卡诺循环演示讲解
合集下载
《卡诺循环演示》课件

卡诺循环效率
卡诺循环的效率是根据热源温度和冷源温度计算得出的。它是所有可能的热力学循环中达到的最大效率。
卡诺循环计算公式
卡诺循环效率的计算公式是根据热源温度和冷源温度的比值来计算的:η = 1 (Tc/Th),其中Tc为冷源温度,Th为热源温度。
热机效率的限制
卡诺循环的效率限制了所有实际热力学循环的效率。无法通过其他方式达到或超过卡诺循环的效率。
《卡诺循环演示》
卡诺循环演示是介绍卡诺循环的最佳方式。通过图形和实例展示卡诺循环的 概念,使观众能够更好地理解热力学原理和效率计算。
卡诺循环介绍
卡诺循环是一种理想化的热力学循环,由等温膨胀、绝热膨胀、等温压缩和绝热压缩四个过程组成。
卡诺循环过程
卡诺循环的过程包括热源加热、工作物质膨胀、冷源冷却和工作物质压缩。这些过程是可逆、闭合和无摩擦的。
卡诺循环的应用
卡诺循环的理论和应用广泛应用于热力学、能源工程和制冷空调等领域。它 提供了优化能源转换和利用的方法。Fra bibliotek总结和展望
卡诺循环演示通过图像和简洁的文字对卡诺循环进行了全面的介绍。希望本 次演示能够帮助观众深入了解卡诺循环的概念和应用。
第3章卡诺循环ppt课件

QC = ( TT -3 ) = 2 C T 3 4 V 4 V 1
QC = ( T T ) = C T 4 1 P 1 4 P 1
(2)全过程吸收的热量为:
Q1 是 指 在 一 个 = C T 2 C T V 1+ P 1 循环过程中的 总吸收热量! 全过程对外界作的功为:
= +2 Q QQ 1 1 2 3
p2 p4 p3 D
0
V1
V4 V2
V
m CV ,m (T1 T2 ) M
CD:等温压缩过程:体积由 V3 压缩到 V4 ,内能变化为零, 外界对系统所作的功等于向低温热源T2放出的热量:
P
p1 A
m V 4 W Q RT ln 3 2 2 M V 3
V m 3 Q RT ln 2 2 M V 4
W= Q1-Q2
热机效率或循环效率:
表示热机的效率
T2 Q2
高温热源 T1
Q1 W Q2
WQ Q Q 1 2 1 2 Q Q Q 1 1 1
W为工作物质对 外所作的净功 Q1为工作物质吸收的 热量
低温热源 T2
3、制冷机
空调、冰箱
工作物质作逆循环的机器,它是通过外界对 系统做功,实现把热量从低温热源(冷藏室) 抽到高温热源(室外环境)的机器。
正循环——卡诺热机 逆循环——卡诺制冷机
2、卡诺热机:正循环 卡诺热机的四个过程
P p1 A
W和Q均为绝对值!
AB:等温膨胀过程,体积由V1膨胀到V2, 内能没有变化,系统从高温热源 T1 吸收的 热量全部用来对外作功: Q1
m V 2 W Q RT ln 1 1 1 M V 1
B BC :绝热膨胀,体积由 V2 变到V3,系统不吸收热量,对 T1外所作功等于系统减少的内能: C W2 E T2 Q2 V3
高二物理竞赛课件:循环过程和卡诺循环

p1
1
4
Q41
o
V1
V4 V
解 由理想气体物态方程得
T2 2T1 T3 4T1
T4 2T1
Q12 CV ,m(T2 T1) CV ,mT1
Q23 Cp,m (T3 T2) 2Cp,mT1
Q34 CV ,m (T4 T3) 2CV ,mT1
返回 退出
P p2
2 Q23 3
Q12
Q34
卡诺正循环: abcda (卡诺热机)
返回 退出
ab过程:
cd过程:
Q1
m M
RT1 ln
V2 V1
Q2
m M
RT2 ln
V3 V4
bc和da过程: Q 0
A 1 Q2 1 T2 ln V3 V4
Q1
Q1
T1 ln V2 V1
T1V2 1 T2V3 1
T1V1 1 T2V4 1
Qacbda Wacbda Wacb Wda
Wda 1200J
Qacbda 1000J
返回 退出
例 1 mol 氦气经过如图所示的循环过程,其
中 p2 2 p1 , V4 2V1 求1—2、2—3、3—4、4—1
各过程中气体吸收的热量和热机的效率 .
