、否命题及逆否命题,并判定其真假。

高考数学强基计划专题1集合与简易逻辑

高考数学强基计划专题1集合与简易逻辑

2022年高考数学尖子生强基计划专题1集合与简易逻辑 一、真题特点分析:1. 突出对思维能力的考查。

例1.【2020年武汉大学9】设A 是集合{}12345678910,,,,,,,,,的子集,只含有3个元素,且不含相邻的整数,则这种子集A 的个数为( ) A. 32B. 56C. 72D. 84答案:B 进行分类讨论例2.【2020 年清华大学】已知集合{},,1,2,3,,2020A B C ⊆,且A B C ⊆⊆,则有序集合组(),,A B C 的个数是( ).A .20202B .20203C .20204D .20205答案:C例3.【北大】已知()01,2,...,i x i n >=11.n i i x ==∏求证:))11.nni i x =≥∏【解析】不等式;柯西不等式或AM GM -平均不等式. 法一:AM GM -不等式.调和平均值n n ni n H G =≤=⎛⎫∑≤n i n ⎛⎫∑ni ≤∑ni ⎛⎫≤∑1nn i i n n +⎛⎫≤+=∑∑,即)1≤,即))1n ni ix ≤∏法二:由11.ni ix ==∏及要证的结论分析,由柯西不等式得))211i i x x ⎫≥⎪⎭,从而可设1i i y x =,且1111.n ni i i iy x ====∏∏从而本题也即证))11.n ni i y =≥∏从而))211nni ii x x ⎫+≥⎪⎭∏,即))21nnii ix y ≥∏,假设原式不成立,即))11,nni i x =<∏则))11.nni i y =<∏从而))21nnii ix y <∏,矛盾.得证.2.注重和解题技巧,考查学生应用知识解决问题的能力。

例4.【北大】10、已知实系数二次函数()f x 与()()(),g x f x g x =和()()30f x g x +=有两重根,()f x 有两相异实根,求证:()g x 没有实根. 【解析】设()2,f x ax bx c =++()2,g x dx ex f =++则由()()f x g x =,可得()()()()()()220,40.a d x b e x c f b e a d c f -+-+-=∆=----=由()()30f x g x +=可得()()()()()()223330,34330.a d x b e x c f b e a d c f +++++=∆=+-++=化简得223124,b e ac df +=+即()22434e df ac b -=-又240.b ac ->240.e df ∴-<()g x ∴没有实根.二、应试和准备策略1. 注意知识点的全面数学题目被猜中的可能性很小,一般知识点都是靠平时积累,因此,要求学生平时要把基础知识打扎实。

2012高考专题复习第一部分专题一第1讲集合与简易逻辑

2012高考专题复习第一部分专题一第1讲集合与简易逻辑

[例1] (1)已知全集U=R,则正确表示集合M={-1,0,1}和
N={x|x2+x=0}关系的韦恩(Venn)图是
()
(2)(2010·湖北高考)设集合A={(x,y)|x42+1y62 =1},B={(x,y)
|y=3x},则A∩B的子集的个数是
()
A.4
B.3
C.2
D.1
[思路点拨] (1)首先应写出集合N的元素,判定两集合之间的 关系,再和韦恩图相结合. (2)利用数形结合,确定A∩B的元素个数,再求子集的个数.
解集是空集,必有a>0且Δ<0
[思路点拨] 根据选项所涉及的知识点进行分析判断或举 反例否定.
[自主解答] 选项A不正确,因为“x≠y且x≠-y”成立才可 得x2≠y2,而由x2≠y2成立可得x≠y且x≠-y; 选项B不正确,“a、b都是偶数”的否定是“a、b不都是偶 数”;选项D不正确,不等式ax2+bx+c≤0的解集是空集还 可能是a=b=0,c>0. [答案] C
特例法
所谓的特例法,就是以满足条件的特例代入题干或结 论中去,排除错误选项而得到正确答案的一种解题方法, 在不同的章节,特例的选取可以是特殊值、特殊点、特殊 函数、特殊直线、特殊图形等.
[例4] (2010·湖北高考)记实数x1,x2,…,xn中的最大数为 max{x1,x2,…,xn},最小数为min{x1,x2,…,xn}.已知 △ABC的三边边长为a,b,c(a≤b≤c),定义它的倾斜度为ℓ
充要条件的集合观点:若满足命题p的集合为A,满足 命题q的集合为B.当A是B的真子集时,p是q的充分不必要 条件;当B是A的真子集时,p是q的必要不充分条件;当A =B时,p与q互为充要条件;当集合A,B互不包含时,p 是q的既不充分也不必要条件.

