1第一讲 集合与简易逻辑 高考数学专题复习双基 典例 精炼

合集下载

高中数学复习讲义 第一章 集合与简易逻辑

高中数学复习讲义 第一章 集合与简易逻辑

高中数学复习讲义 第一章 集合与简易逻辑第1课时 集合的概念及运算【考点导读】1. 了解集合的含义,体会元素与集合的属于关系;能选择自然语言,图形语言,集合语言描述不同的具体问题,感受集合语言的意义和作用.2. 理解集合之间包含与相等的含义,能识别给定集合的子集;了解全集与空集的含义.3. 理解两个集合的交集与并集的含义,会求两个集合的交集与并集;理解在给定集合中一个子集补集的含义,会求给定子集的补集;能使用文氏图表达集合的关系及运算,体会直观图示对理解抽象概念的作用.4. 集合问题常与函数,方程,不等式有关,其中字母系数的函数,方程,不等式要复杂一些,综合性较强,往往渗透数形思想和分类讨论思想.【基础练习】1.集合用列举法表2.设集合,,则3.已知集合,,则集合_4.设全集,集合,,则实数a 的值为_____.【范例解析】例.已知为实数集,集合.若,或,求集合B .【反馈演练】1.设集合,,,则=_________. 2.设P ,Q 为两个非空实数集合,定义集合P +Q =,则P +Q 中元素的个数是______个.3.设集合,.(1)若,求实数a 的取值范围;{(,)02,02,,}x y x y x y Z ≤≤≤<∈{21,}A x x k k Z ==-∈{2,}B x x k k Z ==∈A B ⋂={0,1,2}M ={2,}N x x a a M ==∈M N ⋂={1,3,5,7,9}I ={1,5,9}A a =-{5,7}I C A =R 2{320}A x x x =-+≤R B C A R ⋃={01R B C A x x ⋂=<<23}x <<{}2,1=A {}3,2,1=B {}4,3,2=C ()C B A U ⋂},5,2,0{},,|{=∈∈+P Q b P a b a 若}6,2,1{=Q 2{60}P x x x =--<{23}Q x a x a =≤≤+P Q P ⋃=(2)若,求实数a 的取值范围;(3)若,求实数a 的值.第3 课时 充分条件和必要条件【考点导读】1. 理解充分条件,必要条件和充要条件的意义;会判断充分条件,必要条件和充要条件.2. 从集合的观点理解充要条件,有以下一些结论:若集合,则是的充分条件;若集合,则是的必要条件;若集合,则是的充要条件.3. 会证明简单的充要条件的命题,进一步增强逻辑思维能力.【基础练习】1.若,则是的充分条件.若,则是的必要条件.若,则是的充要条件.2.用“充分不必要条件,必要不充分条件,充要条件和既不充分也不必要条件”填空.(1)已知,,那么是的_____充分不必要___条件.(2)已知两直线平行,内错角相等,那么是的____充要_____条件.(3)已知四边形的四条边相等,四边形是正方形,那么是的___必要不充分__条件.3.若,则的一个必要不充分条件是.【范例解析】P Q ⋂=∅{03}P Q x x ⋂=≤<P Q ⊆P Q P Q ⊇P Q P Q =P Q p q ⇒p q q p ⇒p q p q ⇔p q :2p x >:2q x ≥p q :p :q p q :p :q p q x R ∈1x >0x >例.用“充分不必要条件,必要不充分条件,充要条件和既不充分也不必要条件”填空.(1)是的___________________条件;(2)是的___________________条件; (3)是的___________________条件;(4)是或的___________________条件.分析:从集合观点“小范围大范围”进行理解判断,注意特殊值的使用. 点评:①判断p 是q 的什么条件,实际上是判断“若p 则q ”和它的逆命题“若q 则p ”的真假,若原命题为真,逆命题为假,则p 为q 的充分不必要条件;若原命题为假,逆命题为真,则p 为q 的必要不充分条件;若原命题为真,逆命题为真,则p 为q 的充要条件;若原命题,逆命题均为假,则p 为q 的既不充分也不必要条件.②在判断时注意反例法的应用.③在判断“若p 则q ”的真假困难时,则可以判断它的逆否命题“若q 则p ”的真假.【反馈演练】1.设集合,,则“”是“”的_条件.2.已知p :1<x <2,q :x (x -3)<0,则p 是q 的 条件.3.已知条件,条件.若是的充分不必要条件,求实数a 的取值范围.2,2.x y >⎧⎨>⎩4,4.x y xy +>⎧⎨>⎩(4)(1)0x x -+≥401x x -≥+αβ=tan tan αβ=3x y +≠1x ≠2y ≠⇒⌝⌝}30|{≤<=x x M }20|{≤<=x x N M a ∈N a ∈2:{10}p A x R x ax =∈++≤2:{320}q B x R x x =∈-+≤q ⌝p ⌝。

1第一讲 集合与简易逻辑 高考数学专题复习双基 典例 精炼

1第一讲 集合与简易逻辑 高考数学专题复习双基 典例 精炼

第一章复习集合与简易逻辑一、本讲进度《集合与简易逻辑》复习二、复习要求1、理解集合及表示法,掌握子集,全集与补集,子集与并集的定义;2、掌握含绝对值不等式及一元二次不等式的解法;3、理解逻辑联结词的含义,会熟练地转化四种命题,掌握反证法;4、理解充分条件,必要条件及充要条件的意义,会判断两个命题的充要关系;5、学会用定义解题,理解数形结合,分类讨论及等价变换等思想方法。

三、学习指导1、集合的概念:(1)集合中元素特征,确定性,互异性,无序性;(2)集合的分类:①按元素个数分:有限集,无限集;②按元素特征分;数集,点集。

如数集{y|y=x2},表示非负实数集,点集{(x,y)|y=x2}表示开口向上,以y轴为对称轴的抛物线;(3)集合的表示法:①列举法:用来表示有限集或具有显著规律的无限集,如N+={0,1,2,3,…};②描述法。

2、两类关系:(1)元素与集合的关系,用∈或∉表示;(2)集合与集合的关系,用⊆,≠⊂,=表示,当A⊆B时,称A是B的子集;当A≠⊂B时,称A是B的真子集。

3、集合运算(1)交,并,补,定义:A∩B={x|x∈A且x∈B},A∪B={x|x∈A,或x∈B},C U A={x|x ∈U,且x∉A},集合U表示全集;(2)运算律,如A∩(B∪C)=(A∩B)∪(A∩C),C U(A∩B)=(C U A)∪(C U B),C U(A∪B)=(C U A)∩(C U B)等。