P p2
2 Q23 3
Q12
Q34
p1
1
4
Q41
oV1Leabharlann V4 VQ12 CV ,mT1 Q23 2Cp,mT1
Q34 2CV ,mT1
Q41 Cp,m (T1 T4 ) Cp,mT1
Q1 Q12 Q23 CV ,mT1 2C p,mT1
Cp,m CV ,m R
W ( p2 p1)(V 4 V1) p1V 1 RT1
大学物理6-3 循环过程 卡诺循环

各种热机的效率
液体燃料火箭
汽油机
48% 25%
柴油机
蒸汽机
37% 8%
6 - 3
循环过程 卡诺循环
第六章 热力学基础
热机 :持续地将热量转变为功的机器 .
工作物质(工质):热机中被利用来吸收热量 并对外做功的物质 .
6 - 3
循环过程 卡诺循环
第六章 热力学基础
冰箱循环示意图
解
T2 55 e e卡 55% 10.2 T1 T2 100
e 1 Q2 Q2 由致冷机致冷系数 e 得 Q1 e Q1 Q2
房间传入冰箱的热量 Q 2.0 10 J 热平衡时 Q
' 7
'
Q2
6 - 3
循环过程 卡诺循环
' 7
第六章 热力学基础
'
房间传入冰箱的热量 Q 2.0 10 J 热平衡时 Q
V
V3
Q2 Qcd
V3 m RT2 ln M V4
卡诺循环的效率
V3 ln Q2 T2 V4 1 1 Q1 T1 ln V2 V1
6 - 3
循环过程 卡诺循环
A
第六章 热力学基础
p p1
p2 p4
T1 T2
Qab
T1
B
B — C 绝热过程
W
D
p3
o V1 V4
Qcd T2
效率
6 - 3
循环过程 卡诺循环
第六章 热力学基础
1 mol 氦气经过如图所示的循环过程,其 中 p2 3 p1 , V4 3V1 求1—2、2—3、3—4、4—1 各过程中气体吸收的热量和热机的效率 .
液体燃料火箭
汽油机
48% 25%
柴油机
蒸汽机
37% 8%
6 - 3
循环过程 卡诺循环
第六章 热力学基础
热机 :持续地将热量转变为功的机器 .
工作物质(工质):热机中被利用来吸收热量 并对外做功的物质 .
6 - 3
循环过程 卡诺循环
第六章 热力学基础
冰箱循环示意图
解
T2 55 e e卡 55% 10.2 T1 T2 100
e 1 Q2 Q2 由致冷机致冷系数 e 得 Q1 e Q1 Q2
房间传入冰箱的热量 Q 2.0 10 J 热平衡时 Q
' 7
'
Q2
6 - 3
循环过程 卡诺循环
' 7
第六章 热力学基础
'
房间传入冰箱的热量 Q 2.0 10 J 热平衡时 Q
V
V3
Q2 Qcd
V3 m RT2 ln M V4
卡诺循环的效率
V3 ln Q2 T2 V4 1 1 Q1 T1 ln V2 V1
6 - 3
循环过程 卡诺循环
A
第六章 热力学基础
p p1
p2 p4
T1 T2
Qab
T1
B
B — C 绝热过程
W
D
p3
o V1 V4
Qcd T2
效率
6 - 3
循环过程 卡诺循环
第六章 热力学基础
1 mol 氦气经过如图所示的循环过程,其 中 p2 3 p1 , V4 3V1 求1—2、2—3、3—4、4—1 各过程中气体吸收的热量和热机的效率 .
