2.2 数轴
2.2 数轴(第1课时)

• 什么叫数轴? • 规定了原点、正方向和单位长度的直 线叫做数轴。
• 例1.如图,指出数轴上点A、B、C表 示的数。
例2.在数轴上画出表示下列各数的点:
3 2, 1.5 ,0 , 5
,5 1.
1 ,3 2
例3.在数轴上画出表示下列各数的点: 5,—10, 0 ,20 ,—15
……
从-n到n有________个整数。(n为正整数)
9.学校、书店和图书馆坐落在一条南北走 向的大街上,书店位于学校南边200米处, 图书馆位于学校北边100米处,小红从学校 沿街向南走了50米,接着又向北走了 -150米,此时,小红的位置在( ) A、书店 B、学校 C、图书馆 D、学校南100米
n
小结:
从文字、图形、图表获取信息是信息 社会的基本要求 从数轴上获取有关信息是解有关有理 数问题的基本方法,它主要包括: (1)数轴上的点所表示的数的正负性
(2)数轴上的点到原点的距离
心中有数 不如心中有图 数形结合
3.在数轴上,点A表示的数是1,那么在 数轴上与A相距3个单位长度的点表示的数 是________。
4.如果数轴上的A点所表示的数是-3,将A 向右移动7个单位长度,那么这时点表示 的数是_______.
5、如果数轴上的B点表示的数是3,将B向 左移动7个单位长度,再向右移动5个单位 长度,那么这时点表示的数是__________.
6、数轴上有A、B两点,若点A对应的数是 -2且A、B两点的距离为4,则点B对应的 是________.
7、已知数轴上有A、B两点,A、B之间的 距离为1,点A与原点O的距离为3,那么点 B对应的数是________.
2.2 数轴(教学设计——精品教案)

2.2数轴教学目标【知识与技能】1.正确理解数轴的意义,理解数轴的三要素.2.掌握有理数在数轴上的表示法,以及利用数轴比较有理数的大小.3.理解相反数的意义及求法.【过程与方法】通过与温度计的类比认识数轴,初步感受数形结合的思想方法.【情感态度价值观】渗透数形结合的思想方法,培养学生的观察、归纳与概括的能力.教学重难点【教学重点】正确掌握数轴的画法;用数轴上的点表示有理数;求已知数的相反数.【教学难点】有理数和数轴上的的点的对应关系.课前准备课件教学过程一、情景引入:(1) 你会读温度计吗?完成课本43页最上面的读温度计的问题.(2) 我们能否用类似温度计的图形表示有理数呢?二、讲授新课:认真阅读课本第43页至45页,完成下列问题(1)画一条水平直线,在直线上取一点O (叫作▁▁▁),选取某一长度作为▁▁▁▁,规定向右的方向为▁▁▁,就得到了数轴.于是,+3可以用数轴上位于原点右边3个单位的点表示,-4可以用数轴上位于原点左边4个单位的点表示,在数轴上位于原点右边41点表示41,在数轴上位于原点左边1.5的点表示5.1 ,任何有理数都可以用数轴上的一个点来表示.三、例题讲解、巩固提高例1.如图,指出数轴上A ,B ,C 各点表示什么数,并指出数轴上表示2和-3.5的点.解:点A 表示3.5;点B 表示-5;点C 表示-2;表示2和-3.5的点分别是下图中的点D 和点E.练习:画出数轴并用数轴上的点表示下列个数:23 ,-5 ,0 ,5 ,-4 ,-23 . 四、继续探究2 与 -2有什么相同点与不同点?它们在数轴上的位置有什么关系?5 与 -5, 23 与 -23 呢? 如果两个数只有符号不同,那么我们称其中一个数为另一个数的相反数,也称这两个数互为相反数.特别地0的相反数是0.在数轴上,表示互为相反数的两个点,位于原点的两侧,并且与原点的距离相等.练习 : 1、5的相反数是▁▁;▁▁的相反数是-3.5.议一议数轴上的两个点,右边点表示的数与左边点表示的数有怎样的大小关系?数轴上表示的数,▁▁▁边的总比▁▁▁边的大;正数▁▁▁0,负数▁▁▁0,正数▁▁▁负数.练习:比较大小:-3▁5; 0▁-4 ;-3▁-2.5.五、合作交流(1) 什么是数轴?怎样画数轴.