4、命题:(1)命题分类:真命题与假命题,简单命题与复合命题;(2)复合命题的形式:p且q,p或q,非p;(3)复合命题的真假:对p且q而言,当q、p为真时,其为真;当p、q中有一个为假时,其为假。

对p或q而言,当p、q均为假时,其为假;当p、q中有一个为真时,其为真;当p为真时,非p为假;当p为假时,非p为真。

(3)四种命题:记“若q则p”为原命题,则否命题为“若非p则非q”,逆命题为“若q 则p “,逆否命题为”若非q 则非p “。

高中数学第一章集合与常用逻辑用语考点专题训练(带答案)

高中数学第一章集合与常用逻辑用语考点专题训练(带答案)

高中数学第一章集合与常用逻辑用语考点专题训练单选题1、设全集U={−2,−1,0,1,2,3},集合A={−1,2},B={x∣x2−4x+3=0},则∁U(A∪B)=()A.{1,3}B.{0,3}C.{−2,1}D.{−2,0}答案:D分析:解方程求出集合B,再由集合的运算即可得解.由题意,B={x|x2−4x+3=0}={1,3},所以A∪B={−1,1,2,3},所以∁U(A∪B)={−2,0}.故选:D.2、已知集合M={x|x=m−56,m∈Z},N={x|x=n2−13,n∈Z},P={x|x=p2+16,p∈Z},则集合M,N,P的关系为()A.M=N=P B.M⊆N=PC.M⊆N P D.M⊆N,N∩P=∅答案:B分析:对集合M,N,P中的元素通项进行通分,注意3n−2与3p+1都是表示同一类数,6m−5表示的数的集合是前者表示的数的集合的子集,即可得到结果.对于集合M={x|x=m−56,m∈Z},x=m−56=6m−56=6(m−1)+16,对于集合N={x|x=n2−13,n∈Z},x=n2−13=3n−26=3(n−1)+16,对于集合P={x|x=p2+16,p∈Z},x=p2+16=3p+16,由于集合M,N,P中元素的分母一样,只需要比较其分子即可,且m,n,p∈Z,注意到3(n−1)+1与3p+1表示的数都是3的倍数加1,6(m−1)+1表示的数是6的倍数加1,所以6(m−1)+1表示的数的集合是前者表示的数的集合的子集,所以M⊆N=P.故选:B.3、下列各式中关系符号运用正确的是()A.1⊆{0,1,2}B.∅⊄{0,1,2}C.∅⊆{2,0,1}D.{1}∈{0,1,2}答案:C分析:根据元素和集合的关系,集合与集合的关系,空集的性质判断即可.根据元素和集合的关系是属于和不属于,所以选项A错误;根据集合与集合的关系是包含或不包含,所以选项D错误;根据空集是任何集合的子集,所以选项B错误,故选项C正确.故选:C.4、设a,b是实数,集合A={x||x−a|<1,x∈R},B={x||x−b|>3,x∈R},且A⊆B,则|a−b|的取值范围为()A.[0,2]B.[0,4]C.[2,+∞)D.[4,+∞)答案:D分析:解绝对值不等式得到集合A,B,再利用集合的包含关系得到不等式,解不等式即可得解.集合A={x||x−a|<1,x∈R}={x|a−1<x<a+1},B={x||x−b|〉3,x∈R}={x|x<b−3或x>b+3}又A⊆B,所以a+1≤b−3或a−1≥b+3即a−b≤−4或a−b≥4,即|a−b|≥4所以|a−b|的取值范围为[4,+∞)故选:D5、设全集U={1,2,3,4,5},集合M满足∁U M={1,3},则()A.2∈M B.3∈M C.4∉M D.5∉M答案:A分析:先写出集合M,然后逐项验证即可由题知M={2,4,5},对比选项知,A正确,BCD错误故选:A6、已知集合A={(x,y)|x,y∈N∗,y≥x},B={(x,y)|x+y=8},则A∩B中元素的个数为()A.2B.3C.4D.6答案:C分析:采用列举法列举出A∩B中元素的即可.由题意,A∩B中的元素满足{y≥xx+y=8,且x,y∈N∗,由x+y=8≥2x,得x≤4,所以满足x+y=8的有(1,7),(2,6),(3,5),(4,4),故A∩B中元素的个数为4.故选:C.【点晴】本题主要考查集合的交集运算,考查学生对交集定义的理解,是一道容易题.7、已知集合A={(x,y)||x|+|y|≤2,x∈Z,y∈Z},则A中元素的个数为()A.9B.10C.12D.13答案:D分析:利用列举法列举出集合A中所有的元素,即可得解.由题意可知,集合A中的元素有:(−2,0)、(−1,−1)、(−1,0)、(−1,1)、(0,−2)、(0,−1)、(0,0)、(0,1)、(0,2)、(1,−1)、(1,0)、(1,1)、(2,0),共13个.故选:D.8、已知U=R,M={x|x≤2},N={x|−1≤x≤1},则M∩∁U N=()A.{x|x<−1或1<x≤2}B.{x|1<x≤2}C.{x|x≤−1或1≤x≤2}D.{x|1≤x≤2}答案:A分析:先求∁U N,再求M∩∁U N的值.因为∁U N={x|x<−1或x>1},所以M∩C U N={x|x<−1或1<x≤2}.故选:A.多选题9、已知集合A={0,1,2},B={a,2},若B⊆A,则a=()A.0B.1C.2D.0或1或2答案:AB分析:由B⊆A,则B={0,2}或B={1,2},再根据集合相等求出参数的值;解:由B⊆A,可知B={0,2}或B={1,2},所以a=0或1.故选:AB.小提示:本题考查根据集合的包含关系求参数的值,属于基础题.10、已知集合A={x|x=2m−1,m∈Z},B={x|x=2n,n∈Z},且x1、x2∈A,x3∈B,则下列判断正确的是()A.x1x2∈A B.x2x3∈BC.x1+x2∈B D.x1+x2+x3∈A答案:ABC分析:本题首先可根据题意得出A表示奇数集,B表示偶数集,x1、x2是奇数,x3是偶数,然后依次对x1x2、x2x3、x1+x2、x1+x2+x3进行判断,即可得出结果.