数学解题思想——整体思想

数学解题思想——整体思想
数学解题思想——整体思想

数学解题思想——整体思想

杨相云

整体思想就是从问题的整体性质出发,突出对问题整体结构的分析和改造,发现问题的整体结构特征,善于用“集成”的眼光,把某些式子、图形或概念看成一个整体,把握它们之间的关联,进行有目的、有意识的整体处理。

一.整体代入

在求代数式的值时,可先将条件或待求式变形,再整体代入求值,使问题化难为易。

例1 已知a 是方程210x x +-=的一个根,求代数式22211a a a a

--+的值。 分析:由a 是方程210x x +-=的一个根,得210a a +-=,则21-a a -=,2=1a a +,再整体带入即可。

二.整体设元

在解决某些比较复杂的式子时,也可以考虑将复杂的式子整体用字母代换,使问题化繁为简,巧妙获解。

例2 阅读材料:求2320141+2+2+2...2++的值。

解:设S=2320141+2+2+2...2++,则2S=234201420152+2+22...22++++,

两式相减得 2S-S=201521-,即S=201521-;

故2320141+2+2+2...2++=201521-。

请你仿照此方法计算:

(1)23101+3+3+3...3++;

(2)231+5+5+5...5n ++(其中n 为正整数)。

分析:(1)仿照阅读材料,设S=23101+3+3+3...3++,两边乘以3后得到关系式3S=2310113+3+3...33+++,再与已知等式相减,得2S=1131-,即可求出所求式子的值;

(2)设S=231+5+5+5...5n ++,两边乘以3后得到关系式5S=2315+5+5...5+5n n +++,再与已知等式相减,得4S=151n +-,即可求出所求式子的值;

三.整体构造

就是对已知条件和所求联合研究,把问题作为一个整体来构造,从而解决问题。 例3 甲、乙、丙三种商品,若买甲4件,乙5件、丙2件,共用69元;若买甲5件,乙6件、丙1件,共用84元。问买甲2件,乙3件、丙4件,共需多少钱

分析:如果想先求出甲、乙、丙三种商品的单价后再去求甲2件,乙3件、丙4件共需多少钱,显然是行不通的,因为条件不够,所以应该讲问题作为一个整体来考虑。 设甲、乙、丙单价分别为x 元、y 元、z 元,则45269(1)

5684(2)x y z x y z ++=??++=?

, (1)×3-(2)×2得2x+3y+4z=39即可。

四.整体配凑(化零为整)

在解决某些整体问题时,有时无法从各组成部分去分别突破,这时需要考虑将其组成部分化零为整,从而使问题获得解决。

例3 如图,△ABC 中,AB=AC=8,O 为△ABC 的内心,过点O 作BC 的平

行线分别交AB 、AC 于点D 、E ,则△ADE 的周长为多少

分析:连接BO 、CO,由O 为△ABC 的内心,可得BO 平分∠ABC,得到∠DBO=

∠OBC,由DE ∥BC,得到∠DOB=∠OBC,从而∠DBO=∠DOB,于是DO=BD,同理可得OE=CE,即△ADE 的周长=AD+DO+OE+AE=AD+BD+CE+AE=AB+AC=16.

五.整体处理

在解决某些问题时,可以把某些东西看成一个整体,从整体角度去分析,这样要比从其他角度去分析方便许多。

例4 甲、乙两人从相距20千米的两地同时出发,相向而行,甲的速度为6千米/时,乙的速度为4千米/时。一只小狗与甲同时出发向乙奔去,遇到乙后立即掉头向甲跑去,遇到甲后又立即掉过头迎乙......直到两人相遇为止。若小狗的速度是13千米/时,在这奔跑过程中,小狗的总行程是多少千米

分析:我们可以有以下几种思路:(1)逐段计算小狗奔跑的路程;(2)逐段计算小狗奔跑的时间;(3)从题目分析来看,小狗来回奔跑的时间之和,恰等于甲、乙二人从出发到相遇的所需的时间,故小狗奔跑的总时间为2小时,从而轻而易举地得到小狗奔跑的总路程为13×2=26(千米)。

练习:

1. 已知114a b -=,则2227a ab b a b ab ---+的值等于=______________.

2.计算:111111-----23456()111111++234567++(+)-1111111------234567()111++23456

++() =___________.

3. 如图,⊙O 的半径为2,C 1是函数y=21x 2的图象,C 2是函数y= -2

1x 2的图象, 则阴影部分的面积是

4. 7张如图1的长为a ,宽为b (a>b )的小长方形纸片,按图2的方式

不重叠地放在矩形 ABCD 内,未被覆盖的部分(两个矩形)用阴影表示,

设左上角与右下角的阴影部分的面积的差为S ,当BC 的长度变化时,按

照同样的放置方式,S 始终保持不变,则a ,b 满足( )

A. 52a b = =3b C. 72

a b = =4b 5. 如图,P 为⊙O 外一点,PA 、PB 分别切⊙O 于A 、B ,CD 切⊙O 于点E ,分别

交PA 、PB 于点C 、D ,若PA=5,则△PCD 的周长为 ____________.