高考总复习一_集合与简易逻辑教案

高考总复习一_集合与简易逻辑教案

总复习一 集合与简易逻辑【考纲要求】1、了解集合的含义、元素与集合的“属于”关系。

2、能用自然语言、图形语言、集合语言(列举法或描述法)描述不同的具体问题。

3、理解两个集合的并集与交集的含义,会求两个简单集合的并集与交集。

4、理解在给定集合中一个子集的补集的含义,会求给定子集的补集。

5、能使用韦恩图(Venn )表达集合的关系及运算。

【基础知识】 一、集合集合:一般地,一定范围内某些确定的、不同的对象的全体构成一个集合。

集合中的每一个对象称为该集合的元素。

1、集合的表示列举法:把集合中的元素一一列举出来,写在大括号内; 描述法:把集合中的元素的公共属性描述出来,写在大括号{}内。

韦恩图法:用图形表示集合定义了两个集合之间的所有关系。

注意:集合中的元素可以是多种多样的,包括数集、点集等等,要特别注意数集和点集的使用以及区别。

在做题时首先要注意集合的代表元素是什么。

例:1.(2009年广东卷文)已知全集U R =,则正确表示集合{1,0,1}M =-和{}2|0N x x x =+=关系的韦恩(Venn )图是 ( )答案 B2.(2009广东卷理)已知全集U R =,集合{212}M x x =-≤-≤和{21,1,2,}N x x k k ==-=的关系的韦恩(Venn )图如图1所示,则阴影部分所示的集合的元素共有( )A. 3个B. 2个C. 1个D. 无穷多个 答案 B2、集合的包含关系:(1)集合A 的任何一个元素都是集合B 的元素,则称A 是B 的子集(或B 包含A ),记作A ⊆B (或B A ⊂); 集合相等:构成两个集合的元素完全一样。

若A ⊆B 且B ⊇A ,则称A 等于B ,记作A =B ; 若A ⊆B 且A ≠B ,则称A 是B 的真子集,记作AB ;注:空集是任何集合的子集。

例:1.(2009浙江理)设U =R ,{|0}A x x =>,{|1}B x x =>,则U AB =ð( )A .{|01}x x ≤<B .{|01}x x <≤C .{|0}x x <D .{|1}x x > 答案 B2.(2009浙江文)设U =R ,{|0}A x x =>,{|1}B x x =>,则U A B =ð( ) A .{|01}x x ≤< B .{|01}x x <≤ C .{|0}x x < D .{|1}x x > 答案 B3.(2009北京文)设集合21{|2},{1}2A x xB x x =-<<=≤,则A B = ( ) A .{12}x x -≤< B .1{|1}2x x -<≤C .{|2}x x <D .{|12}x x ≤<答案 A (2)简单性质: 1)A ⊆A ; 2)Φ⊆A ;3)若A ⊆B ,B ⊆C ,则A ⊆C ;4)若集合A 是n 个元素的集合,则集合A 有2n个子集(其中2n-1个真子集);例:1. (2009山东卷文)集合{}0,2,A a =,{}21,B a =,若{}0,1,2,4,16AB =,则a 的值为( )A.0B.1C.2D.4 答案 D2.(2009全国卷Ⅱ文)已知全集U ={1,2,3,4,5,6,7,8},M ={1,3,5,7},N ={5, 6,7},则C u ( MN )= ( )A.{5,7}B.{2,4}C. {2.4.8}D. {1,3,5,6,7} 答案 C注意:凡是提到一个集合是另一个集合的子集,作为子集的集合首先可以是空集,A B ⊆的等价形式主要有:B B A A B A == ,。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

专题一集合与简易逻辑一、考点回顾1、集合的含义及其表示法,子集,全集与补集,子集与并集的定义;2、集合与其它知识的联系,如一元二次不等式、函数的定义域、值域等;3、逻辑联结词的含义,四种命题之间的转化,了解反证法;4、含全称量词与存在量词的命题的转化,并会判断真假,能写出一个命题的否定;5、充分条件,必要条件及充要条件的意义,能判断两个命题的充要关系;6、学会用定义解题,理解数形结合,分类讨论及等价变换等思想方法。

二、经典例题剖析考点1、集合的概念1、集合的概念:(1)集合中元素特征,确定性,互异性,无序性;(2)集合的分类:①按元素个数分:有限集,无限集;②按元素特征分;数集,点集。

如数集{y|y=x2},表示非负实数集,点集{(x,y)|y=x2}表示开口向上,以y轴为对称轴的抛物线;(3)集合的表示法:①列举法:用来表示有限集或具有显著规律的无限集,如N+={0,1,2,3,…};②描述法。