因为集合A={x|x=2m−1,m∈Z},B={x|x=2n,n∈Z},所以集合A表示奇数集,集合B表示偶数集,x1、x2是奇数,x3是偶数,A项:因为两个奇数的积为奇数,所以x1x2∈A,A正确;B项:因为一个奇数与一个偶数的积为偶数,所以x2x3∈B,B正确;C项:因为两个奇数的和为偶数,所以x1+x2∈B,C正确;D项:因为两个奇数与一个偶数的和为偶数,所以x1+x2+x3∈B,D错误,故选:ABC.11、已知命题p:∃x∈R,ax2−4x−4=0,若p为真命题,则a的值可以为()A.-2B.-1C.0D.3答案:BCD分析:根据给定条件求出p为真命题的a的取值范围即可判断作答,当a=0时,x=−1,p为真命题,则a=0,当a≠0时,若p为真命题,则Δ=16+16a≥0,解得a≥−1且a≠0,综上,p为真命题时,a的取值范围为a≥−1.故选:BCD12、已知集合A={x∈R|x2−3x−18<0},B={x∈R|x2+ax+a2−27<0},则下列命题中正确的是()A.若A=B,则a=−3B.若A⊆B,则a=−3C.若B=∅,则a≤−6或a≥6D.若B A时,则−6<a≤−3或a≥6答案:ABC分析:求出集合A,根据集合包含关系,集合相等的定义和集合的概念求解判断.A={x∈R|−3<x<6},若A=B,则a=−3,且a2−27=−18,故A正确.a=−3时,A=B,故D不正确.若A⊆B,则(−3)2+a⋅(−3)+a2−27≤0且62+6a+a2−27≤0,解得a=−3,故B正确.当B=∅时,a2−4(a2−27)≤0,解得a≤−6或a≥6,故C正确.故选:ABC.13、已知集合P={1,2},Q={x|ax+2=0},若P∪Q=P,则实数a的值可以是()A.−2B.−1C.1D.0答案:ABD分析:由题得Q⊆P,再对a分两种情况讨论,结合集合的关系得解.因为P∪Q=P,所以Q⊆P.由ax+2=0得ax=−2,当a=0时,方程无实数解,所以Q=∅,满足已知;当a≠0时,x=−2a ,令−2a=1或2,所以a=−2或−1.综合得a=0或a=−2或a=−1.故选:ABD小提示:易错点睛:本题容易漏掉a=0. 根据集合的关系和运算求参数的值时,一定要注意考虑空集的情况,以免漏解.填空题14、已知集合A={x|3≤x<7},C={x|x>a},若A⊆C,求实数a的取值范围_______.答案:(−∞,3)分析:根据集合的包含关系画出数轴即可计算.∵A⊆C,∴A和C如图:∴a<3.所以答案是:(−∞,3).15、若A={x|x2+(m+2)x+1=0,x∈R},且A∩R+=∅,则m的取值范围是__.答案:m>﹣4.解析:根据题意可得A是空集或A中的元素都是小于等于零的,然后再利用判别式以及韦达定理求解即可.解:A∩R+=∅知,A有两种情况,一种是A是空集,一种是A中的元素都是小于等于零的,若A=∅,则Δ=(m +2)2﹣4<0,解得﹣4<m<0 ,①若A≠∅,则Δ=(m +2)2﹣4≥0,解得m≤﹣4或m≥0,又A中的元素都小于等于零∵两根之积为1,∴A中的元素都小于0,∴两根之和﹣(m+2)<0,解得m>﹣2∴m≥0,②由①②知,m>﹣4,所以答案是:m>﹣4.小提示:易错点点睛:本题考查利用交集的结果求参数,本题在求解中容易忽略A=∅的讨论,导致错解,同时本题也可以采取反面考虑结合补集思想求解.16、设集合A={−4,2m−1,m2},B={9,m−5,1−m},又A∩B={9},求实数m=_____.答案:−3分析:根据A∩B={9}得出2m−1=9或m2=9,再分类讨论得出实数m的值.因为A∩B={9},所以9∈A且9∈B,若2m−1=9,即m=5代入得A={−4,9,25},B={9,0,−4},∴A∩B={−4,9}不合题意;若m2=9,即m=±3.当m=3时,A={−4,5,9},B={9,−2,−2}与集合元素的互异性矛盾;当m=−3时,A={−4,−7,9},B={9,−8,4},有A∩B={9}符合题意;综上所述,m=−3.所以答案是:−3解答题17、已知集合A={x|x2−ax+a2−19=0},集合B={x|x2−5x+6=0},集合C={x|x2+2x−8=0}.(1)若A∩B={2},求实数a的值;(2)若A∩B≠∅,A∩C=∅,求实数a的值.答案:(1)−3(2)−2分析:(1)求出集合B={2,3},由A∩B={2},得到2∈A,由此能求出a的值,再注意3∉A检验即可;(2)求出集合C={−4,2},由A∩B≠∅,A∩C=∅,得3∈A,由此能求出a,最后同样要注意检验.(1)因为集合A={x|x2−ax+a2−19=0},集合B={x|x2−5x+6=0}={2,3},且A∩B={2},所以2∈A ,所以4−2a +a 2−19=0,即a 2−2a −15=0,解得a =−3或a =5.当a =−3时,A ={x |x 2+3x −10=0}={−5,2},A ∩B ={2},符合题意;当a =5时,A ={x |x 2−5x +6=0}={2,3},A ∩B ={2,3},不符合题意.综上,实数a 的值为−3.(2)因为A ={x |x 2−ax +a 2−19=0},B ={2,3},C ={x |x 2+2x −8=0}={−4,2},且A ∩B ≠∅,A ∩C =∅,所以3∈A ,所以9−3a +a 2−19=0,即a 2−3a −10=0,解得a =−2或a =5.当a =−2时,A ={x |x 2+2x −15=0}={−5,3},满足题意;当a =5时,A ={x |x 2−5x +6=0}={2,3},不满足题意.综上,实数a 的值为−2.18、设α:m −1≤x ≤2m ,β:2≤x ≤4,m ∈R ,α是β的必要条件,但α不是β的充分条件,求实数m 的取值范围.答案:[2,3]分析:由题意可知α是β的必要不充分条件,可得出集合的包含关系,进而可得出关于实数m 的不等式组,由此可解得实数m 的取值范围.由题意可知,α是β的必要不充分条件,所以,{x |m −1≤x ≤2m }{x |2≤x ≤4},所以{m −1≤22m ≥4,解之得2≤m ≤3. 因此,实数m 的取值范围是[2,3].。