6.已知,AO 是△ABC 的∠A 的平分线,BD ⊥AO 交AO 的延长线于D ,点E 是B

C 的中点,求证:1=)2

DE AB AC -(

7.在一条公路旁,每隔100千米有一个仓库,共有5个仓库,1号仓库有10

吨货物,2号仓库有20吨货物,5号仓库存有40吨货物,其它两个仓库空着。现在想把所C 1

C 2

0 y x

有的货物集中存放在一个仓库,如果每吨货物运输一千米需要元的运费,那么运费最少要多少元

数思想方法与数学解题方法

中学解题数学思想方法与解题方法 第一部分:数学思想方法 数学思想是指现实世界的空间形式和数量关系反映到人的意识之中,经过思维活动而产生的结果,它是对数学事实与数学理论的本质认识,而数学方法是以数学为工具进行科学研究的方法。数学思想与数学方法是数学知识中莫基性成分,是学生获得数学能力必不可少的。 一、函数与方程思想 函数与方程的思想是中学数学最基本的思想。 所谓函数的思想是指用运动变化的观点去分析和研究数学中的数量关系,建立函数关系或构造函数,再运用函数的图像与性质去分析、解决相关的问题。函数思想是对函数内容在更高层次上的抽象,概括与提炼,在研究方程、不等式、数列、解析几何等其他内容时,起着重要作用。 所谓方程的思想是分析数学中的等量关系,去构建方程或方程组,通过求解或利用方程的性质去分析解决问题。方程思想是解决各类计算问题的基本思想,是运算能力的基础。 高考把函数与方程思想作为七种重要思想方法重点来考查。 二、数形结合思想 数形结合的思想和方法数形结合思想是指将数(量)与(图)形结合起来进行分析、研究、解决问题的一种思维策略。 数与形在一定的条件下可以转化。如某些代数问题、三角问题往往有几何背景,可以借助几何特征去解决相关的代数三角问题;而某些几何问题也往往可以通过数量的结构特征用代数的方法去解决。 数形结合思想研究的对象是数量关系和空间形式,即数与形两个方面由数思形,由形思数数形结合,用形解决数的问题。在一维空间,实数与数轴上的点建立一一对应关系;在二维空间,实数对与坐标平面上的点建立一一对应关系。 三、分类与整合思想 分类讨论思想是对数学对象进行分类寻求解答的一种思想方法,其作用在于克服思维的片面性,全面考虑问题。 1)分类是自然科学乃至社会科学研究中的基本逻辑方法 2)从具体出发,选取适当的分类标准;划分只是手段,分类研究才是目的

高中数学解题思想之分类讨论思想

分类讨论思想方法 在解答某些数学问题时,有时会遇到多种情况,需要对各种情况加以分类,并逐类求解,然后综合得解,这就是分类讨论法。分类讨论是一种逻辑方法,是一种重要的数学思想,同时也是一种重要的解题策略,它体现了化整为零、积零为整的思想与归类整理的方法。有关分类讨论思想的数学问题具有明显的逻辑性、综合性、探索性,能训练人的思维条理性和概括性,所以在高考试题中占有重要的位置。 引起分类讨论的原因主要是以下几个方面: ①问题所涉及到的数学概念是分类进行定义的。如|a|的定义分a>0、a=0、a<0三种情况。这种分类讨论题型可以称为概念型。 ②问题中涉及到的数学定理、公式和运算性质、法则有范围或者条件限制,或者是分类给出的。如等比数列的前n项和的公式,分q=1和q≠1两种情况。这种分类讨论题型可以称为性质型。 ③解含有参数的题目时,必须根据参数的不同取值范围进行讨论。如解不等式ax>2时分a>0、a=0和a<0三种情况讨论。这称为含参型。 另外,某些不确定的数量、不确定的图形的形状或位置、不确定的结论等,都主要通过分类讨论,保证其完整性,使之具有确定性。 进行分类讨论时,我们要遵循的原则是:分类的对象是确定的,标准是统一的,不遗漏、不重复,科学地划分,分清主次,不越级讨论。其中最重要的一条是“不漏不重”。 解答分类讨论问题时,我们的基本方法和步骤是:首先要确定讨论对象以及所讨论对象的全体的范围;其次确定分类标准,正确进行合理分类,即标准统一、不漏不重、分类互斥(没有重复);再对所分类逐步进行讨论,分级进行,获取阶段性结果;最后进行归纳小结,综合得出结论。 Ⅰ、再现性题组: 1.集合A={x||x|≤4,x∈R},B={x||x-3|≤a,x∈R},若A?B,那么a的范围是_____。 A. 0≤a≤1 B. a≤1 C. a<1 D. 00且a≠1,p=log a (a3+a+1),q=log a (a2+a+1),则p、q的大小关系是 _____。 A. p=q B. pq D.当a>1时,p>q;当0

高中数学常见思想方法总结

高中常见数学思想方法 方法一 函数与方程的思想方法 函数是中学数学的一个重要概念,它渗透在数学的各部分内容中,一直是高考的热点、重点内容.函数的思想,就是用运动变化的观点,分析和研究具体问题中的数量关系,建立函数特征,重在对问题的变量的动态研究,从变量的运动变化、联系和发展角度拓宽解题思路.方程的思想,是从问题的数量关系入手,运用数学语言将问题中的条件转化为数学模型(方程、不等式或方程与不等式的混合组),然后通过解方程(组)或不等式(组)来使问题获解. 函数与方程的思想在解题中的应用主要表现在两个方面:一是借助有关初等函数的性质,解有关求值、解(证)不等式、解方程以及讨论参数的取值范围等问题;二是在问题的研究中,通过建立函数关系式或构造中间函数,把所研究的问题转化为讨论函数的有关性质,达到化难为易,化繁为简的目的.有时,还实现函数与方程的互相转化、接轨,达到解决问题的目的. 【例1】 设等差数列{}n a 的前n 项的和为n S ,已知3121312,0,0a S S =><. (1)求公差d 的取值范围; (2)指出1S 、2S 、…、12S 中哪一个值最大,并说明理由. 【分析】 (1)利用公式n a 与n S 建立不等式,容易求解d 的范围;(2)利用n S 是n 的二次函数,将n S 中哪一个值最大,变成求二次函数中n 为何值时n S 取最大值的函数最值问题. 【解】(1) 由3a =12a d +=12,得到1a =12-2d , 所以12S =121a +66d =12(12-2d )+66d =144+42d >0, 13S =131a +78d =13(12-2d )+78d =156+52d <0. 解得:2437 d -<<-. (2)解法一:(函数的思想) n S =21115(1)(12)222 na n n d dn d n ++=+- =22 124124552222d d n d d ????????---- ? ????????????? 因为0d <,故212452n d ????-- ???????最小时,n S 最大.