高二物理竞赛循环过程 卡诺循环课件

1 Q2 1
7 4
p1V1
O V1
10%
V2 V
Q1
p1V1
(ln
2
5 4
)
Q1
p1V1(ln 2
5) 4
6
p a Q1
外界的功 A Q1 Q2
A
致冷系数:从低温热源吸收的 Q2
b
热量Q2与外界作的功A之比 O
V
即 w Q2 Q2 A Q1 Q2
高温热源T1
Q1
A Q1 Q2 Q2 低温热源T2
即 A Q1 Q2 1 Q2
Q1
Q1
Q1
说明:
Q1包括整个循环过程中吸收 的热量
p a Q1
A
Q2
b
O
V
Q2包括整个循环过程中放出的热量(绝对值)
4
[例] 1mol 氧气作如图循环, p
AB为等温过程,BC 为等压 p1
A
过程,CA 为等体过程。试
计算循环效率。已知
V2=2V1,p1=2p2。
循环过程 卡诺循环
一、循环过程特征
循环过程:系ቤተ መጻሕፍቲ ባይዱ从某一状态
出发经历一系列变化后又回
p
a
到了原态的整个变化过程。
E 0 循环曲线包围
Q A
面积代表系统
作的净功
O
b
V
循环包括: 正循环(顺时针)A>0 ——热机
逆循环(逆时针)A<0 ——致冷机
1
如图,bca为理想气体绝热过程,b1a和 b2a是任意过程,则上述两过程中气体 作功与吸收热量的情况是:
(A) b1a过程放热,作负功;b2a过程放热,作负功 (B) b1a过程吸热,作负功;b2a过程放热,作负功. (C) b1a过程吸热,作正功;b2a过程吸热,作负功. (D) b1a过程放热,作正功;b2a过程吸热,作正功.
7 4
p1V1
O V1
10%
V2 V
Q1
p1V1
(ln
2
5 4
)
Q1
p1V1(ln 2
5) 4
6
p a Q1
外界的功 A Q1 Q2
A
致冷系数:从低温热源吸收的 Q2
b
热量Q2与外界作的功A之比 O
V
即 w Q2 Q2 A Q1 Q2
高温热源T1
Q1
A Q1 Q2 Q2 低温热源T2
即 A Q1 Q2 1 Q2
Q1
Q1
Q1
说明:
Q1包括整个循环过程中吸收 的热量
p a Q1
A
Q2
b
O
V
Q2包括整个循环过程中放出的热量(绝对值)
4
[例] 1mol 氧气作如图循环, p
AB为等温过程,BC 为等压 p1
A
过程,CA 为等体过程。试
计算循环效率。已知
V2=2V1,p1=2p2。
循环过程 卡诺循环
一、循环过程特征
循环过程:系ቤተ መጻሕፍቲ ባይዱ从某一状态
出发经历一系列变化后又回
p
a
到了原态的整个变化过程。
E 0 循环曲线包围
Q A
面积代表系统
作的净功
O
b
V
循环包括: 正循环(顺时针)A>0 ——热机
逆循环(逆时针)A<0 ——致冷机
1
如图,bca为理想气体绝热过程,b1a和 b2a是任意过程,则上述两过程中气体 作功与吸收热量的情况是:
(A) b1a过程放热,作负功;b2a过程放热,作负功 (B) b1a过程吸热,作负功;b2a过程放热,作负功. (C) b1a过程吸热,作正功;b2a过程吸热,作负功. (D) b1a过程放热,作正功;b2a过程吸热,作正功.
卡诺循环演示ppt课件

η=W/Q2=(T2-T1)/T2=(Q2-Q1)/Q2
+ =0 整理得, Q1 Q2 T1 T2 卡诺热机在两个热源之间工作
时,两个热源的热温商之和等于
零。
23
决定卡诺热机效率的因素
一是在两个不同温度热源之间 工作的热机中,卡诺热机的 效率是否为最大;
二是卡诺热机的效率是否与工 作物质无关。
24
故W2=—△U=—CV(T1—T2)
13
过程3 保持T1定温可逆压缩。 将气箱从绝热袋中取出,与 低温热源T1相接触,然后在 T1时作定温可逆压缩,让气 体的压力和体积由p3、V3变 到 p4、V4。 此 过 程 △ U=0, 如图CD
14
15
过程3 保持T1定温可逆压缩。将 气箱从绝热袋中取出,与低温热 源T1相接触,然后在T1时作定温 可逆压缩,让气体的压力和体积 由 p3、V3 变 到 p4、V4。 此 过 程 △U=0,如图CD 故Q1=W3+RT1lnV4/V3
27
η1=(T2-T1)/T2=22.3% η2=(T2-T1)/T2=50.5%