高考数学总复习 第1章 集合与简易逻辑 第1讲 集合与集合运算课件 (理) 大纲人教版

高考数学总复习 第1章 集合与简易逻辑 第1讲 集合与集合运算课件 (理) 大纲人教版

则 m-+2≤1≤m2+m1-,1, 2m-1≤5.
解得 2≤m≤3.
由①②得,m 的取值范围是(-∞,3].
(2)若 A⊆B,
2m-1>m-6, 则依题意应有m-6≤-2,
2m-1≥5. 解得mm≤>4-,5, 故 3≤m≤4,
m≥3.
∴m 的取值范围是[3,4]. m-6=-2,
(3)若 A=B,则必有2m-1=5, 解得 m∈∅. 即不存在 m 值使得 A=B.
反思感悟:善于总结,养成习惯 (1)在集合的运算关系和两个集合的包含关系之间往往存在一定的联系,在一定的情 况下,集合的运算关系和包含关系之间可以相互转化,如 A∪B=A⇔B⊆A⇔A∩B =B,在解题中发现和运用这种转化能有效地简化解题过程. (2)对于含有参数的方程,求解的基本策略是分类讨论,在分类讨论时要把字母参数 的各种可能情况都考虑进去,特别注意不要遗漏了参数等于零的情况.
第 1 讲 集合与集合运算
1.理解集合、子集、补集、交集、并集的概念. 2.了解空集和全集的意义,了解属于、包含、相等关系的意义. 3.掌握有关的术语和符号,并会用它们正确表示一些简单的集合
基础自查
1.集合的基本概念 (1)集合元素的三个特性: 确定性 、 互异性 、 无序性 . (2)集合的表示法: 列举法 、 描述法 、 图示法 .
解析:∵B⊆A,∴4∈B⇒4∈A⇒m=4.
答案:4
考向一 集合的基本概念
【例 1】 含有三个实数的集合,既可以表示为{a,ba,1},也可以表示为{a2,a+b,0}, 则 a2 011+b2 011=________. 解析:由已知得ba=0 及 a≠0,所以 b=0,于是 a2=1,即 a=1 或 a=-1,又 根据集合中元素的互异性 a=1 应舍去,因而 a=-1,故 a2 011+b2 011=-1. 答案:-1 反思感悟:善于总结,养成习惯 集合中元素的互异性,一可以作为解题的依据和突破口;二可以检验所求结果 是否正确.

高考数学大一轮总复习 第一章 集合与常用逻辑用语 计时双基练1 集合 理 北师大版-北师大版高三全册

高考数学大一轮总复习 第一章 集合与常用逻辑用语 计时双基练1 集合 理 北师大版-北师大版高三全册

计时双基练一集合A组基础必做1.下列集合中表示同一集合的是( )A.M={(3,2)},N={(2,3)}B.M={2,3},N={3,2}C.M={(x,y)|x+y=1},N={y|x+y=1}D.M={2,3},N={(2,3)}解析选项A中的集合M表示由点(3,2)所组成的单点集,集合N表示由点(2,3)所组成的单点集,故集合M与N不是同一个集合,选项C中的集合M表示由直线x+y=1上的所有点组成的集合,集合N表示由直线x+y=1上的所有点的纵坐标组成的集合,即N={y|x+y=1}=R,故集合M与N不是同一个集合,选项D中的集合M是数集,而集合N是点集,故集合M与N不是同一个集合,对选项B,由集合元素的无序性,可知M,N表示同一个集合。

答案 B2.(2015·某某卷)已知集合A={1,2,3},B={2,3},则( )A.A=B B.A∩B=∅C.A B D.B A解析因为A={1,2,3},B={2,3},所以B A。

答案 D3.(2015·某某卷)设集合M={x|x2=x},N={x|lg x≤0},则M∪N=( )A.[0,1] B.(0,1]C.[0,1) D.(-∞,1]解析解x2=x,得x=0或x=1,故M={0,1}。

解lg x≤0,得0<x≤1,故N=(0,1],故M∪N=[0,1],选A。

答案 A4.(2015·某某卷)设全集U={1,2,3,4,5,6},A={1,2},B={2,3,4},则A∩(∁U B)=( )A.{1,2,5,6} B.{1}C.{2} D.{1,2,3,4}解析由题意得∁U B={1,5,6},则A∩(∁U B)={1},因此选B。

答案 B5.(2015·课标全国Ⅰ卷)已知集合A={x|x=3n+2,n∈N},B={6,8,10,12,14},则集合A∩B中元素的个数为( )A.5 B.4C.3 D.2解析由条件知,当n=2时,3n+2=8,当n=4时,3n+2=14,所以A∩B={8,14},故选D。

01-第一章 集合与简易逻辑

01-第一章 集合与简易逻辑

1.1 集 合〖考纲要求〗理解集合、子集的概念,了解空集、属于、包含、相等的意义. 〖复习要求〗掌握子集的概念,正确使用符号:∈,∉,⊆,⊂,≠,Γ ,H 等〖复习建议〗集合是高考必考内容,一般考查两方面:集合自身的知识与集合语言与集合思想的应用。

复习时要抓住元素这个关键,遇到集合问题,首先要弄清集合里的元素是什么。

注意区别:a 与{a };{a ,b }与{(a ,b )},φ与{φ}〖双基回顾〗集合元素具有的三大特征是: 、 、 ;集合的表示方法: 、 、 ;集合的分类:有限集与无限集。