2、两类关系:(1)元素与集合的关系,用∈或∉表示;(2)集合与集合的关系,用⊆,≠⊂,=表示,当A⊆B时,称A是B的子集;当A≠⊂B时,称A是B的真子集。

3、解答集合问题,首先要正确理解集合有关概念,特别是集合中元素的三要素;对于用描述法给出的集合{x|x∈P},要紧紧抓住竖线前面的代表元素x以及它所具有的性质P;要重视发挥图示法的作用,通过数形结合直观地解决问题4、注意空集∅的特殊性,在解题中,若未能指明集合非空时,要考虑到空集的可能性,如A⊆B,则有A=∅或A≠∅两种可能,此时应分类讨论例1、下面四个命题正确的是(A)10以内的质数集合是{1,3,5,7} (B)方程x2-4x+4=0的解集是{2,2} (C)0与{0}表示同一个集合(D)由1,2,3组成的集合可表示为{1,2,3}或{3,2,1}m}.若B⊆A,则实数m=.例2、已知集合A={-1,3,2m-1},集合B={3,2考点2、集合的运算1、交,并,补,定义:A ∩B={x|x ∈A 且x ∈B},A ∪B={x|x ∈A ,或x ∈B},C U A={x|x ∈U ,且x ∉A },集合U 表示全集;2、运算律,如A ∩(B ∪C )=(A ∩B )∪(A ∩C ),C U (A ∩B )=(C U A )∪(C U B ), C U (A ∪B )=(C U A )∩(C U B )等。

3、学会画Venn 图,并会用Venn 图来解决问题。

例3、设集合A ={x|2x +1<3},B ={x|-3<x <2},则A ⋂B 等于( )(A){x|-3<x <1} (B) {x|1<x <2} (C){x|x >-3} (D) {x|x <1}例4、经统计知,某村有电话的家庭有35家,有农用三轮车的家庭有65家,既有电话又有农用三轮车的家庭有20家,则电话和农用三轮车至少有一种的家庭数为 ( )A. 60B. 70C. 80D. 90例5、(2008广东卷)第二十九届夏季奥林匹克运动会将于2008年8月8日在北京举行,若集合A={参加北京奥运会比赛的运动员},集合B={参加北京奥运会比赛的男运动员}。

集合C={参加北京奥运会比赛的女运动员},则下列关系正确的是( ) A.A ⊆B B.B ⊆C C.A ∩B =C D.B ∪C =A考点3、逻辑联结词与四种命题1、命题分类:真命题与假命题,简单命题与复合命题;2、复合命题的形式:p 且q ,p 或q ,非p ;3、复合命题的真假:对p 且q 而言,当q 、p 为真时,其为真;当p 、q 中有一个为假时,其为假。

对p 或q 而言,当p 、q 均为假时,其为假;当p 、q 中有一个为真时,其为真;当p 为真时,非p 为假;当p 为假时,非p 为真。

4、四种命题:记“若q 则p ”为原命题,则否命题为“若非p 则非q ”,逆命题为“若q 则p “,逆否命题为”若非q 则非p “。

其中互为逆否的两个命题同真假,即等价。

因此,四种命题为真的个数只能是偶数个。

例6、(2008广东高考)命题“若函数()log (0,1)a f x x a a =>≠在其定义域内是减函数,则log 20a <”的逆否命题是( )A 、若log 20a ≥,则函数()log (0,1)a f x x a a =>≠在其定义域内不是减函数B 、若log 20a <,则函数()log (0,1)a f x x a a =>≠在其定义域内不是减函数C 、若log 20a ≥,则函数()log (0,1)a f x x a a =>≠在其定义域内是减函数D 、若log 20a <,则函数()log (0,1)a f x x a a =>≠在其定义域内是减函数图1图2例7、已知命题:p 方程210x mx ++=有两个不相等的负数根;:q 方程244(2)10x m x +-+=无实根.若“p 或q ”为真,“p 且q ”为假,求实数m 的取值范围. 解:考点4、全称量词与存在量词 1.全称量词与存在量词(1)全称量词:对应日常语言中的“一切”、“任意的”、“所有的”、“凡是”、“任给”、“对每一个”等词,用符号“∀”表示。