(2) 有理数与数轴上的点之间存在怎样的关系?(3) 什么是相反数?怎样求一个数的相反数?(4) 如何利用数轴比较有理数的大小?六、随堂练习:(1)下列说法正确的是( )A 、 数轴上的点只能表示有理数B 、 一个数只能用数轴上的一个点表示C 、 在1和3之间只有2D 、 在数轴上离原点2个单位长度的点表示的数是2(2)语句:①-5是相反数、②-5与+3互为相反数③-5是5的相反数④-5和5互为相反数⑤0的相反数是0⑥-0=0.上述说法中正确的是( )A.①②⑥B.②③⑤C.①④D.③④⑤⑥(3)大于-4而小于4的整数有▁▁▁▁▁▁.(4)用“﹤”或“﹥”号填空①-5▁▁-7②0 ▁▁-2③0.01▁▁▁-0.1(5)写出下列各数的相反数3.4,-3,0,a ,2a-3.七、板书设计八、教学反思数轴是数形转化、结合的重要桥梁,创设问题情境,激发学生的学习热情,发现生活中的数学.让学生通过观察、思考来体验数轴的形成过程,加深对数轴概念的理解,同时培养学生的概括能力.。
七年级数学上册北师大版课件:2.2 数轴(共23张PPT)

2
2.在数轴上把下列各数表示出来: -1.4,212,3.2. 解:如图所示.
3
3.从数轴上表示-1 的点出发,向左移动 2 个单 位长度到点 B,则点 B 表示的数是__-__3____,再向 右移动 3 个单位长度到达点 C,则点 C 表示的数是 ____0____.
23
7
1. 数 轴 的 三 要 素 是 __原__点____ 、 单__位__长__度__ 、 __正__方__向__.
2.数轴上表示-5 的点在原点的___左_____侧, 与原点的距离是___5_____个长度单位.
3.数轴上与原点距离是 2 的点有___2_____个, 表示的数是_-__2_和__2__.
8
4.如图,a、b 为有理数,则 a____<____0, b____<____0.
9
5.如图所示,在数轴上有三个点 A,B,C,请 回答:
(1)将点 B 向左移动 3 个单位后,三个点所表示 的数______B_______最小,是____-__5_______;
10
(2)将点 A 向右移动 4 个单位后,三个点所表示 的数_____B________最小,是_____-__2______;
21
14.数轴上的点 A 表示-3,将点 A 先向右移动 7 个单位长度,再向左移动 5 个单位长度,那么终点 到原点的距离是____1____个单位长度.
22
15.在数轴上 P 点表示 2,现在将 P 点向右移 动 2 个单位长度后再向左移动 5 个单位长度,这时 P 点必须向__左______移动___2_____个单位到达表示- 3 的点.
2.2 数轴知识点总结与例题讲解

2.2数轴知识点总结与例题讲解一.本节知识点(1)数轴的定义及其画法.(2)在数轴上表示有理数.(3)在数轴上比较有理数的大小.二、本节题型(1)在数轴上表示数并比较大小.(2)数轴上两点之间的距离.(3)数轴上点的移动.三、知识点讲解知识点一数轴的定义及其画法规定了原点、正方向和单位长度的直线叫做数轴.数轴的画法一画、二取、三选、四标.(1)一画画直线,先画一条水平的直线;(2)二取取原点,通常原点画在中间的位置.当负数的个数较多时,选取原点时靠右些;当正数的个数较多时,选取原点时靠左些;(3)三选选正方向,通常选择直线向右的方向为正方向,并标上箭头;(4)四标标数,选取适当的长度作为单位长度,原点上标0,原点向左依次标数为--;原点向右依次标数为1 , 2 , 3 ,….,1-,2,3对数轴的理解(1)数轴是一条可以向两端无限延伸的直线.(2)数轴的三要素: 原点、正方向和单位长度.(3)画数轴时,原点位置的选取和单位长度的大小可以任意选取.(4)画数轴时,三要素缺一不可.(5)数轴要画成一条直线,不要画成一条线段或射线.(6)在数轴上标上箭头表示正方向.(7)在同一条数轴上,单位长度的大小要统一.