元素与集合只有两种关系: 、 ;子集的定义与集合的相等: n 元集合子集的个数= ;全集的意义;交集、并集、补集的定义与运算 提示:“和”、“或”、“且”体现在集合的运算中应该是 .一、知识点训练:1、用适当符号填空:0 {0,1};{a ,b } {b ,a };0 φ;{3+17} {x |x >6+3}2、用列举法表示{y |y =x 2-1,|x |≤2,x ∈Z}= .{(x ,y )|y =x 2-1,|x |≤2,x ∈Z}= . 3、M ={x |x 2+2x -a =0,x ∈R}≠φ,则实数a 的取值范围是……………………………………( ) (A )a ≤-1 (B ) a ≤1 (C ) a ≥-1 (D ) a ≥1. 4、已知集合A ={x |x 2-p x +15=0},B ={x |x 2-5x +q =0},如果A ∩B ={3},那么p +q = . 5、已知集合A ={x |-1≤x ≤2},B ={x |x <a },如果A ∩B =A ,那么a 的取值范围是 . 6、已知集合A ={x |x ≤2},B ={x |x >a },如果A ∪B =R ,那么a 的取值范围是 .二、典型例题分析:1、如果a ∈A 则a-11∈A(1)当2∈A 时,求A (2)如果A 是单元素集,求A .2、A ={x |x =y 2-2y -8},B ={y |y =-x 2+2x +3},求A ∩B .3、已知A ={x |x 2-a x +a 2-19=0},B ={x |log 2(x 2-5x +8)=1},C ={x |12822=-+x x },且A ∩B H Φ,A∩C =Φ,求实数a 及集合A .4、已知集合A ={x |x ≥|x 2-2x |},B ={x ||1|1xx x x -≥-},C ={x |a x 2+x +b <0},如果(A ∪B )∩C =φ,A ∪B ∪C =R ,求实数a 、b 的值.*5、S =[-1,a ],A ={y |y =x +1,x ∈S },B ={z|z=x 2,x ∈S },如果A =B ,求a 的值.*6、设f (x )=x 2+p x +q ,A ={x |f (x )=x ,x ∈R},B ={x |f (x -1)=x +1,x ∈R},C ={x |f (f (x ))=x }. (1)如果A ={2},求B .(2)如果证明A 是C 的子集三、课堂练习:1、如果{x |x 2-3x +2=0}⊇{x |a x -2=0},那么所有a 值构成的集合是 .2、A ={x |x =a 2+1,a ∈Z},B ={y |y =b 2-4b +5,b ∈Z},则A 、B 的关系是 .3、满足{0,1}ΓM ⊆{0,1,3,5,6}的集合M 的个数为 .4、设集合A ={x |10+3x -x 2≥0},B ={x |x 2+a <0},如果B ⊆A ,那么实数a 的取值范围是 .四、课堂小结:1、学习集合,关键在搞清集合中元素的构成.2、掌握元素互异性在集合中的应用.3、能利用集合中元素满足的条件进行解题.五、能力测试: 姓名 得分 .1、全集I={x |x ≤4,x ∈N *},A ={1,2,3},A ∩B ={2,3},那么B =…………………………( ) (A ){2,3} (B ) {2,3}或者{2,3,4} (C ){1,4} (D ) {1,4}或者{1}2、集合A ={3-2x ,1,3},B ={1,x 2},并且A ∪B =A ,那么满足条件的实数x 个数有………( ) (A )1 (B ) 2 (C )3 (D ) 43、三个集合A 、B 、C 满足A ∩B =C ,B ∩C =A ,那么有…………………………………………( ) (A )A =B =C (B ) A ⊆B (C )A =C ,A ≠B (D ) A =C ⊆B4、已知非空集合M ,N ,定义M -N ={x |x ∈M ,x ∉N },那么M -(M -N )=……………………( ) (A )M ∪N (B ) M ∩N (C )M (D ) N5、设M ={x |x ∈Z},N ={x |x =2n ,n ∈Z },P ={x |x =n +21},则下列关系正确的是………………( ) (A )N ⊂M (B ) N ⊂P (C )N =M ∪P (D ) N =M ∩P6、全集I={2,3,a 2+2a -3},A ={|a +1|,2},A ={5},则a =……………………………………( ) (A )2 (B ) –3或者1 (C )-4 (D )-4或者27、集合A ={x |x ≤1},B ={x |x >a },如果A ∩B =Φ,那么a 的取值范围是……………………( ) (A )a >1 (B ) a ≥1 (C ) a <1 (D ) a ≤18、集合A ={y |y =x 2+1},B ={y |y =x +1},则 A ∩B =………………………………………………( ) (A ){(1,2),(0,1)} (B ){0,1} (C ){1,2} (D )),1[+∞9、A ={x |x ≠1,x ∈R}∪{y |y ≠2,x ∈R },B ={z|z ≠1且z ≠2,z ∈R},那么……………………( ) (A )A =B (B )A ⊂B (C )A ⊃B (D )A ∩B =φ10、A ={x |f (x )=0},B ={x |g(x )=0},那么方程f 2(x )+g 2(x )=0的解集是……………………………( ) (A )A ∩B (B )A ∪B (C )A ∩B (D ) A ∪B11、非空集合S ⊆{1,2,3,4,5},并且满足a ∈S 则6-a ∈S ,那么这样的集合S 一共有 个. 12、设集合M ={x |x <5},N ={x |x >3},那么“x ∈M 或者x ∈N ”是“x ∈M ∩N ”的 条件. 13、用列举法化简集合M ={x |Z x Z x∈∈-,36}= . 14、如果集合A ={x |a x 2+2x +1=0}只有一个元素,则实数a 的值为 . 15、集合A ={x |x 2-3x +2=0}, B ={x |x 2-a x +a -1=0} ,C ={x |x 2-m x +2=0},若A ∪B =A ,A ∩C =C ,求实数a 、m 之值.*16、求集合{x |x 2+(b +2)x +b +1=0,b ∈R}的各元素之和.1.2 不等式的解法——绝对值不等式〖考纲要求〗在掌握一元一次与一元二次不等式解法的基础上掌握绝对值不等式解法.〖复习建议〗掌握绝对值的概念,会把绝对值问题转化为简单的问题;掌握去绝对值的基本方法:找零点分区间讨论法与换元法.一、知识点训练:1、不等式|2x -7|<3的解为………………………………………………………………………( ) (A )x >2 (B )2<x <5 (C )x <5 (D ) x >02、不等式(x -1)02≥+x 的解为……………………………………………………………( ) (A )x ≥1 (B )x >1 (C ) x ≥1或者x =-2 (D ) x ≥-2且x ≠13、方程12|12|-+=-+x x x x 的解是…………………………………………………………………( ) (A )x =-2 (B ) x ≠1 (C ) x ≤-2或者x >1 (D ) -2≤x <1 4、不等式525≤-x 的解集为 ; 5、不等式129->-x x 的解集为 ;二、典型例题分析:1、解不等式:(1)392+≤-x x(2)x x 2212>-1332)3(2-<+-x x x2、⑴已知适合不等式5|3|||≤-++x p x 的x 的最大值为4,求实数p 之值(p =0).⑵已知适合不等式a x x >--+|3||1|的解集为R ,求实数a 的取值范围.3、关于x 的不等式2)1(|2)1(|22-≤+-a a x 与0)13(2)1(32≤+++-a x a x 的解集依次为A 、B ,如果A 是B 的子集,求实数a 的取值范围.三、课堂练习:1、不等式x x ≤-52 的解集为 ;2、不等式x x x ≥+-11的解集为 ; 3、如果不等式kx x >+|1|的解集为R ,则实数k 的取值范围是 .四、课堂小结:解绝对值不等式时,常需要分类讨论,有时也可以用绝对值的几何意义求解,以简化计算.五、能力测试:1、关于x 的不等式a x x <++-|2||1|解集为空集,则实数a 的取值范围是………………( ) (A )(3,+∞) (B )[3,+∞) (C )(-∞,3] (D )(-∞,3)2、不等式|log |2|log 2|22x x x x +<-的解集为…………………………………………………( ) (A )(1,2) (B )(0,1) (C )(1,+∞) (D )(2,+∞)3、若321><x x和同时成立,则x 满足是 ; 4、不等式02||2<--x x 的解集为 . 5、解不等式||1212x x ≤- 6、解下列不等式:5252)1(≤--x 432)2(+>+x x (3)311≥-+x x7、关于x 的不等式23+>ax x 与不等式|x -2-c |<c -2同解,求a 与c 的值.8、函数)(x f =2x -1,)(x g =1-x 2,定义函数⎩⎨⎧<-≥=))(|)((| )())(|)((| |)(|)(x g x f x g x g x f x f x F ,试化简此函数解析式,并研究其最值.1.3 不等式的解法——一次与二次〖考纲要求〗熟练掌握一元一次与一元二次不等式的解法.〖复习建议〗掌握不等式的性质,知道解不等式的基本思想:化归与转化,掌握一元一次不等式:.一、知识点训练:1、x =3在不等式 ax >b 的解集中,那么…………………………………………………………( ) (A)a >0,3a >b (B)a <0,3a <b(C) a >0,b =0 (D) a ≠0,3a >b 或者a =0,b <0 2、不等式ax 2+bx +c >0(a ≠0)的解集为Φ,那么………………………………………………( )(A)a <0,△>0 (B)a <0,△≤0 (C) a >0,△≤0 (D) a >0,△≥0 3、不等式(x -1)02≥+x 的解为………………………………………………………………( )(A )x ≥1 (B )x >1 (C ) x ≥1或者x =-2 (D ) x ≥-2且x ≠1 4、不等式ax 2+bx +2>0的解集为3121<<-x ,则a ;b . 5、不等式组⎩⎨⎧<-+>-+0820222x x x x 的解集为 .二、典型例题分析:1、 如果不等式(a +b )x +(2a -3b )<0的解集为}31|{-<x x ,求不等式(a -3b )x +b -2a >0的解集.2、不等式2)1()12(2≤->-m x m x 对满足的一切实数m 的值都成立,求实数x 的取值范围.3、解关于x 的不等式0)(22>-+-m m x x4、如果不等式b x ax +<的解集为(4,16),求a 、b 的值.5、已知a ≠b ,解关于x 的不等式222)]1([)1(x b ax x b x a -+≥-+.三、课堂练习:1、在实数集内,关于x 的一元二次不等式)0(02≠<++a c bx ax 的解集是空集,则………… ( ) (A )04,02>-<ac b a 且 (B )04,02≤-<ac b a 且(C ) 04,02≤->ac b a 且 (D ) 0402>->ac b a 且2、0)(≥x f 解集是F ,0)(<x g 解集是G ,定义域都为R ,则不等式组⎩⎨⎧≥<0)(0)(x g x f 解集是 ……( )(A )G F (B ) G F (C ) G F (D ) G F 3、不等式ax 2+bx +c >0的解集为212->-<x x 或,那么不等式ax 2-bx +c >0的解集为 . 4、关于x 的不等式:ax 2+4x -1≥-2x 2-a 恒成立,那么实数a ∈ .四、课堂小结:一元一次不等式的解法:关键是学会讨论,知道其解集情况与系数之间的关系。