课后作业: 教材76页习题1
28
16
过程4 绝热可逆压缩。 将压缩了的气体从热源 T1处移开,又放进绝热 袋,让气体作绝热可逆 压缩,使气体回到起始 状态,如图DA
17
18
过程4 绝热可逆压缩。将压 缩了的气体从热源T1处移开, 又放进绝热袋,让气体作 绝热可逆压缩,使气体回 到起始状态,如图DA
故W4=—△U=—CV(T2—T1)
7
过程1 保持T2定温可逆膨胀。 在T2时,让气箱中理想气体 由p1、V1作定温可逆膨胀到 p2、V2。在此过程中系统吸 收了Q2的热,做了W1的功。 如图中T2定温可逆膨胀。 在T2时,让气箱中理想气体由 p1、V1作定温可逆膨胀到p2、V2。 在此过程中系统吸收了Q2的热, 做了W1的功。如图中AB 故Q2=W1=RT2lnV2/V1
+ =0 整理得, Q1 Q2 T1 T2 卡诺热机在两个热源之间工作
时,两个热源的热温商之和等于
零。
23
决定卡诺热机效率的因素
一是在两个不同温度热源之间 工作的热机中,卡诺热机的 效率是否为最大;
二是卡诺热机的效率是否与工 作物质无关。
24
故W2=—△U=—CV(T1—T2)
13
过程3 保持T1定温可逆压缩。 将气箱从绝热袋中取出,与 低温热源T1相接触,然后在 T1时作定温可逆压缩,让气 体的压力和体积由p3、V3变 到 p4、V4。 此 过 程 △ U=0, 如图CD
14
15
过程3 保持T1定温可逆压缩。将 气箱从绝热袋中取出,与低温热 源T1相接触,然后在T1时作定温 可逆压缩,让气体的压力和体积 由 p3、V3 变 到 p4、V4。 此 过 程 △U=0,如图CD 故Q1=W3+RT1lnV4/V3
27
η1=(T2-T1)/T2=22.3% η2=(T2-T1)/T2=50.5%
课后作业: 教材76页习题1
28
16
过程4 绝热可逆压缩。 将压缩了的气体从热源 T1处移开,又放进绝热 袋,让气体作绝热可逆 压缩,使气体回到起始 状态,如图DA
17
18
过程4 绝热可逆压缩。将压 缩了的气体从热源T1处移开, 又放进绝热袋,让气体作 绝热可逆压缩,使气体回 到起始状态,如图DA
故W4=—△U=—CV(T2—T1)
7
过程1 保持T2定温可逆膨胀。 在T2时,让气箱中理想气体 由p1、V1作定温可逆膨胀到 p2、V2。在此过程中系统吸 收了Q2的热,做了W1的功。 如图中T2定温可逆膨胀。 在T2时,让气箱中理想气体由 p1、V1作定温可逆膨胀到p2、V2。 在此过程中系统吸收了Q2的热, 做了W1的功。如图中AB 故Q2=W1=RT2lnV2/V1
高二物理竞赛循环过程卡诺循环课件

8
第4章 热力学基础
讨论
图中两卡诺循环 1 2 吗 ?
p
T1
o
A1 A2 T2
A1 A2
V
p
T1
o
T3 A1 A2
A1
A2
T2
V
1 2
1 2
9
第4章 热力学基础
热机发展简介
1698年萨维利和1705年纽可门先后发明了蒸 汽机 ,当时蒸汽机的效率极低 . 1765年瓦特进 行了重大改进 ,大大提高了效率 . 人们一直在 为提高热机的效率而努力, 从理论上研究热机
•热机循环至少需要两个热源。否则,海水 降0.010C,可供全世界1700年所需能量, 就无能源危机了。
7
第4章 热力学基础
2 卡诺致冷机(卡诺逆循环)
p
A Q1
T1 T2
高温热源 T1
T1 B
A
Q1
卡诺致冷机
A
D C
Q2 T2 V o
Q2 低温热源 T2
卡诺致冷机致冷系数 Q2 T2
Q1 Q2 T1 T2
2
第4章 热力学基础
逆循环: 系统循环一次
净功 净放热
W净 < 0 Q净 = Q2 – Q1
热一定律 Q2-Q1=W净 <0
pa
Q2
b Q1
W净 c d
0 Va
Vc V
工质把从低温热源吸收的热量和外界对它所作的 功以热量的形式传给高温热源。
致冷系数:
e Q2 Q2 | W净 | Q1 Q2
3
热 界量 每自 天房需间作传多入少冰功箱, 其内功, 率若为要多维少持?冰箱设内在温5度C 不至变20,
外
C
之间运转的致冷机 ( 冰箱 ) 的致冷系数, 是卡诺致冷机
第4章 热力学基础
讨论
图中两卡诺循环 1 2 吗 ?