知识点二、在数轴上表示有理数数轴是数形结合的工具,所有的有理数都可以用数轴上的点表示.正有理数用原点右边的点表示,负有理数用原点左边的点表示,零用原点表示.注意 数轴上的点不都表示有理数.知识点三、在数轴上比较有理数的大小在数轴上表示的两个数,右边的数总比左边的数大.有理数的大小比较法则 正数都大于零,负数都小于0,正数大于负数.利用数轴比较有理数的大小的步骤:(1)画数轴;(2)把要比较大小的数在数轴上表示出来;(3)根据数轴上“右边的数总比左边的数大”确定大小.简记为:画数轴、定顺序、定大小.注意 利用数轴比较数的大小,与点的位置有关,所以在画点时不能出错.四、题型讲解题型一 在数轴上表示数并比较大小例1. 把下列各数在数轴上表示出来,并按照从小到大的顺序用“<”号连结起来.312- , 5.0- , 3. 5 , 0 , 0. 5 , 5.3- , 2 . 分析:利用数轴比较数的大小的方法简记为:画数轴、定顺序、定大小.在数轴上画出点的准确位置是正确解决问题的关键.解:把以上各数在数轴上表示出来如图所示. 1由数轴可知:5.325.005.03125.3<<<<-<-<-. 题型二 数轴上两点之间的距离数轴上两点之间的距离等于右边的数减去左边的数.例2. 若数轴上表示1-和3的两点分别是点A 和点B ,则点A 和点B 之间的距离是【 】(A )4- (B )2- (C )2 (D )4解:方法一:如图所示.由数轴可知,点A到原点的距离为1,点B到原点的距离为3,所以点A和点B之间的距离为4,选择【 D 】.方法二:点A和点B之间的距离是()4=+-.-13=31例3. 数轴上与表示1-的点距离3个单位长度的点表示的数为_________.分析:本题为易错题,有两种可能的结果:一是该点在表示1-的点的左边,二是该点在表示1-的点的右边.解:分为两种情况:当该点在表示1-;-的点的左边时,该点表示的数为4当该点在表示1-的点的右边时,该点表示的数为2.综上所述,该点表示的数为4-或2.题型三数轴上点的移动例4. 点P从数轴上原点开始,向右移动2个单位,再向左移动5个单位,此时点P 表示的数是_________.分析:为防止出错,应画出数轴,在数轴上找到点P移动的最终位置,从而确定点P 所表示的数.解:3-.例5. 已知A、B是数轴上点,如果点A表示2,将点A向左移动4个单位长度,再向右移动7个单位长度,那么终点B表示的数是_________.解: 5.例6. 数轴上的一点由+3出发,向左移动4个单位,又向右移动5个单位,两次移动后,这一点所表示的数是_________.解:第一次移动后,这一点表示的数是1-,第二次移动后,这一点表示的数是+4,所以两次移动后,这一点表示的数是+4.例7. 数轴上点A和点B表示的数分别为4-和2,把点A向右移动_________个单位长度,可以使点A到点B的距离是2.【】(A)2或4 (B)4或6 (C)6或8 (D)4或8分析:本题为易错题,学生往往只想到其中一种情况,而忽视问题的另外一种情况.本题中平移点A 后,点A 可能在点B 的左侧,也可能在点B 的右侧,所以要分为两种情况进行研究.解:与点B 距离2个单位长度的点有两个,这两个点表示的数分别为0和4,所以分为两种情况:当点A 向右移动到原点时,移动的单位长度为4;当点A 向右移动到表示4的点时,移动的单位长度为8.综上所述,点A 向右移动的单位长度为4或8,选择【 D 】.综合题型例8. 操作与探索(1)如图所示,写出数轴上点A 、B 、C 、D 表示的数;(2)请你自己画出数轴并表示下列有理数:4,23-; (3)如图所示,观察数轴,回答下列问题:①大于3-并且小于3的整数有哪几个?②在数轴上到表示1-的点的距离等于2个单位长度的点表示的数是什么?分析:任何一个有理数都可以用数轴上的一个点表示.第(1)问考查的是根据数轴上的点确定表示的数,要明确用数轴上的点表示数的方法和特点;第(2)问考查数轴的画法,数轴的画法简记为:一画、二取、三选、四标;第(3)问注意分类讨论.解:(1)点A 、B 、C 、D 表示的数分别是:2,0,5.1,3--;(2)如图所示; 3(3)①整数有:2,1,0,1,2--,共5个; ②3-或1.。