高考数学总复习 第1节 集合和简易逻辑复习课件 新人教版

高考数学总复习 第1节 集合和简易逻辑复习课件 新人教版

•考向上线 • 根据考试大纲的要求,2011结合2010年 高考的命题情况,我们可以预测2011年集 合与简易逻辑部分在选择、填空和解答题 中都有涉及,高考命题热点有以下两个方 面:一是集合的有关术语和符号、集合的 基本关系与基本运算、集合的简单应用、 命题真假的判断、四种命题的关系、充要 条件的判定等作基础性的考查,多以选择 题、填空题的形式出现;二是以函数、方 程、三角、不等式等知识为载体,以集合 的语言和符号为表现形式,结合简易逻辑
• 3.已知集合A={x||x|≤2,x∈R},B= {x|≥a},且A B,则实数a的取值范围是 ________.
• 【解析】 ∵A={x|-2≤x≤2},B={x|x≥a},
又A⊆B,利用数轴上覆盖关系:如右图所
• 4.设S,T为两个非空数集,定义集合P= {z|z=x+y,x∈S,y∈T}.如果S={1,2}, T={-1,0,1},则集合P的子集的个数为 ________. • 【解析】 ∵x∈S,y∈T,∴x∈{1,2}, y∈{-1,0,1}. • ∴P={0,1,2,3},故集合P的子集个数是24= 16. • 【答案】 16
(∁UA)∩(∁UB).
• 1.若集合M={a,b,c}中的元素是△ABC 的三边长,则△ABC一定不是 ( ) • A.锐角三角形 B.直角三角形 • C.钝角三角形 D.等腰三角形 • 【解析】 由集合元素的互异性知a,b,c 两两不相等,故选D. • 【答案】 D
• 2.设集合U={1,2,3,4,5,7,9},集合M= {1,2,3},N={4,5},则(∁UM)∩(∁UN)= ( ) • A.{5,7,9} B.{2,4,7,9} • C.{1,2,3,4,5} D.{7,9} • 【解析】 ∵∁UM={4,5,7,9},∁UN= {1,2,3,7,9}, • ∴(∁UM)∩(∁UN)={7,9}.故选D. • 【答案】 D