p
T1
o
A1 A2 T2
A1 A2
V
p
T1
o
T3 A1 A2
A1
A2
T2
V
1 2
1 2
9
第4章 热力学基础
热机发展简介
1698年萨维利和1705年纽可门先后发明了蒸 汽机 ,当时蒸汽机的效率极低 . 1765年瓦特进 行了重大改进 ,大大提高了效率 . 人们一直在 为提高热机的效率而努力, 从理论上研究热机
•热机循环至少需要两个热源。否则,海水 降0.010C,可供全世界1700年所需能量, 就无能源危机了。
7
第4章 热力学基础
2 卡诺致冷机(卡诺逆循环)
p
A Q1
T1 T2
高温热源 T1
T1 B
A
Q1
卡诺致冷机
A
D C
Q2 T2 V o
Q2 低温热源 T2
卡诺致冷机致冷系数 Q2 T2
Q1 Q2 T1 T2
2
第4章 热力学基础
逆循环: 系统循环一次
净功 净放热
W净 < 0 Q净 = Q2 – Q1
热一定律 Q2-Q1=W净 <0
pa
Q2
b Q1
W净 c d
0 Va
Vc V
工质把从低温热源吸收的热量和外界对它所作的 功以热量的形式传给高温热源。
致冷系数:
e Q2 Q2 | W净 | Q1 Q2
3
热 界量 每自 天房需间作传多入少冰功箱, 其内功, 率若为要多维少持?冰箱设内在温5度C 不至变20,
外
C
之间运转的致冷机 ( 冰箱 ) 的致冷系数, 是卡诺致冷机
普通物理5.2循环过程卡诺循环PPT课件

可持续发展
在追求效率的同时,需要考虑 能源的可持续性,减少对环境
的负面影响。
THANKS FOR WATCHING
感谢您的观看
总结词:等熵过程是卡诺循环中气体熵值保持不变的过程,气体被压缩,外界对 气体做功。
等容过程
等容过程是卡诺循环的第三阶段,在这一过程中气体体积保 持不变,不进行对外做功,同时也不从外界吸热或放热。
总结词:等容过程是卡诺循环中气体体积保持不变的过程, 气体既不进行对外做功,也不从外界吸热或放热。
03 卡诺循环的效率分析
效率与温度的关系
高温热源温度
高温热源温度越高,卡诺循环的效率 越高。
低温热源温度
低温热源温度越低,卡诺循环的效率 越高。
04 卡诺循环的应用和意义
卡诺循环在热力学中的应用
热机效率的极限
卡诺循环揭示了热机的最高效率,为 提高热机的效率提供了理论指导。
热力学第二定律的表述
卡诺循环是热力学第二定律的重要推 论,它说明了热量自发地从高温向低 温传递,而不是相反。
02 卡诺循环的工作原理
等温过程
等温过程是卡诺循环的第一阶段,在 这一过程中气体从高温热源吸热,对 外界做功,温度保持不变。
总结词:等温过程是卡诺循环中温度 保持不变的过程,气体从高温热源吸 热并对外界做功。
等熵过程
等熵过程是卡诺循环的第二阶段,在这一过程中气体压缩,外界对气体做功,但 气体的熵值保持不变。
普通物理5.2循环过程卡诺循环 ppt课件
目 录
• 卡诺循环简介 • 卡诺循环的工作原理 • 卡诺循环的效率分析 • 卡诺循环的应用和意义 • 结论与展望
01 卡诺循环简介
卡诺循环的发现和历史
01
卡诺循环由法国工程师尼古拉斯· 莱昂纳尔·萨迪·卡诺于1824年提 出,是热力学中的一个基本理论 。
在追求效率的同时,需要考虑 能源的可持续性,减少对环境
的负面影响。
THANKS FOR WATCHING
感谢您的观看
总结词:等熵过程是卡诺循环中气体熵值保持不变的过程,气体被压缩,外界对 气体做功。
等容过程
等容过程是卡诺循环的第三阶段,在这一过程中气体体积保 持不变,不进行对外做功,同时也不从外界吸热或放热。
总结词:等容过程是卡诺循环中气体体积保持不变的过程, 气体既不进行对外做功,也不从外界吸热或放热。