论文:数学思想方法

数学思想方法 河南省虞城县李老家乡第二初级中学;高华增数学思想方法一般是指人们在数学的发生、形成、发展过程中总结概括出来的数学规律的本质认识,是利用数学知识去解决问题的思维策略和指导思想,它为数学知识的学习和运用提供了方向,是解决数学问题的“向导”,数学思想的产生并作用于数学学习的整个过程中,尤其是在解决复杂的综合题时,数学思想的合理运用起着关键性的决定作用,数学思想方法是数学思想的具体体现,不仅是学习和运用数学知识的解决数学问题应具备的、最基本的思想方法.而且是新课标改革的方向和中考试题解题特征 常见的数学思想方法有:化归思想方法、数形结合思想方法、分类讨论思想方法、数学建模思想方法、方程思想方法、函数思想方法、整体思想方法,对此类问题的突破,方法具体如下: 类型一:化归思想方法:重难点突破:解决问题的基本思想就是化未知为已知,把复杂的问题简单化,把生疏的问题熟悉化,把实际问题数学化,不同的数学问题相互转化,也体现了把不易解决的问题转化为有章可循,容易解决的问题的思想

【例1】 如下图中每个阴影部分是以多边形各顶点为圆心,1为半径 的扇形,并且所有多边形的每条边都大于2,则第n 个多边形中,所有扇形面积之和是______.(结果保留π) 分析:本题考察了扇形面积和n 边形内角和公式,解题关键是:是求第n 个图形中(n +2)个半径为1的扇形的面积之和 解析:[]ππ2n 1802-2)(n 3601S 2 =?+?=,答案;π2 n

类型二:数形结合: 重难点突破: 根据数学问题的题设和结论之间的内在联系,分析其数量关系,又揭示其几何意义,使数量关系和几何图形巧妙结合,充分利用这种结合探究解题思路,使问题得以解决; 【例2】(09重庆)如图,在矩形ABCD 中,A B =2,BC =1,动点P 从点B 出发,沿路线B →C →D 作匀速运动,那么△ABP 的面积S 与点P 运动的路程x 之间的函数图象大致是 ( ) 分析:本题考查点是运动变化为前提,根据几何图形的面积变化特征,通过分段讨论,确立相应函数关系,进而确定函数图象,这是一道典型的数形结合与分类讨论的综合题,是这几年中招试题常见题型,解题关键是能否充分利用分类的讨论思想,难点是能否把所有情况分别讨论,很多同学因考虑不全而丢分. 解析:当点P 在BC 上时,即0<x ≤1时 x x 2PB AB S 2121PAB =??=?=? 当点P 在CD 上时,即1<x ≤3时

初中数学思想方法主要有哪些

一、用字母表示数的思想,这是基本的数学思想之一 在代数第一册第一章“代数初步知识”中,主要体现了这种思想。例如: 设甲数为a,乙数为b,用代数式表示:(1)甲乙两数的和的2倍:2(a+b) (2)甲数的1/3与乙数的1/2差:1/3a-1/2b 二、数形结合的思想 “数形结合”是数学中最重要的,也是最基本的思想方法之一,是解决许多数学问题的有效思想。实中数学教材中下列内容体现了这种思想。 1、数轴上的点与实数的一一对应的关系。 2、平面上的点与有序实数对的一一对应的关系。 3、函数式与图像之间的关系。 4、线段(角)的和、差、倍、分等问题,充分利用数来反映形。 5、解三角形,求角度和边长,引入了三角函数,这是用代数方法解决何问题。 6、“圆”这一章中,贺的定义,点与圆、直线与圆、圆与圆的位置关系等都是化为数量关系来处理的。 7、统计初步中统计的第二种方法是绘制统计图表,用这些图表的反映数据的分情况,发展趋势等。实际上就是通过“形”来反映数据扮布情况,发展趋势等。实际上就是通过“形”来反映数的特征,这是数形结合思想在实际中的直接应用。 三、转化思想 在整个初中数学中,转化(化归)思想一直贯穿其中。转化思想是把一个未知(待解决)的问题化为已解决的或易于解决的问题来解决,它是数学基本思想方法之一。下列内容体现了这种思想: 1、分式方程的求解是分式方程转化为前面学过的一元二次方程求解,这里把待解决的新问题化为已解决的问题来求解,体现了转化思想。 2、解直角三角形;把非直角三形问题化为直角三角形问题;把实际问题转化为数学问题。 3、“圆”这一章中,证明圆周角定理进所做的分析:证明弦切角定理的思路:求两圆的切线长的问题。这些转化都是通过辅助线来完成的。 4、把三角形或多边形中的某种线段或面积问题化为相似比问题来解决。 四、分类思想 集合的分类,有理数的分类、整式的分类、实数的分类、角的分类,三角形的分类、四边形的分类、点与圆的位置关系、直线与圆的位置关系,圆与圆的位置关生活经验等都是通过分类讨论的。 五、特殊与一般化思想

整体的思想方法

整体的思想方法 一、知识要点概述 解数学题时,人们往往习惯于从问题的局部出发,将问题分解成若干个简单的子问题,然后再各个击破、分而治之.但思考方法并非对所有题目都适用,它常常导致某些题解题过程繁杂、运算量大,甚至半途而废.其实,有很多数学问题,如果我们有意识地放大考察问题的“视角”,往往能发现问题中隐含的某个“整体”,利用这个“整体”对问题实施调节与转化,常常能使问题快速获解.一般地,我们把这种从整体观点出发,通过研究问题的整体形式、整体结构、整体特征,从而对问题进行整体处理的解题思想方法,称为整体思想方法. 在数学思想中整体思想是最基本、最常用的数学思想。它是通过研究问题的整体形式、整体结构,并对其进行调节和转化使问题获解的一种方法.简单地说就是从整体去观察、认识问题、从而解决问题的思想。运用整体思想,可以理清数学学习中的思维鄣碍,可以使繁难的问题得到巧妙的解决。它是数学解题中一个极其重要而有效的策略,是提高解题速度的有效途径。 高考中,整体思想方法是一个重点考查对象,在选择题、填空题、解答题中都有不同层次的渗透。 二、解题方法指导 1.运用整体的思想方法解题,要有强烈的整体意识,要认真分析问题的条件或结论的表达形式、内部结构特征,不拘泥于常规,不着眼于问题的各个组成部分,从整体上观察,从整体上分析,从整体结构及原有问题的改造、转化入手,寻找解题的途径。 2.运用整体的思想方法解题,在思维方向上,既有正向的,也有逆向的;在思维形态上,既有集中的,也有发散的,既有直观的,也有抽象的。 3.运用整体的思想方法解题,常与换元法结合起来,对题目进行整体观察、整体变形、整体配对、整体换元、整体代入,在运用整体的思想进行转化问题时一定要注意等价性。 三、整体的思想方法主要表现形式 1、整体补形 【例1】甲烷分子(CH4)由一个碳原子和四个氢原子组成,其空间构型为一个各条棱都相等的四面体,其中四个氢原子分别位于该四面体的四个顶点上,碳原子位于该四面体的中心,它与每个氢原子的距离都相等.若视氢原子、碳原子为一个点,四面体的棱长为a,求碳原子到各个氢原子的距离. 思路:透过局部→整体补形→构建方程