初中数学_2.2数轴教学设计学情分析教材分析课后反思

§2.2 数轴教学设计一、教学目标知识目标:掌握数轴的三要素,能正确画出数轴。
能力目标:能将已知有理数在数轴上表示出来,能说出数轴上的已知点所表示的有理数。
情感目标:体会数学知识与现实世界的联系,培养学生良好的数学兴趣。
教学重点和难点重点:正确掌握数轴画法和用数轴上的点表示有理数。
难点:有理数和数轴上的点的对应关系三、课时安排1课时四、教具学具准备自制课件、三角板五、设计理念:1、数轴是数形转化、结合的重要媒介,情境设计的原型来源于生活实际,学生易于体验和接受,让学生通过观察、思考和自己动手操作、经历和体验数轴的形成过程,加深对数轴概念的理解,同时培养学生的抽象和概括能力,也体出了从感性认识,到理性认识,到抽象概括的认识规律。
2、教学过程突出了情竟到抽象到概括的主线,教学方法体了特殊到一般,数形结合的数学思想方法。
3、注意从学生的知识经验出发,充分发挥学生的主体意识,让学生主动参与学习活,并引导学生在课堂上感悟知识的生成,发展与变化,培养学生自主探索的学习方法。
六、授课过程设计(一)创设情境,引出课题(出示幻灯片)师:认识它们吗?生:温度计师:温度计所表示的温度是多少?生:5℃0℃-10℃师:如果把后面的℃去掉,就是我们学习的有理数。
我们能否像温度计那样把有理数用一条直线上的点表示出来呢?这就是今天我们要学的内容—2.2数轴(板书课题).【设计意图】从温度计用标有读数的刻度来表示温度的高低这个事实出发,引出本节课所要学的内容—数轴,再从温度计这个实物形象抽象出数轴来研究.既激发了学生的学习兴趣,又使学生受到把实际问题抽象成数学问题的训练,培养了用数学的意识.同时渗透了数轴的三要素。
(二)探索新知,学习新课1、自学探究(1)生自学课本完成两个任务a画一条数轴b数轴的定义c生自由说出自己的画法(找一个同学板演)(2)师生共同画一条数轴,并总结画法(3)生纠正自画数轴错误(4)师生总结数轴定义及注意事项学生活动:学生独立完成,总结画法。
2.2数轴

12.2数轴[知识点一]数轴的定义 一、引入二、数轴的定义1、定义:规定了_______、________、________的____线叫做数轴.2、三要素:_______、________、________.三、数轴的画法步骤 图形(1)画一条水平直线(2)在直线的适当位置选取一点为原点,并用这点表示O.(3)确定向右的方向为正方向,用箭头表示出来.(4)选取适当的长度作为单位长度.2 四、典型例题例1.在下图中,表示数轴正确的是( ).例2.判断题(1)直线就是数轴( )(2)数轴是直线( ) (3)任何一个有理数都可以用数轴上的点来表示( ) (4)数轴上到原点距离等于3的点所表示的数是+3( )(5)数轴上原点左边表示的数是负数,右边表示的数是正数,原点表示的数是0.( )例3.文具店、书店和玩具店依次座落在一条南北走向的大街上,•文具店在书店北边20m 处,玩具店位于书店南边100m 处.小明从书店沿街向南走了40m,•接着又向南走了-60m,此时小明的位置在 .例4.(1)在数轴上表示出下列各有理数:-2,-3,0,3,;(2)指出图所示的数轴上A 、B 、C 、D 、E 各点分别表示的有理数.[知识点二]数轴上的数 根据数轴回答下面问题1.最小的正整数是______,______最大的正整数.2.最大的负整数是______,______最小的负整数.3.原点左侧的数表示_____,原点表示____, 原点右侧的数表示____.4.原点及原点右边的数表示______,原点及原点左边的数表示______.5.所有大于-3的负整数是______________, 所有小于4的非负整数是________________。