03 卡诺循环的效率分析
效率与温度的关系
高温热源温度
高温热源温度越高,卡诺循环的效率 越高。
低温热源温度
低温热源温度越低,卡诺循环的效率 越高。
04 卡诺循环的应用和意义
卡诺循环在热力学中的应用
热机效率的极限
卡诺循环揭示了热机的最高效率,为 提高热机的效率提供了理论指导。
热力学第二定律的表述
卡诺循环是热力学第二定律的重要推 论,它说明了热量自发地从高温向低 温传递,而不是相反。
02 卡诺循环的工作原理
等温过程
等温过程是卡诺循环的第一阶段,在 这一过程中气体从高温热源吸热,对 外界做功,温度保持不变。
总结词:等温过程是卡诺循环中温度 保持不变的过程,气体从高温热源吸 热并对外界做功。
等熵过程
等熵过程是卡诺循环的第二阶段,在这一过程中气体压缩,外界对气体做功,但 气体的熵值保持不变。
普通物理5.2循环过程卡诺循环 ppt课件
目 录
• 卡诺循环简介 • 卡诺循环的工作原理 • 卡诺循环的效率分析 • 卡诺循环的应用和意义 • 结论与展望
01 卡诺循环简介
卡诺循环的发现和历史
01
卡诺循环由法国工程师尼古拉斯· 莱昂纳尔·萨迪·卡诺于1824年提 出,是热力学中的一个基本理论 。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
故Q1=W3+RT1lnV4/V3
过程4 绝热可逆压缩。 将压缩了的气体从热源 T1处移开,又放进绝热 袋,让气体作绝热可逆 压缩,使气体回到起始 状态,如图DA
过程4 绝热可逆压缩。将压 缩了的气体从热源T1处移开, 又放进绝热袋,让气体作 绝热可逆压缩,使气体回 到起始状态,如图DA
故W4=—△U=—CV(T2—T1)
1、在两个不同温度的热源之间工 作的任意热机,以卡诺热机的效 率为最大。否则将违反热力学第 二定律。
2、卡诺热机的效率只与两个热源 的温度有关,而与工作物质无关。 否则将违反热力学第二定律。
任何热机I的效率不可能比卡诺热 机的效率高。
例 试比较下列两个热机的最大效 率(1)以水蒸气为工作物质, 工作于130℃及40℃两热源之间; (2)以汞蒸汽为工作物,工作 于380℃及50℃两热源之间。
过程2 绝热可逆膨胀。在膨 胀后的气体人热源T2处移开, 将气箱放进绝热袋,让气 体作绝热可逆膨胀,此时 气体的温度由T2降到T1,压 力 和 体 积 由 p2、V2 变 到 p3、 V3,此过程中系统不吸热。 如图BC
过程2 绝热可逆膨胀。在膨胀 后的气体人热源T2处移开,将 气箱放进绝热袋,让气体作 绝热可逆膨胀,此时气体的 温度由T2降到T1,压力和体积 由p2、V2变到p3、V3,此过程中 系统不吸热。 如图BC
过程1 保持T2定温可逆膨胀。 在T2时,让气箱中理想气体 由p1、V1作定温可逆膨胀到 p2、V2。在此过程中系统吸 收了Q2的热,做了W1的功。 如图中AB
过程1 保持T2定温可逆膨胀。 在T2时,让气箱中理想气体由 p1、V1作定温可逆膨胀到p2、V2。 在此过程中系统吸收了Q2的热, 做了W1的功。如图中AB 故Q2=W1=RT2lnV2/V1
CVlnT1/T2=—RlnV3/V2 CVlnT2/T1=—RlnV1/V4 整理得:V2/V1=V3/V4 故 W=R(T2-T1)lnV2/V1 卡诺热机效率应为η=W/Q2=(T2-T1)/T2
卡诺热机的效率与两个热源的温度有 关,高温热源的温度越高,低温热 源的温度越低,则热机的效率越大。
一种热机工作时由两个定温 可逆过程和两个绝热可逆 过程组成一循环过程,这 种循环过程称为卡诺循环, 按卡诺循环工作的热机叫 卡诺热机。