高考数学必修1总复习《集合与简易逻辑》

高考数学必修1总复习《集合与简易逻辑》

具体化(具体求出相关的集合,
Venn 图、
函数的图像等,即数形结合的思想).
考点三 集合的运算
【例3】 (2010·全国)设全集U={x∈N+|x<6},集合A={1,3},B={3,5},则 ∁U(A∪B)=( )
A. {1,4} B. {1,5} C. {2,4} D. {2,5}
解 ∵A={1,3},B={3,5},∴A∪B={1,3,5},∴∁U(A∪B)={2,4},故选C.
考点二 集合之间的关系 【例2】 已知集合A={1,2},B={1,2,3,4,5},且A M⊆B,则满足上述 条件的集合M有________个. 解 ∵A M, ∴M中一定含有A的全部元素1,2,且至少含有一个不属于A的元素. 又∵M⊆B, ∴M中的元素除了含有A的元素1,2外,还有元素3,4,5中的1个、2个或3 个.故求M的问题转化为研究集合{3,4,5}的非空子集的问题,显然所求集 合M有23-1=7个.
正整数 集
整数集
有理数 集
实数集 复数集
符号
N
N*或N+
Z
Q
R
C
(4)集合的表示法: __列__举__法__、 __描__述__法__、 V__e_n_n_图_法__ 、 __区__间____、 __不__等__式__. 2. 集合间的基本关系
表示 关系
文字语言
符号语言
子集 相等 真子集
A中任意一个元素均为B中的元 素
(1)若A∩B≠∅,则实数a的取值范围是________;
(2)若A∩B≠A,则实数a的取值范围是________;
(3)若A∪B=B,则实数a的取值范围是________.
解析:A={x|-2≤x≤4},B={x|x>a},将集合A、B表示在数轴上(注:集 合B表示的范围随着a值的变化而在移动),如图所示,要注意的就是对于端 点值的取舍.
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

第一章复习集合与简易逻辑一、本讲进度《集合与简易逻辑》复习二、复习要求1、理解集合及表示法,掌握子集,全集与补集,子集与并集的定义;2、掌握含绝对值不等式及一元二次不等式的解法;3、理解逻辑联结词的含义,会熟练地转化四种命题,掌握反证法;4、理解充分条件,必要条件及充要条件的意义,会判断两个命题的充要关系;5、学会用定义解题,理解数形结合,分类讨论及等价变换等思想方法。

三、学习指导1、集合的概念:(1)集合中元素特征,确定性,互异性,无序性;(2)集合的分类:①按元素个数分:有限集,无限集;②按元素特征分;数集,点集。

如数集{y|y=x2},表示非负实数集,点集{(x,y)|y=x2}表示开口向上,以y轴为对称轴的抛物线;(3)集合的表示法:①列举法:用来表示有限集或具有显著规律的无限集,如N+={0,1,2,3,…};②描述法。

2、两类关系:(1)元素与集合的关系,用∈或∉表示;(2)集合与集合的关系,用⊆,≠⊂,=表示,当A⊆B时,称A是B的子集;当A≠⊂B时,称A是B的真子集。

3、集合运算(1)交,并,补,定义:A∩B={x|x∈A且x∈B},A∪B={x|x∈A,或x∈B},C U A={x|x ∈U,且x∉A},集合U表示全集;(2)运算律,如A∩(B∪C)=(A∩B)∪(A∩C),C U(A∩B)=(C U A)∪(C U B),C U(A∪B)=(C U A)∩(C U B)等。

4、命题:(1)命题分类:真命题与假命题,简单命题与复合命题;(2)复合命题的形式:p且q,p或q,非p;(3)复合命题的真假:对p且q而言,当q、p为真时,其为真;当p、q中有一个为假时,其为假。

对p或q而言,当p、q均为假时,其为假;当p、q中有一个为真时,其为真;当p为真时,非p为假;当p为假时,非p为真。

(3)四种命题:记“若q则p”为原命题,则否命题为“若非p则非q”,逆命题为“若q 则p “,逆否命题为”若非q 则非p “。

其中互为逆否的两个命题同真假,即等价。

因此,四种命题为真的个数只能是偶数个。

5、充分条件与必要条件(1)定义:对命题“若p 则q ”而言,当它是真命题时,p 是q 的充分条件,q 是p 的必要条件,当它的逆命题为真时,q 是p 的充分条件,p 是q 的必要条件,两种命题均为真时,称p 是q 的充要条件;(2)在判断充分条件及必要条件时,首先要分清哪个命题是条件,哪个命题是结论,其次,结论要分四种情况说明:充分不必要条件,必要不充分条件,充分且必要条件,既不充分又不必要条件。

从集合角度看,若记满足条件p 的所有对象组成集合A ,满足条件q 的所有对象组成集合q ,则当A ⊆B 时,p 是q 的充分条件。

B ⊆A 时,p 是q 的充分条件。

A=B 时,p 是q 的充要条件;(3)当p 和q 互为充要时,体现了命题等价转换的思想。

6、反证法是中学数学的重要方法。

会用反证法证明一些代数命题。

7、集合概念及其基本理论是近代数学最基本的内容之一。

学会用集合的思想处理数学问题。

四、典型例题例1、已知集合M={y|y=x 2+1,x ∈R},N={y|y=x+1,x ∈R},求M ∩N 。

解题思路分析:在集合运算之前,首先要识别集合,即认清集合中元素的特征。

M 、N 均为数集,不能误认为是点集,从而解方程组。

其次要化简集合,或者说使集合的特征明朗化。

M={y|y=x 2+1,x ∈R}={y|y ≥1},N={y|y=x+1,x ∈R}={y|y ∈R}∴ M ∩N=M={y|y ≥1}说明:实际上,从函数角度看,本题中的M ,N 分别是二次函数和一次函数的值域。