初中数学中的主要数学思想方法

初中数学中的主要数学思想方法 初中数学中蕴含的数学思想很多,其中最主要的数学思想方法包括转化思想、数形结合思想、分类讨论思想、函数与方程思想等. (1) 转化思想.转化思想就是人们将需要解决的问题,通过演绎、归纳等转化手段,归结为另一种相对容 易解决或已经有解决方法的问题,从而使原来的问题得到解决.转化思想体现在数学解题过程中就是将未知的、 陌生的、复杂的问题通过演绎和归纳转化为已知的、熟悉的、简单的问题. 初中数学中诸如化繁为简、化难为易、化未知为已知等均是转化思想的具体体现.具体而言,代数式中加法与减法的转化,乘法与除法的转化,用换元法解方程,在几何中添加辅助线,将四边形的问题转化为三角形 的问题,将一些角转化为圆周角并利用圆的知识解决问题等等都体现了转化思想.在初中数学中,转化思想运用 的最为广泛.

(2) 数形结合思想.数学是研究现实世界空间形式和数量关系的科学,因而,在某种程度上可以说数学研究 是围绕着数与形展开的.初中数学中的“数”就是代数式、方程、函数、不等式等符号表达式,初中数学中的“形”就是图形、图象、曲线等形象表达式.数形结合思想的实质是将抽象的数学语言(“数” ) 与直观的图象(“形“ ) 结合起来,数形结合思想的关键就是抓住“数”与“形”之间本质上的联系,以“形”直观地表达“数”, 以“数”精确地研究“形”,实现代数与几何之间的相互转化.数形结合思想包括“以形助数”和“以数辅形” 两个方面,它可以使代数问题几何化,几何问题代数化.“数无形时不直观,形无数时难入微.”数形结合是研究数学、解决数学问题的重要思想,在初中数学中有着广泛应用. 譬如,在初中数学中,通过数轴将数与点对应,通过直角坐标系将函数与图象对应均体现了数形结合思想的 应用.再比如,用数形结合的思想学习相反数、绝对值等概念,学习有理数大小比较的法则,研究函数的性质等,从形象思维过渡到抽象思维,从而显著降低了学习难度. (3) 分类讨论思想.分类讨论思想就是根据数学对象本质属性的共同点和差异点,将数学对象区分为不同的 种类.分类是以比较为基础的,它有助于揭示数学对象之间的内在联系与规律,有助于学生总结归纳数学知识、

高中数学解题基本方法——换元法

高中数学解题基本方法——换元法 解数学题时,把某个式子看成一个整体,用一个变量去代替它,从而使问题得到简化,这叫换元法。换元的实质是转化,关键是构造元和设元,理论依据是等量代换,目的是变换研究对象,将问题移至新对象的知识背景中去研究,从而使非标准型问题标准化、复杂问题简单化,变得容易处理。 换元法又称辅助元素法、变量代换法。通过引进新的变量,可以把分散的条件联系起来,隐含的条件显露出来,或者把条件与结论联系起来。或者变为熟悉的形式,把复杂的计算和推证简化。 它可以化高次为低次、化分式为整式、化无理式为有理式、化超越式为代数式,在研究方程、不等式、函数、数列、三角等问题中有广泛的应用。 换元的方法有:局部换元、三角换元、均值换元等。局部换元又称整体换元,是在已知或者未知中,某个代数式几次出现,而用一个字母来代替它从而简化问题,当然有时候要通 过变形才能发现。例如解不等式:4x+2x-2≥0,先变形为设2x=t(t>0),而变为熟悉 的一元二次不等式求解和指数方程的问题。 三角换元,应用于去根号,或者变换为三角形式易求时,主要利用已知代数式中与三角知识中有某点联系进行换元。如求函数y=x+1-x的值域时,易发现x∈[0,1],设x =sin2α,α∈[0,π 2 ],问题变成了熟悉的求三角函数值域。为什么会想到如此设,其中 主要应该是发现值域的联系,又有去根号的需要。如变量x、y适合条件x2+y2=r2(r>0)时,则可作三角代换x=rcosθ、y=rsinθ化为三角问题。 均值换元,如遇到x+y=S形式时,设x=S 2 +t,y= S 2 -t等等。 我们使用换元法时,要遵循有利于运算、有利于标准化的原则,换元后要注重新变量范围的选取,一定要使新变量范围对应于原变量的取值范围,不能缩小也不能扩大。如上几例 中的t>0和α∈[0,π 2 ]。 Ⅰ、再现性题组: 1.y=sinx·cosx+sinx+cosx的最大值是_________。 2.设f(x2+1)=log a (4-x4) (a>1),则f(x)的值域是_______________。 3.已知数列{a n }中,a 1 =-1,a n+1 ·a n =a n+1 -a n ,则数列通项a n =___________。 4.设实数x、y满足x2+2xy-1=0,则x+y的取值范围是___________。 5.方程13 13 + + -x x =3的解是_______________。 6.不等式log 2(2x-1) ·log 2 (2x+1-2)〈2的解集是_______________。

高中数学解题思想方法大全

目录 前言 (2) 第一章高中数学解题基本方法 (3) 一、配方法 (3) 二、换元法 (7) 三、待定系数法 (14) 四、定义法 (19) 五、数学归纳法 (23) 六、参数法 (28) 七、反证法 (32) 八、消去法……………………………………… 九、分析与综合法……………………………… 十、特殊与一般法……………………………… 十一、类比与归纳法………………………… 十二、观察与实验法………………………… 第二章高中数学常用的数学思想 (35) 一、数形结合思想 (35) 二、分类讨论思想 (41) 三、函数与方程思想 (47) 四、转化(化归)思想 (54) 第三章高考热点问题和解题策略 (59) 一、应用问题 (59) 二、探索性问题 (65) 三、选择题解答策略 (71) 四、填空题解答策略 (77) 附录……………………………………………………… 一、高考数学试卷分析………………………… 二、两套高考模拟试卷………………………… 三、参考答案……………………………………