6.大于-4而小于2的整数有____个,分别是______________________.7.到原点距离2个单位的点有_____个,它们分别表示_____和______. [知识点三]在数轴上比较数的大小1.口诀:左小右大2.在数轴上画下列各点,并将它们用“<”号连接起来.(1)2,-3,5,212,1(2)-300,0,100,500,-100(3)0.1,-0.2,0,0.5,0.31212[知识点四]数轴上点的移动例1.A为数轴上表示-1的点,将A点沿数轴向左移动2个单位长度,再向右移动5个单位长度得到B点,则点B表示的数为______.例2.数轴上一动点A向左移动2个单位长度到达点B,再向右移动5个单位长度得到C点,若点C表示的数为1,则点A表示的数为______.例3.如图,数轴上有三个点A,B,C,请回答:A B C(1)将B点向左移动3个单位后,三个点所表示的数谁最小?是多少?(2)将A点向右移动4个单位后,三个点所表示的数谁最小?是多少?(3)将C点向左移动6个单位后,这时B点所表示的数比C点所表示的数大多少?(4)怎样移动其中的两个点,才能使三个点表示相同的数?有几种移动方法?[知识点五]数轴上距某点n个单位长度例1.如图:在数轴上,到原点距离3个单位的点表示的数为_______.例2.在数轴上,点A表示数211-,与点A相距3个单位长度的点B所表示的数为___________.[知识点六]被墨水盖住例1.如图,一滴墨水洒在一个数轴上,根据图中标出的数据,被墨水盖住的整数共有___个,它们分别是 ________________________________.[知识点七]与数轴相关的判断题例1.判断下列说法是是否正确,错误的请说明理由.(1)在数轴上,与原点距离越大的点表示的数越大.()(2)在数轴上,-7与-9之间的有理数是-8.()(3)在数轴上,左边的点表示的数总比右边的点表示的数小.()34 [知识点八]探究题 探究1.作图题例1.在数轴上画出到原点距离等于5的点,然后画出到原点距离等于3的点,最后画出到原点距离小于5而大于3的区域.例2.小红从书店东1km 处向东走了3km,由于有急事要返回家中,于是他向西走了6km 回到家中.(1)小红一共走了______千米.(2)小红走到的最远点到书店的距离是 _____千米. (3)小红家到书店的距离是 ____千米. (4)利用数轴,把小红家、书店的位置标出来,并画出小红所走的路线.探究2.盖住的整点例1、数轴上表示整数的点称为整点,某数轴的单位长度是1cm ,若在这个数轴上随意画出一条长3cm 的线段AB ,则线段AB 盖住的整点有_________个.[结论]若在单位长度是1厘米的数轴上画一条长为n 厘米的线段,则这条线段盖住的整点有__________个.例2.数轴上表示整数的点称为整点,某数轴的单位长度是1cm ,若在 个数轴上随意画出一条长2015cm 的线段AB ,则线段AB 盖住的整 点有_________个.探究3.一只跳蚤例1、一只跳蚤在一条数轴上从原点0开始,第一次向右跳一个单位,第二次向左跳2个单位,第三次向右跳3个单位,第四次向左跳4个单位…依此规律跳下去,当它跳100次下落时,落点处离0的距离是___个单位.例2、 一只跳蚤在一条数轴上从原点0开始,第一次向右跳一个单位,第二次向左跳2个单位,第三次向右跳3个单位,第四次向左跳4个单位,…,依此规律跳下去,当它跳2013次下落时,落点处离原点0的距离是______个单位.探究4.数轴与矩形例1.如图所示,矩形ABCD 的顶点A,B 在数轴上,CD=6,点A 对应的数为-1,则点B 对应的数是 _____.。
2.2 数轴教案