卡诺循环的证明:
假设有两个热源,其热容无限大。 一个具有较高的温度T2,另一个 具有较低的温度T1。含有1mol理想 气体的气箱,气箱上有一无重量 无摩擦的活塞,将此气箱与高温 热源相接触,气体温度为T2, 压 力和体积分别为p1和V1,此为系统 始态。
η=W/Q2=(T2-T1)/T2=(Q2-Q1)/Q2
+ =0 整理得, Q1 Q2 T1 T2 卡诺热机在两个热源之间工作
时,两个热源的热温商之和等于
零。
决定卡诺热机效率的因素
一是在两个不同温度热源之间 工作的热机中,卡诺热机的 效率是否为最大;
二是卡诺热机的效率是否与工 作物质无关。
卡诺定理:
故W2=—△U=—CV(T1—T2)
过程3 保持T1定温可逆压缩。 将气箱从绝热袋中取出,与 低温热源T1相接触,然后在 T1时作定温可逆压缩,让气 体的压力和体积由p3、V3变 到 p4、V4。 此 过 程 △ U=0, 如图CD
过程3 保持T1定温可逆压缩。将 气箱从绝热袋中取出,与低温热 源T1相接触,然后在T1时作定温 可逆压缩,让气体的压力和体积 由 p3、V3 变 到 p4、V4。 此 过 程 △U=0,如图CD
卡诺循环
一种热机工作时由两个定温 可逆过程和两个绝热可逆 过程组成一循环过程,这 种循环过程称为卡诺循环, 按卡诺循环工作的热机叫 卡诺热机。
卡诺循环
一种热机工作时由两个定温 可逆过程和两个绝热可逆 过程组成一循环过程,这 种循环过程称为卡诺循环, 按卡诺循环工作的热机叫 卡诺热机。
卡诺循环
热机效率
从高温热源吸取的热Q2转化 为功的比例,称为热机效 率,用符号η表示,即 η=W/Q2
卡诺热机效率的计算
首先计算W
W =W1+W2+W3+W4 =RT2lnV2/V1—CV(T1—T2)+RT1lnV4/V3—CV (T2—T1)=RT2lnV2/V1+ RT1lnV4/V3
根据绝热可逆膨胀得
卡诺可逆循环的结果:
气箱中的理想气体回复了原状,没有 任何变化;高温热源由于过程1损失 了热Q2,低温热源T1由于过程3得到 了热Q1;经过一次循环以后,系统 所做的总功W是四个过程功的总和, 如果气箱不断通过这种循环工作, 热源T2的热就不断传出,一部分转 变为功,余下的热就不断传向热源 T1,在一次循环后,系统回复原状, △U =0 故W=Q1+Q2
[答案]
η1=(T2-T1)/T2=22.3% η2=(T2-T1)/T2=50.5%
课后作业: 教材76页习题1
Hale Waihona Puke
过程4 绝热可逆压缩。 将压缩了的气体从热源 T1处移开,又放进绝热 袋,让气体作绝热可逆 压缩,使气体回到起始 状态,如图DA
过程4 绝热可逆压缩。将压 缩了的气体从热源T1处移开, 又放进绝热袋,让气体作 绝热可逆压缩,使气体回 到起始状态,如图DA
故W4=—△U=—CV(T2—T1)
1、在两个不同温度的热源之间工 作的任意热机,以卡诺热机的效 率为最大。否则将违反热力学第 二定律。
2、卡诺热机的效率只与两个热源 的温度有关,而与工作物质无关。 否则将违反热力学第二定律。
任何热机I的效率不可能比卡诺热 机的效率高。
例 试比较下列两个热机的最大效 率(1)以水蒸气为工作物质, 工作于130℃及40℃两热源之间; (2)以汞蒸汽为工作物,工作 于380℃及50℃两热源之间。
过程2 绝热可逆膨胀。在膨 胀后的气体人热源T2处移开, 将气箱放进绝热袋,让气 体作绝热可逆膨胀,此时 气体的温度由T2降到T1,压 力 和 体 积 由 p2、V2 变 到 p3、 V3,此过程中系统不吸热。 如图BC