前言 美国著名数学教育家波利亚说过,掌握数学就意味着要善于解题。而当我们解题时遇到一个新问题,总想用熟悉的题型去“套”,这只是满足于解出来,只有对数学思想、数学方法理解透彻及融会贯通时,才能提出新看法、巧解法。高考试题十分重视对于数学思想方法的考查,特别是突出考查能力的试题,其解答过程都蕴含着重要的数学思想方法。我们要有意识地应用数学思想方法去分析问题解决问题,形成能力,提高数学素质,使自己具有数学头脑和眼光。 高考试题主要从以下几个方面对数学思想方法进行考查: ①常用数学方法:配方法、换元法、待定系数法、数学归纳法、参数法、消去法等; ②数学逻辑方法:分析法、综合法、反证法、归纳法、演绎法等; ③数学思维方法:观察与分析、概括与抽象、分析与综合、特殊与一般、类比、归纳 和演绎等; ④常用数学思想:函数与方程思想、数形结合思想、分类讨论思想、转化(化归)思 想等。 数学思想方法与数学基础知识相比较,它有较高的地位和层次。数学知识是数学内容,可以用文字和符号来记录和描述,随着时间的推移,记忆力的减退,将来可能忘记。而数学思想方法则是一种数学意识,只能够领会和运用,属于思维的范畴,用以对数学问题的认识、处理和解决,掌握数学思想方法,不是受用一阵子,而是受用一辈子,即使数学知识忘记了,数学思想方法也还是对你起作用。 数学思想方法中,数学基本方法是数学思想的体现,是数学的行为,具有模式化与可操作性的特征,可以选用作为解题的具体手段。数学思想是数学的灵魂,它与数学基本方法常常在学习、掌握数学知识的同时获得。 可以说,“知识”是基础,“方法”是手段,“思想”是深化,提高数学素质的核心就是提高学生对数学思想方法的认识和运用,数学素质的综合体现就是“能力”。 为了帮助学生掌握解题的金钥匙,掌握解题的思想方法,本书先是介绍高考中常用的数学基本方法:配方法、换元法、待定系数法、数学归纳法、参数法、消去法、反证法、分析与综合法、特殊与一般法、类比与归纳法、观察与实验法,再介绍高考中常用的数学思想:函数与方程思想、数形结合思想、分类讨论思想、转化(化归)思想。最后谈谈解题中的有关策略和高考中的几个热点问题,并在附录部分提供了近几年的高考试卷。 在每节的内容中,先是对方法或者问题进行综合性的叙述,再以三种题组的形式出现。再现性题组是一组简单的选择填空题进行方法的再现,示范性题组进行详细的解答和分析,对方法和问题进行示范。巩固性题组旨在检查学习的效果,起到巩固的作用。每个题组中习题的选取,又尽量综合到代数、三角、几何几个部分重要章节的数学知识。

中考数学思想方法专题之整体思想

初中数学思想之整体思想 整体思想,就是在研究和解决有关数学问题时,通过研究问题的整体形式、整体结构、整体特征,从而对问题进行整体处理的解题方法.从整体上去认识问题、思考问题,常常能化繁为简、变难为易,同时又能培养学生思维的灵活性、敏捷性.整体思想的主要表现形式有:整体代入、整体加减、整体代换、整体联想、整体补形、整体改造等等.在初中数学中的数与式、方程与不等式、函数与图象、几何与图形等方面,整体思想都有很好的应用,因此,每年的中考中涌现了许多别具创意、独特新颖的涉及整体思想的问题,尤其在考查高层次思维能力和创新意识方面具有独特的作用. 一.数与式中的整体思想 【例1】 已知代数式3x 2-4x+6的值为9,则2463x x -+的值为 ( ) A .18 B .12 C .9 D .7 【例2】.已知114a b -=,则2227a ab b a b ab ---+的值等于( ) A.6 B.6- C. 125 D.27- 【例3】已知2002007a x =+,2002008b x =+,2002009c x =+,求多项式222a b c ab bc ac ++---的值. 二.方程(组)与不等式(组)中的整体思想 【例4】已知24122x y k x y k +=+?? +=+? ,且03x y <+<,则k 的取值范围是 【例5】已知关于x ,y 的二元一次方程组3511x ay x by -=??+=?的解为56 x y =??=?,那么关于x , y 的二元一次方程组3()()5()11x y a x y x y b x y +--=??++-=? 的解为为 【例6】.解方程 22523423x x x x +-=+ 三.函数与图象中的整体思想 【例7】已知y m +和x n -成正比例(其中m 、n 是常数)(1)求证:y 是x 的一次函数;(2)如果y =-15时,x =-1;x =7时,y =1,求这个函数的解析式 四.几何与图形中的整体思想