2.2数轴1.明确数轴的三要素:原点、正方向和单位长度,会画数轴.2.能用数轴表示有理数,初步感受数形结合的思想方法.3.能利用数轴比较两个有理数的大小.一、情境导入1.欣欣感冒了,医生用体温计测量了她的体温,并说:“37.8度.”提出问题:医生怎样通过体温计读出任意一个人的体温?2.我们再一起去看看中秋节祖国各地的自然风光和温度情况(电脑分别显示嘉峪关、长白山、颐和园三个旅游景点的自然风光,温度分别为-3℃、0℃、20℃).嘉峪关-3℃长白山0℃颐和园20℃提出问题:那么要测量气温所需要的温度计的刻度应该如何安排?3.请尝试画出你想像中的温度计,并和其他同学交流,注意交流时要发表自己的见解.提出问题:请找出温度计从外观上看有哪些不可缺少的特征?二、合作探究探究点一:数轴的概念下列图形中是数轴的是()A. B.C. D.解析:A中没有单位长度,错误;B中没有正方向,错误;C中满足原点,正方向,单位长度,正确;D中没有原点,错误.故选C.方法总结:判断一条直线是不是数轴,要抓住它的三要素:原点、正方向和单位长度,三者缺一不可.探究点二:在数轴上表示数画一条数轴,并在数轴上标出表示下列各数的点.0,-312,12,-2,2.5,3,-23解析:先画出数轴,再根据数的正、负及它们到原点的距离标出各数.解:如图:方法总结:设a是一个正数,则数轴上表示数a的点在原点的右边,与原点的距离是a个单位长度.表示数-a的点在原点的左边,与原点的距离是a个单位长度.探究点三:利用数轴比较有理数的大小将有理数-2,+1,0,-212,314在数轴上表示出来,并用“<”号连接各数.解析:利用数轴上的点来表示相应的数,再利用它们对应点的位置来判断各数的大小.解:如图:由数轴可知-212<-2<0<+1<314.方法总结:一般地,数轴上多个数的大小比较,可利用“数轴上两个点表示的数,右边的总比左边的大”这一性质进行比较.探究点四:点在数轴上的移动问题点A 为数轴上表示-2的动点,当点A 沿数轴移动4个单位长度到点B 时,点B 所表示的有理数为( )A .2B .-6C .2或-6D .以上答案都不对解析:∵点A 为数轴上表示-2的动点,①当点A 沿数轴向左移动4个单位长度时,点B 所表示的有理数为-6;②当点A 沿数轴向右移动4个单位长度时,点B 所表示的有理数为2.故选C.方法总结:点A 在数轴上移动要注意分两种情况:一个向左,一个向右,不要漏掉其中的一种情况.三、板书设计数轴数轴是数形转化、结合的重要桥梁,创设问题情境,激发学生的学习热情,发现生活中的数学.让学生通过观察、思考来体验数轴的形成过程,加深对数轴概念的理解,同时培养学生的概括能力.。
2.2数轴
科目数学课题数轴主备人审核人学案类型新授日期学习目标1、通过与温度计的类比认识数轴,能正确画出数轴;2、能用数轴上点表示有理数,初步感受数形结合的思想方法;3、能利用数轴比较有理数的大小。
重难点重点认识数轴,用数轴上的点表示有理数,利用数轴比较有理数的大小难点数轴的画法,有理数的比较学习内容学习笔记一、预习:1、观察下面温度计上显示的温度分别是°C、°C、°C;温度计上的刻度有什么特点:;二、探究自学目标一: 认识数轴【问题1】你能类比温度计,建立数轴吗?1、思考:如何建立一条数轴?它需要同时满足几个条件?(1)数轴的三要素:_____ , _______ _, _________ 。
(2)___用原点表示,_____在原点的左边,_______在原点的右边画数轴要注意:⒈画直线. ⒉在直线上取一点作为原点. ⒊确定正方向,并用箭头表示. ⒋根据需要选取适当单位长度.【自学检测】 1.判断下列数轴是否正确.(7) ( )2.在数轴上,原点及原点右边的点表示的数是( )A .负数B .正数C .整数D .非负数自学目标二: 数轴上的点与有理数之间的关系1、请画一条数轴,并标出 +3,-4,0分别在数轴的什么位置?41,-1.5呢?再举一些数字试一试。