过程2 绝热可逆膨胀。在膨胀 后的气体人热源T2处移开,将 气箱放进绝热袋,让气体作 绝热可逆膨胀,此时气体的 温度由T2降到T1,压力和体积 由p2、V2变到p3、V3,此过程中 系统不吸热。 如图BC
过程1 保持T2定温可逆膨胀。 在T2时,让气箱中理想气体 由p1、V1作定温可逆膨胀到 p2、V2。在此过程中系统吸 收了Q2的热,做了W1的功。 如图中AB
过程1 保持T2定温可逆膨胀。 在T2时,让气箱中理想气体由 p1、V1作定温可逆膨胀到p2、V2。 在此过程中系统吸收了Q2的热, 做了W1的功。如图中AB 故Q2=W1=RT2lnV2/V1
CVlnT1/T2=—RlnV3/V2 CVlnT2/T1=—RlnV1/V4 整理得:V2/V1=V3/V4 故 W=R(T2-T1)lnV2/V1 卡诺热机效率应为η=W/Q2=(T2-T1)/T2
卡诺热机的效率与两个热源的温度有 关,高温热源的温度越高,低温热 源的温度越低,则热机的效率越大。
一种热机工作时由两个定温 可逆过程和两个绝热可逆 过程组成一循环过程,这 种循环过程称为卡诺循环, 按卡诺循环工作的热机叫 卡诺热机。
卡诺循环的证明:
假设有两个热源,其热容无限大。 一个具有较高的温度T2,另一个 具有较低的温度T1。含有1mol理想 气体的气箱,气箱上有一无重量 无摩擦的活塞,将此气箱与高温 热源相接触,气体温度为T2, 压 力和体积分别为p1和V1,此为系统 始态。
η=W/Q2=(T2-T1)/T2=(Q2-Q1)/Q2
+ =0 整理得, Q1 Q2 T1 T2 卡诺热机在两个热源之间工作
时,两个热源的热温商之和等于
零。
决定卡诺热机效率的因素
一是在两个不同温度热源之间 工作的热机中,卡诺热机的 效率是否为最大;
二是卡诺热机的效率是否与工 作物质无关。
卡诺定理:
故W2=—△U=—CV(T1—T2)
过程3 保持T1定温可逆压缩。 将气箱从绝热袋中取出,与 低温热源T1相接触,然后在 T1时作定温可逆压缩,让气 体的压力和体积由p3、V3变 到 p4、V4。 此 过 程 △ U=0, 如图CD
过程3 保持T1定温可逆压缩。将 气箱从绝热袋中取出,与低温热 源T1相接触,然后在T1时作定温 可逆压缩,让气体的压力和体积 由 p3、V3 变 到 p4、V4。 此 过 程 △U=0,如图CD
卡诺循环
一种热机工作时由两个定温 可逆过程和两个绝热可逆 过程组成一循环过程,这 种循环过程称为卡诺循环, 按卡诺循环工作的热机叫 卡诺热机。
卡诺循环
一种热机工作时由两个定温 可逆过程和两个绝热可逆 过程组成一循环过程,这 种循环过程称为卡诺循环, 按卡诺循环工作的热机叫 卡诺热机。
卡诺循环
热机效率
从高温热源吸取的热Q2转化 为功的比例,称为热机效 率,用符号η表示,即 η=W/Q2
卡诺热机效率的计算
首先计算W
W =W1+W2+W3+W4 =RT2lnV2/V1—CV(T1—T2)+RT1lnV4/V3—CV (T2—T1)=RT2lnV2/V1+ RT1lnV4/V3
根据绝热可逆膨胀得
卡诺可逆循环的结果:
气箱中的理想气体回复了原状,没有 任何变化;高温热源由于过程1损失 了热Q2,低温热源T1由于过程3得到 了热Q1;经过一次循环以后,系统 所做的总功W是四个过程功的总和, 如果气箱不断通过这种循环工作, 热源T2的热就不断传出,一部分转 变为功,余下的热就不断传向热源 T1,在一次循环后,系统回复原状, △U =0 故W=Q1+Q2
[答案]
η1=(T2-T1)/T2=22.3% η2=(T2-T1)/T2=50.5%
课后作业: 教材76页习题1
Hale Waihona Puke