初中数学思想方法大全

一、宏观型思想方法 数学思想是数学基础知识、基本技能的本质体现,是形成数学能力、数学意识的桥梁,是灵活应用数学知识、技能的灵魂。 (一)、转化(化归)思想 解决数学问题就是一个不断转化的过程,把问题进行变换,使之化繁为简、化难为易、化生疏为熟悉,变未知为已知,从而使问题得以解决。 不是对原来的问题直接解答,而是想方设法对它进行变形,直到把它转化成某个(某几个)已经解决了的问题为止。通过转化可使原条件中隐含的因素显露出来,从而缩短已知条件和结论之间的距离,找出它们之间内在的联系,以便应用有关方法将问题解决。 “转化”的思想是一种最基本的数学思想。数学解题过程的实质就是转化过程,具体的说,就是把“新知识”转化为“旧知识”,把“未知”转化为“已知”,把“抽象”转化为“具体”,把“复杂问题”转化为“简单问题”,把“高次”转化为“低次”,在不断的相互转化中使问题得到解决。 可运用联想类比实现转化、利用“换元”、“添线”、消元法,配方法,进行构造变形实现转化、数形结合,实现转化。一般转化为特殊,有些代数问题,通过构造图形,化抽象为具体,借助直观启发思维,转化为易解的几何问题。有些不易解决的几何题通过辅助线转化为代数三角的知识来证明,有些结构比较复杂的问题,可以简化题中某一条件,甚至暂时撇开不顾,先考虑一个简化的问题,这种简化题对于证明原题常常能起到引路的作用。把实际问题转化为数学问题。结合解题进行化归思想方法的训练的做法:a、化繁为简;b、化高维为低维;c、化抽象为具体;d、化非规范性问题为规范性问题;e、化数为形;f、化实际问题为数学问题; g、化综合为单一;h、化一般为特殊。 有加减法的转化,乘除法的转化,乘方与开方的转化,添辅助线,设辅助元等等都是实现转化的具体手段。因此,首先要认识到常用的很多数学方法实质就是转化的方法 应用:A将未知向已知转化;B将陌生向熟知转化;C方程之间的转化;D平面图形间的转化;E空间图形与平面图形的转化;F统计图之间的相互转化。 例子:减法转化成加法(减去一个数等于加上这个数的相反数);除法转化成乘法(除以一个不等于零的数等于乘以这个数的倒数);多项式的先化简再代入求值;单项式乘单项式可化归为有理数乘法和同底数幂的乘法运算;单项式乘多项式和多项式乘多项式都可以化归为单项式乘单项式的运算;将求负数的立方根转化为求正数的立方根的相反数;实数近似运算中据问题需要取近似值,从而转化为有理数计算;将异分母分式的加减转化为同分母分式的加减;将分式的除法转化成分式的乘法;将分式方程转化为整式方程求解;将分子的次数不低于分母次数的分式用带余除法转化为整式部分和分式部分的和;将方程的复杂形式化为最简形式;通过立方程把实际问题转化为数学问题;通过解方程把未知转化为已知;把一元二次方程转化为一元一次方程求解;把二元二次方程组转化为二元一次方程组,再转化为一元一次方程从而求解;通过转化为解方程实现实数范围内二次三项式的分解、方程中字母系数的确定;角度关系的证明和计算;平行线的性质和判定;把几何问题向平行线等简单的熟悉的基本图形转化;特殊化(特殊值法、特殊位置、设项、几何中添辅助线等);图形的变换(轴对称、平移、旋转、相似变换);解斜三角形(多边形)时将其转化为解直角三角形; (二)、数形结合思想 数学的研究对象是现实世界中的数量关系(“数”)和空间形式(“形”),而“数”和“形”是相互联系、相互渗透的,一定条件下也是可以互相转化的,因此,在解决问题时,常需把同一问题的数量关系与空间形式结合起来考查,利用数的抽象严谨和形的直观表意,把抽象思维和形象思维结合起来,把数量关系问题通过图形性质进行研究,或者把图形性质问题通过数量关

初中数学解题思想方法

初中数学解题思想方法 数学解题思想方法有配方法、换元法、判别式法、待定系数法、消元法。以上是解题技 巧上的思想方法,比它们更具有普遍意义的思想方法有转化与化简思想方法、数学结合思想方法、归纳猜想、分类讨论、函数与方程思想等。在数学解题过程中我们要养成灵活运用数学思想方法的意义和习惯。 联想在解题中起着重要的作用,从自己的大脑知识仓库中找出与要解题目接 很相似 的原理、方法或结论,变通使用这些知识使问题得以解决。 一、配方法:是指将代数式通过配凑等途径,得到完全平方式或立方式,它广泛应用于 初中数学的各个方面,代数式的化简求值、解方程(组)、求最值等方面。 例1、求5245422 2-+-++y x y xy x 的最小值。 例2、设a ,b 为实数,求b a b ab a 222--++的最小值。 例3、在直角坐标中,有三点A (0,1),B (1,3),C (2,6),已知b ax y +=上横 坐标为0,1,2的点分别为D 、E 、F ,试求:222CF BE AD ++的最小值。 例4、已知x ,y ,z 是实数,且 0))((4)2=----z y y x x z (,求y z x 2+的值。 例5.已知实数,a b 满足221a b +=,则44a ab b ++的最小值为 ( )(2012) A .18-. B .0. C .1. D . 98. 例6 .已知a<0,动点11(,),(1,0),,A a a B A B AB a a +-定点则两点距离的最小值为 二、换元思想方法 根据问题的特征或关系适当引进辅助的元素,替换原问题中的数、字母或式子,从而使 原问题得以解决,这种通过引用变量替换来解决问题的思想方法叫做换元思想方法,它是数学解题的一种基本思想方法,有着广泛的应用。 例722011 例8、已知12433++=a ,求 32133a a a ++的值。 (其中0402≥-≠mq ,n m )

高中数学19种答题方法及6种解题思想

高中数学19种答题方法及6种解题思想一.十九种数学解题方法 1.函数 函数题目,先直接思考后建立三者的联系。首先考虑定义域,其次使用“三合一定理”。 2.方程或不等式 如果在方程或是不等式中出现超越式,优先选择数形结合的思想方法; 3.初等函数 面对含有参数的初等函数来说,在研究的时候应该抓住参数没有影响到的不变的性质。如所过的定点,二次函数的对称轴或是……; 4.选择与填空中的不等式 选择与填空中出现不等式的题目,优选特殊值法; 5.参数的取值范围 求参数的取值范围,应该建立关于参数的等式或是不等式,用函数的定义域或是值域或是解不等式完成,在对式子变形的过程中,优先选择分离参数的方法; 6.恒成立问题 恒成立问题或是它的反面,可以转化为最值问题,注意二次函数的应用,灵活使用闭区间上的最值,分类讨论的思想,分类讨论应该不重复不遗漏; 7.圆锥曲线问题 圆锥曲线的题目优先选择它们的定义完成,直线与圆锥曲线相交问题,若与弦的中点有关,选择设而不求点差法,与弦的中点无关,选择韦达定理公式法;使用韦达定理必须先考虑是否为二次及根的判别式; 8.曲线方程 求曲线方程的题目,如果知道曲线的形状,则可选择待定系数法,如果不知道曲线的形状,则所用的步骤为建系、设点、列式、化简(注意去掉不符合条件的特殊点); 9.离心率 求椭圆或是双曲线的离心率,建立关于a、b、c之间的关系等式即可; 10.三角函数 三角函数求周期、单调区间或是最值,优先考虑化为一次同角弦函数,然后使用辅助角公式解答;解三角形的题目,重视内角和定理的使用;与向量联系的题目,注意向量角的范围; 11.数列问题 数列的题目与和有关,优选和通公式,优选作差的方法;注意归纳、猜想之后证明;猜想的方向是两种特殊数列;解答的时候注意使用通项公式及前n项和公式,体会方程的思想; 12.立体几何问题 立体几何第一问如果是为建系服务的,一定用传统做法完成,如果不是,可以从第一问开始就建系完成;注意向量角与线线角、线面角、面面角都不相同,熟练掌握它们之间的三角函数值的转化;锥体体积的计算注意系数1/3,而三角形面积的计算注意系数1/2 ;与球有关的题目也不得不防,注意连接“心心距”创造直角三角形解题; 13.导数 导数的题目常规的一般不难,但要注意解题的层次与步骤,如果要用构造函数证明不等式,可从已知或是前问中找到突破口,必要时应该放弃;重视几何意义的应用,注意点是否在曲线上;