解:由此发现有理数与数轴上的点有什么关系?2、例1,指出数轴上 A, B, C, D 各点分别表示什么数?解:3、例2,画出数轴,并用数轴上的点表示下列各数:23, -3.5, 0, 5, -4,23 解:(做完后可让学生展示)归纳思考:从例1可发现,数轴上的某些点可以直观地表示其对应的有理数,这是由“形”到“数”;从例2可发现,一个有理数总可以由数轴上某个点来表示,这是由“数”到“形”; 它们从两个侧面体现出数形结合思想.【问题2】你能利用数轴上表示有理数的这种数形结合思想,探索如何比较有理数的大小吗?5、观察下图,比较-2,-1.5,-1,0, 1,1.5, 2的大小.由此你能发现数轴上右边的点表示的数与左边的点表示的数的关系吗?归纳得:正数 0, 负数 0,正数 负数.四、巩固练习1、比较下列每组数的大小,并说明理由.(利用数轴的数形结合思想) ⑴ -2 和 +6; ⑵ 0和 -1.8; ⑶ 23和 -4;⑷3.8,-4.1,-3. 解:2、画出数轴,用数轴上的点表示下列各数: -4, 3.5, -1.5, 321 ,0 , 2.5. 并用“>”将它们连接起来。
苏科版(2024)七年级上册数学第2章 有理数2.2 数轴 教案
苏科版(2024)七年级上册数学第2章有理数2.2 数轴教案【教材分析】数轴是苏科版七年级上册《有理数》这一章中的重要内容。
数轴是为了解决有理数的表示和运算问题而引入的,它是有理数的几何表示,是理解正负数、比较数的大小、进行有理数运算的基础。
在这一节中,教材通常会介绍以下几点:1. 数轴的定义:一条直线,选择一个点作为原点,规定一个方向为正方向,单位长度为1,可以表示所有的有理数。
2. 如何在数轴上表示有理数:正数在原点的右侧,负数在原点的左侧,原点处表示0。
3. 数轴上的点与有理数的一一对应关系,即每个有理数对应数轴上唯一的一个点,反之亦然。
4. 利用数轴比较有理数的大小,进行加减运算。
【学情分析】在学习2.2 数轴时,学生已经学习了正数、负数和整数的基本概念,对数的初步认识有一定的基础。
然而,对于数轴的抽象概念,部分学生可能会感到陌生和困惑,特别是对于负数和数轴上的点的对应关系可能理解不透彻。
此外,由于七年级的学生逻辑思维能力和空间想象能力还在发展中,因此在理解数轴的几何意义和进行有理数的几何运算时可能会遇到挑战。
教师需要通过丰富的实例、直观的演示和适当的练习来帮助学生建立数轴的概念,提升他们的抽象思维和空间想象能力。
【教学目标】1. 知识与技能:理解数轴的概念,掌握在数轴上表示有理数的方法,能比较有理数的大小。
2. 过程与方法:通过数轴的学习,培养学生的抽象思维能力和空间观念。
3. 情感态度与价值观:体验数学的实用性和美感,提高学习数学的兴趣。
【教学重难点】教学重点:1. 数轴的定义和构造:理解数轴是实数集的一个有序的、完备的结构,它是一个无限的直线,原点表示0,正方向表示正数,负方向表示负数。
2. 有理数在数轴上的表示:能够将正数、负数、零在数轴上准确地标出,理解数轴上的点与实数的一一对应关系。
3. 数轴上的点与数的比较:通过数轴可以直观地比较任意两个有理数的大小。
教学难点:1. 负数在数轴上的理解:对于初学者,负数是抽象的概念,如何在数轴的负方向上正确表示和理解负数可能是一个挑战。
北师大版七年级数学上册《2.2数轴》
北师大版七年级数学上册《2.2数轴》一. 教材分析北师大版七年级数学上册《2.2数轴》这一节的内容主要包括数轴的定义、特点、表示方法以及数轴上的距离和相反数等概念。
通过这一节的学习,使学生能够理解数轴的概念,掌握数轴的基本性质,能够利用数轴表示有理数,并能够解决一些与数轴相关的问题。
二. 学情分析学生在进入七年级之前,已经学习了有理数的概念和运算,对数有一定的认识。
但是,对于数轴这一概念,他们可能是初次接触,因此需要通过具体的生活实例和实际操作来帮助他们理解和掌握。
同时,学生可能对于数轴上的距离和相反数等概念有一定的困惑,需要老师进行详细的讲解和解释。
三. 说教学目标1.知识与技能目标:学生能够理解数轴的定义和特点,掌握数轴上的表示方法,能够利用数轴表示有理数。
2.过程与方法目标:通过实际操作和生活实例,学生能够理解数轴的概念,并能够解决一些与数轴相关的问题。