一般地,集合{y|y=f(x),x ∈A}应看成是函数y=f(x)的值域,通过求函数值域化简集合。

此集合与集合{(x ,y )|y=x 2+1,x ∈R}是有本质差异的,后者是点集,表示抛物线y=x 2+1上的所有点,属于图形范畴。

集合中元素特征与代表元素的字母无关,例{y|y ≥1}={x|x ≥1}。

例2、已知集合A={x|x 2-3x+2=0},B+{x|x 2-mx+2=0},且A ∩B=B ,求实数m 范围。

解题思路分析:化简条件得A={1,2},A ∩B=B ⇔B ⊆A根据集合中元素个数集合B 分类讨论,B=φ,B={1}或{2},B={1,2} 当B=φ时,△=m 2-8<0 ∴ 22m 22<<-当B={1}或{2}时,⎩⎨⎧=+-=+-=∆02m 2402m 10或,m 无解当B={1,2}时,⎩⎨⎧=⨯=+221m21∴ m=3综上所述,m=3或22m 22<<-说明:分类讨论是中学数学的重要思想,全面地挖掘题中隐藏条件是解题素质的一个重要方面,如本题当B={1}或{2}时,不能遗漏△=0。

例3、用反证法证明:已知x 、y ∈R ,x+y ≥2,求 证x 、y 中至少有一个大于1。

解题思路分析:假设x<1且y<1,由不等式同向相加的性质x+y<2与已知x+y ≥2矛盾 ∴ 假设不成立∴ x 、y 中至少有一个大于1说明;反证法的理论依据是:欲证“若p 则q ”为真,先证“若p 则非q ”为假,因在条件p 下,q 与非q 是对立事件(不能同时成立,但必有一个成立),所以当“若p 则非q ”为假时,“若p 则q ”一定为真。

例4、若A 是B 的必要而不充分条件,C 是B 的充要条件,D 是C 的充分而不必要条件,判断D 是A 的什么条件。

解题思路分析:利用“⇒”、“⇔”符号分析各命题之间的关系 D ⇒C ⇔B ⇒A∴ D ⇒A ,D 是A 的充分不必要条件说明:符号“⇒”、“⇔”具有传递性,不过前者是单方向的,后者是双方向的。

例5、求直线 :ax-y+b=0经过两直线 1:2x-2y-3=0和 2:3x-5y+1=0交点的充要条件。

解题思路分析:从必要性着手,分充分性和必要性两方面证明。

由 ⎩⎨⎧=+-=--01y 5x 303y 2x 2得 1, 2交点P (411,417)∵ 过点P ∴ 0b 411417a =+-⨯∴ 17a+4b=11充分性:设a ,b 满足17a+4b=11 ∴ 4a1711b -=代入 方程:04a1711y ax =-+- 整理得:0)417x (a )411y (=---此方程表明,直线 恒过两直线0417x ,0411y =-=-的交点(411,417) 而此点为 1与 2的交点 ∴ 充分性得证 ∴ 综上所述,命题为真说明:关于充要条件的证明,一般有两种方式,一种是利用“⇔”,双向传输,同时证明充分性及必要性;另一种是分别证明必要性及充分性,从必要性着手,再检验充分性。

五、同步练习 (一) 选择题1、设M={x|x 2+x+2=0},a=lg(lg10),则{a}与M 的关系是经济界 jjjjjjjjjjjjjjjA 、{a}=MB 、M ≠⊆{a}C 、{a}≠⊇MD 、M ⊇{a}2、已知全集U=R ,A={x|x-a|<2},B={x|x-1|≥3},且A ∩B=φ,则a 的取值范围是 A 、 [0,2]B 、(-2,2)C 、(0,2]D 、(0,2)3、已知集合M={x|x=a 2-3a+2,a ∈R},N 、{x|x=b 2-b ,b ∈R},则M ,N 的关系是A 、 M ≠⊆NB 、M ≠⊇NC 、M=ND 、不确定4、设集合A={x|x ∈Z 且-10≤x ≤-1},B={x|x ∈Z ,且|x|≤5},则A ∪B 中的元素个数是A 、11B 、10C 、16D 、155、集合M={1,2,3,4,5}的子集是 A 、15B 、16C 、31D 、326、对于命题“正方形的四个内角相等”,下面判断正确的是 A 、所给命题为假 B 、它的逆否命题为真 C 、它的逆命题为真 D 、它的否命题为真7、“α≠β”是cos α≠cos β”的A 、充分不必要条件B 、必要不充分条件C 、充要条件D 、既不充分也不必要条件8、集合A={x|x=3k-2,k ∈Z},B={y|y=3 +1, ∈Z},S={y|y=6m+1,m ∈Z}之间的关系是A 、S ≠⊆B ≠⊆AB 、S=B ≠⊆AC 、S ≠⊆B=AD 、S ≠⊇B=A9、方程mx 2+2x+1=0至少有一个负根的充要条件是A 、0<m ≤1或m<0B 、0<m ≤1C 、m<1D 、m≤110、已知p :方程x 2+ax+b=0有且仅有整数解,q :a ,b 是整数,则p 是q 的 A 、充分不必要条件 B 、必要不充分条件C.充要条件 D 、既不充分又不必要条件 (二) 填空题 11、已知M={Z 24m |m ∈-},N={x|}N 23x ∈+,则M ∩N=__________。

12、在100个学生中,有乒乓球爱好者60人,排球爱好者65人,则两者都爱好的人数最少是________人。

13、关于x 的方程|x|-|x-1|=a 有解的充要条件是________________。

14、命题“若ab=0,则a 、b 中至少有一个为零”的逆否命题为____________。

15、非空集合p 满足下列两个条件:(1)p ≠⊆{1,2,3,4,5},(2)若元素a ∈p ,则6-a ∈p ,则集合p 个数是__________。

(三) 解答题16、设集合A={(x ,y)|y=ax+1},B={(x ,y)|y=|x|},若A ∩B 是单元素集合,求a 取值范围。

17、已知抛物线C :y=-x 2+mx-1,点M (0,3),N (3,0),求抛物线C 与线段MN 有两个不同交点的充要条件。

18、设A={x|x 2+px+q=0}≠φ,M={1,3,5,7,9},N={1,4,7,10},若A ∩M=φ,A ∩N=A ,求p 、q 的值。

19、已知21x a 2+=,b=2-x ,c=x 2-x+1,用反证法证明:a 、b 、c 中至少有一个不小于1。

参考答案(一) 选择题1、C2、A3、C4、C5、D6、B7、B8、C9、D 10、A (二) 填空题11、φ 12、25,60 13、-1≤a ≤1 14、若a 、b 均不为0,则ab ≠0 15、7 (三) 解答题16、a ≥1或a ≤-1,提示:画图uu 17、 3<m ≤310 18、⎩⎨⎧=-=16q 8p ,或⎩⎨⎧=-=10q 20p ,或⎩⎨⎧=-=40q 14p。

相关文档
最新文档