高中数学七大基本思想方法讲解

高中数学七大基本思想方法讲解 第一:函数与方程思想 (1)函数思想是对函数内容在更高层次上的抽象,概括与提炼,在研究方程、不等式、数列、解析几何等其他内容时,起着重要作用 (2)方程思想是解决各类计算问题的基本思想,是运算能力的基础 高考把函数与方程思想作为七种重要思想方法重点来考查 第二:数形结合思想: (1)数学研究的对象是数量关系和空间形式,即数与形两个方面 (2)在一维空间,实数与数轴上的点建立一一对应关系 在二维空间,实数对与坐标平面上的点建立一一对应关系 数形结合中,选择、填空侧重突出考查数到形的转化,在解答题中,考虑推理论证严密性,突出形到数的转化 第三:分类与整合思想 (1)分类是自然科学乃至社会科学研究中的基本逻辑方法 (2)从具体出发,选取适当的分类标准 (3)划分只是手段,分类研究才是目的 (4)有分有合,先分后合,是分类整合思想的本质属性 (5)含字母参数数学问题进行分类与整合的研究,重点考查学生思维严谨性与周密性 第四:化归与转化思想 (1)将复杂问题化归为简单问题,将较难问题化为较易问题,将未解决问题化归为已解决问题

(2)灵活性、多样性,无统一模式,利用动态思维,去寻找有利于问题解决的变换途径与方法 (3)高考重视常用变换方法:一般与特殊的转化、繁与简的转化、构造转化、命题的等价转化 第五:特殊与一般思想 (1)通过对个例认识与研究,形成对事物的认识 (2)由浅入深,由现象到本质、由局部到整体、由实践到理论 (3)由特殊到一般,再由一般到特殊的反复认识过程 (4)构造特殊函数、特殊数列,寻找特殊点、确立特殊位置,利用特殊值、特殊方程 (5)高考以新增内容为素材,突出考查特殊与一般思想必成为命题改革方向 第六:有限与无限的思想: (1)把对无限的研究转化为对有限的研究,是解决无限问题的必经之路 (2)积累的解决无限问题的经验,将有限问题转化为无限问题来解决是解决的方向 (3)立体几何中求球的表面积与体积,采用分割的方法来解决,实际上是先进行有限次分割,再求和求极限,是典型的有限与无限数学思想的应用 (4)随着高中课程改革,对新增内容考查深入,必将加强对有限与无限的考查 第七:或然与必然的思想: (1)随机现象两个最基本的特征,一是结果的随机性,二是频率的稳定性 (2)偶然中找必然,再用必然规律解决偶然 (3)等可能性事件的概率、互斥事件有一个发生的概率、相互独立事件同时发生的概率、独立重复试验、随机事件的分布列、数学期望是考查的重点 第一:函数与方程思想 (1)函数思想是对函数内容在更高层次上的抽象,概括与提炼,在研究方程、不等式、数列、

初中数学思想方法汇总

初中数学思想方法的概念、种类 及渗透策略分析 分类讨论思想 一、分类讨论思想的意义 当我们在解决数学问题时,有时由于被研究对象的属性不同,影响了研究问题的结果,因而需对不同属性的对象进行分类研究;或者由于在研究问题过程中出现了不同情况,因而需对不同情况进行分类研究.通过分类讨论,常能化繁为简,更清楚地暴露事物的本质,并增加条件,“分类讨论”,简言就是先分类,后讨论。阅读大纲和教材会发现,初中数学对分类讨论本着先易后难、循渐进的原则,把“分类讨论思想”分两个层次,即“分类思想”和“讨论思想”。分类思想在初中数学占有相当要的地位,通过教学应使学生确立类思想,学会分类方法,而“讨论思则要求通过有关知识的传授起到潜默化的作用。 分类讨论是一种逻辑方法,也是一种数学思想。有关分类讨论思想的数学问题具有明显的逻辑性、综合性、探索性,能训练人的思维条理性和概括性,所以在试题中占有重要的位置。 二、分类讨论的一般步骤是:明确讨论对象,确定对象的全体→确定分类标准,正确进行分类→逐步进行讨论,获取阶段性结果→归纳小结,综合得出结论。 三、分类讨论思想的分类原则 : 分类讨论必须遵循原则进行,在初中阶段,我们经常用到的有以下4大原则: (1)同一性原则 (2)互斥性原则 (3)相称性原则 (4)多层次性原则 四、七年级数学中体现分类讨论思想的知识点 上册:1、含字母式子的绝对值的化简2、过平面的点画直线的条数3、线段、角的计算4、立体图形异面点之间的最短距离5、数轴上两点间的距离6、分段计费问题。下册:1、两边分别平行的两角的关系2、正数的平方根3、实数的分类4、坐标平面点的坐标5、P 112第10题6、解字母系数的不等式7、借助不等式(组)的正整数解讨论方案设计问题。 五、典型例题 例1.(2011中考 )解关于x 的不等式组: a(2-x )>3-x )9x a +( >9a+8 例2已知直线AB 上一点C ,且有CA=3AB ,则线段CA 与线段CB 之比为__ 或____ 。 练习:已知A 、B 、C 三点在同一条直线上,且线段AB=7cm ,点M 为线段AB 的中点,线段BC=3cm ,点N 为线段BC 的中点,求线段MN 的长.