(2)存在量词:对应日常语言中的“存在一个”、“至少有一个”、“有个”、“某个”、“有些”、“有的”等词,用符号“∃”表示。

2.全称命题与特称命题(1)全称命题:含有全称量词的命题。

“对∀x ∈M ,有p (x )成立”简记成“∀x ∈M ,p (x )”。

(2)特称命题:含有存在量词的命题。

“∃x ∈M ,有p (x )成立” 简记成“∃x ∈M ,p (x )”。

3. 同一个全称命题、特称命题,由于自然语言的不同,可以有不同的表述方法,现列表如下,供参考。

命题 全称命题∀x ∈M ,p (x ) 特称命题∃x ∈M ,p (x ) 表述 方法①所有的x ∈M ,使p (x )成立 ①存在x ∈M ,使p (x )成立 ②对一切x ∈M ,使p (x )成立 ②至少有一个x ∈M ,使p (x )成立 ③对每一个x ∈M ,使p (x )成立 ③对有些x ∈M ,使p (x )成立 ④任给一个x ∈M ,使p (x )成立 ④对某个x ∈M ,使p (x )成立 ⑤若x ∈M ,则p (x )成立⑤有一个x ∈M ,使p (x )成立4.常见词语的否定如下表所示: 词语 是 一定是 都是 大于 小于 词语的否定 不是 一定不是 不都是 小于或等于 大于或等于 词语 且 必有一个 至少有n 个 至多有一个 所有x 成立 词语的否定或一个也没有至多有n -1个至少有两个存在一个x 不成立例8、(2007山东)命题“对任意的01,23≤+-∈x x R x ”的否定是( ) A.不存在01,23≤+-∈x x R x B.存在01,23≥+-∈x x R x C.存在01,23>+-∈x x R x D. 对任意的01,23>+-∈x x R x例9、命题“0x ∃<,有20x >”的否定是 .考点5、充分条件与必要条件1、在判断充分条件及必要条件时,首先要分清哪个命题是条件,哪个命题是结论,其次,结论要分四种情况说明:充分不必要条件,必要不充分条件,充分且必要条件,既不充分又不必要条件。

从集合角度看,理解“越小越充分”的含义。

例10、(2008安徽卷)0a <是方程2210ax x ++=至少有一个负数根的( ) A .必要不充分条件 B .充分不必要条件 C .充分必要条件 D .既不充分也不必要条件例11、(2008湖北卷)若集合{}{}R x x x Q P ∈<<==,50,4,3,2,1,则:( ) A. R x ∈是Q x ∈的充分条件,不是Q x ∈的必要条件 B. R x ∈不是Q x ∈的充分条件,是Q x ∈的必要条件 C R x ∈是Q x ∈的充分条件,又是Q x ∈的必要条件. D.R x ∈既不是Q x ∈的充分条件,又不是Q x ∈的必要条件三、方法总结与高考预测(一)思想方法总结 1. 数形结合 2. 分类讨论 (二)高考预测1.集合是每年高考必考的知识点之一。

题型一般是选择和填空的形式,主要考查集合的运算和求有限集合的子集及其个数.2.简易逻辑是在高考中应一般在选择题、填空题中出现,如果在解答题中出现,则只会是中低档题.3.集合、简易逻辑知识,作为一种数学工具,在函数、方程、不等式、排列组合及曲线与方程等方面都有广泛的运用,高考题中常以上面内容为载体,以集合的语言为表现形式,结合简易逻辑知识考查学生的数学思想、数学方法和数学能力,题型常以解答题的形式出现. 四、复习建议1.在复习中首先把握基础性知识,深刻理解本单元的基本知识点、基本数学思想和基本数学方法.重点掌握集合、充分条件与必要条件的概念和运算方法.要真正掌握数形结合思想——用文氏图解题.2.涉及本单元知识点的高考题,综合性大题不多.所以在复习中不宜做过多过高的要求,只要灵活掌握小型综合题型(如集合与映射,集合与自然数集,集合与不等式,集合与方程等,充分条件与必要条件与三角、立几、解几中的知识点的结合等) 映射的概念以选择题型出现,难度不大。

就可以了3.活用“定义法”解题。

定义是一切法则与性质的基础,是解题的基本出发点。

利用定义,可直接判断所给的对应是否满足映射或函数的条件,证明或判断函数的单调性与奇偶性并写出函数的单调区间等。

4.重视“数形结合”渗透。

“数缺形时少直观,形缺数时难入微”。

当你所研究的问题较为抽象时,当你的思维陷入困境时,当你对杂乱无章的条件感到头绪混乱时,一个很好的建议便是:画个图!利用图形的直观性,可迅速地破解问题,乃至最终解决问题。

5.实施“定义域优先”原则。

函数的定义域是函数最基本的组成部分,任何对函数性质的研究都离不开函数的定义域。

例如,求函数的单调区间,必须在定义域范围内;通过求出反函数的定义域,可得到原函数的值域;定义域关于原点对称,是函数为奇函数或偶函数的必要条件。

为此,应熟练掌握求函数定义域的原则与方法,并贯彻到解题中去。

6.强化“分类思想”应用。

指数函数与对数函数的性质均与其底数是否大于1有关;对于根式的意义及其性质的讨论要分清n是奇数还是偶数等。

相关文档
最新文档