高中数学解题思想方法技巧:西瓜开门 滚到成功

第2 西瓜开门 滚到成功 ●计名释义 比起“芝麻”来,“西瓜”则不是一个“点”,而一个球. 因为它能够“滚”,所以靠“滚到成功”. 球能不断地变换碰撞面,在滚动中能选出有效的“触面”. 数学命题是二维的. 一是知识内容,二是思想方法. 基本的数学思想并不多,只有五种:①函数方程思想,②数形结合思想,③划分讨论思想,④等价交换思想,⑤特殊一般思想. 数学破题,不妨将这五种思想“滚动”一遍,总有一种思想方法能与题目对上号. ●典例示范 [题1] (2006年赣卷第5题) 对于R 上可导的任意函数f (x ),若满足(x -1)f '(x )≥0,则必有 A. f (0)+f (2)< 2f (1) B. f (0)+f (2)≤2 f (1) C. f (0)+f (2)≥ 2f (1) D. f (0)+f (2)>2f (1) [分析] 用五种数学思想进行“滚动”,最容易找到感觉应是③:分类讨论思想. 这点在已条件(x -1)f '(x )≥0中暗示得极为显目. 其一,对f '(x )有大于、等于和小于0三种情况; 其二,对x -1,也有大于、等于、小于0三种情况. 因此,本题破门,首先想到的是划分讨论. [解一] (i)若f '(x ) ≡ 0时,则f (x )为常数:此时选项B 、C 符合条件. (ii)若f '(x )不恒为0时. 则f '(x )≥0时有x ≥1,f (x )在[)∞,1上为增函数;f '(x )≤0时x ≤1. 即f (x )在(]1,-∞上为减函数. 此时,选项C 、D 符合条件. 综合(i),(ii),本题的正确答案为C. [插语] 考场上多见的错误是选D. 忽略了f '(x ) ≡ 0的可能. 以为(x-1)f '(x ) ≥0中等号成立的条件只是x -1=0,其实x-1=0与f '(x )=0的意义是不同的:前者只涉x 的一个值,即x =1,而后是对x 的所有可取值,有f '(x ) ≡ 0. [再析] 本题f (x )是种抽象函数,或者说是满足本题条件的一类函数的集合. 而选择支中,又是一些具体的函数值f (0),f (1),f (2). 因此容易使人联想到数学⑤:一般特殊思想. [解二] (i)若f '(x )=0,可设f (x )=1. 选项B、C符合条件. (ii)f '(x )≠0. 可设f (x ) =(x-1)2 又 f '(x )=2(x-1). 满足 (x-1) f '(x ) =2 (x-1)2≥0,而对 f (x )= (x-1)2. 有f (0)= f (2)=1,f (1)=0 选项C ,D 符合条件. 综合(i),(ii)答案为C. [插语] 在这类 f (x )的函数中,我们找到了简单的特殊函数(x -1)2. 如果在同类中找到了(x -1)4 ,(x-1)3 4 ,自然要麻烦些. 由此看到,特殊化就是简单化. [再析] 本题以函数(及导数)为载体. 数学思想①——“函数方程(不等式)思想”. 贯穿始终,如由f '(x )= 0找最值点x =0,由f '(x )>0(<0)找单调区间,最后的问题是函数比大小的问题. 由于函数与图象相联,因此数形结合思想也容易想到. [解三] (i)若f (0)= f (1)= f (2),即选B ,C ,则常数f (x ) = 1符合 条件. (右图水平直线) (ii)若f (0)= f (2)< f (1)对应选项A.(右图上拱曲线),但不满足条件(x -1)

中考数学思想整体转化分类三

中考数学复习资料 数学思想方法(一) (整体思想、转化思想、分类讨论思想) 一、中考专题诠释 数学思想方法是指对数学知识和方法形成的规律性的理性认识,是解决数学问题的根本策略。数学思想方法揭示概念、原理、规律的本质,是沟通基础知识与能力的桥梁,是数学知识的重要组成部分。数学思想方法是数学知识在更高层次上的抽象和概括,它蕴含于数学知识的发生、发展和应用的过程中。 抓住数学思想方法,善于迅速调用数学思想方法,更是提高解题能力根本之所在.因此,在复习时要注意体会教材例题、习题以及中考试题中所体现的数学思想和方法,培养用数学思想方法解决问题的意识.二、解题策略和解法精讲 数学思想方法是数学的精髓,是读书由厚到薄的升华,在复习中一定要注重培养在解题中提炼数学思想的习惯,中考常用到的数学思想方法有:整体思想、转化思想、函数与方程思想、数形结合思想、分类讨论思想等.在中考复习备考阶段,教师应指导学生系统总结这些数学思想与方法,掌握了它的实质,就可以把所学的知识融会贯通,解题时可以举一反三。 三、中考考点精讲 考点一:整体思想 整体思想是指把研究对象的某一部分(或全部)看成一个整体,通过观察与分析,找出整体与局部的联系,从而在客观上寻求解决问题的新途径。 整体是与局部对应的,按常规不容易求某一个(或多个)未知量时,可打破常规,根据题目的结构特征,把一组数或一个代数式看作一个整体,从而使问题得到解决。 例1 (2013?吉林)若a-2b=3,则2a-4b-5= . 思路分析:把所求代数式转化为含有(a-2b)形式的代数式,然后将a-2b=3整体代入并求值即可. 解:2a-4b-5=2(a-2b)-5=2×3-5=1. 对应训练 1.(2013?福州)已知实数a,b满足a+b=2,a-b=5,则(a+b)3?(a-b)3的值是. 考点二:转化思想 转化思想是解决数学问题的一种最基本的数学思想。在研究数学问题时,我们通常是将未知问题转化为已知的问题,将复杂的问题转化为简单的问题,将抽象的问题转化为具体的问题,将实际问题转化为数学问题。转化的内涵非常丰富,已知与未知、数量与图形、图形与图形之间都可以通过转化来获得解决问题的转机。 例2 (2013?东营)如图,圆柱形容器中,高为1.2m,底面周长为1m,在容器内壁离容器底部0.3m的点B处有一蚊子,此时一只壁虎正好在容器外壁,离容器上沿0.3m与蚊子相对的点A处,则壁虎捕捉蚊

相关文档
最新文档