3.情感态度与价值观目标:学生能够体验数学与生活的紧密联系,增强对数学的兴趣和信心。
四. 说教学重难点1.教学重点:数轴的定义、特点、表示方法以及数轴上的距离和相反数等概念。
2.教学难点:数轴上的距离和相反数的理解,以及如何利用数轴解决实际问题。
五. 说教学方法与手段1.教学方法:采用讲授法、演示法、实践法、讨论法等,通过教师的讲解和学生的实际操作,使学生能够理解和掌握数轴的概念和性质。
2.教学手段:利用多媒体课件、数轴模型、黑板等教学工具,帮助学生直观地理解和掌握数轴的知识。
六. 说教学过程1.导入:通过生活实例,如比较身高、赛跑等,引导学生思考如何用数学工具来表示和比较这些量,从而引入数轴的概念。
2.讲解:讲解数轴的定义、特点和表示方法,通过数轴模型和多媒体课件,使学生直观地理解数轴的结构和作用。
3.实践:让学生亲自动手画出数轴,并尝试表示一些有理数,通过实践加深对数轴的理解。
4.讨论:让学生分组讨论数轴上的距离和相反数等概念,教师进行指导和解答。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
数轴
【教学目标】
知识技能
1.通过与温度计的类比,了解数轴的概念,会画数轴。
2.知道如何在数轴上表示有理数,能说出数轴上表示有理数的点所表示的数,知道任何一个有理数在数轴上都有唯一的点与之对应。
过程方法
1.从直观认识到理性认识,从而建立数轴概念。
2.通过数轴概念的学习,初步体会对应的思想、数形结合的思想方法。
3.会利用数轴解决有关问题。
情感态度
通过对数轴的学习,体会到数形结合的思想方法,进而初步认识事物之间的联系性。
【教学重点】
1.数轴的概念。
2.能将已知数在数轴上表示出来,说出数轴上已知点所表示的数。
【教学难点】
从直观认识到理性认识,从而建立数轴的概念。
【情景引入】
1.小明感冒了,医生用体温计测量了他的体温,并说:“37.8度。
”
提疑:医生为什么通过体温计就可以读出任意一个人的体温?
(体温计上的刻度)
2.我们再一起去看看12月时祖国各地的自然风光和温度情况(电脑分别显示黑龙江、焦作、海南三个城市美丽的自然风光,温度分别为-10°c,0°c,20°c)
提疑:那么要测量这种气温所需要的温度计的刻度应该如何安排?需要用到哪些数?
(正数、零、负数)
3.请尝试画出你想像中的温度计,并和其他同学交流,注意交流时要发表自己的见解。
然后提问:请找出一支温度计从外观上具有哪些不可缺少的特征?(组织学生讨论交流)学生可能会从不同的角度回答,教师给予必要的引导,总结出与数轴相对应的特点,如形状是直的、0刻度、单位刻度。
(电脑动态演示,将温度计水平放置,抽象得出数轴图形表示有理数-10,
0,20的过程)从而引出课题------数轴。
【教学过程】
一.数轴的画法
与温度计类似,可以在一条直线上画出刻度,标上读数,用直线上的点表示正数、负数和零,具体做法如下:
1.画一条水平的直线,在这条直线上任取一点作为原点(通常取适中的位置,如果所需的都是正数,也可偏向左边)用这点表示0(相当于温度计上的0℃);
2.规定直线上从原点向右(或上)为正方向(箭头所指的方向),那么从原点向左(或下)为负方向(相当于温度计上0℃以上为正,0℃以下为负);
3.选取适当的长度作为单位长度,在直线上,从原点向右,每隔一个长度单位取一点,依次表示为1,2,3,…从原点向左,每隔一个长度单位取一点,依次表示为-1,-2,-3,…
根据画图的步骤,学生思考在一条水平的直线上都画出什么?然后归纳出数轴的定义.二.数轴的相关概念
1.数轴的定义:规定了原点、正方向和单位长度的直线叫做数轴.
(说明:数轴像一支平放的温度计。
)
向学生提出问题:数轴上为什么要规定原点、正方向和单位长度呢?它们各起什么作用?引导学生结合温度订正确回答这个问题,从而知道数轴三要素的重要性,了解三者缺一不可,认识和掌握判断一条直线是不是数轴的依据.
2.请大家回答下列问题:
下图中哪一个表示数轴?不是数轴的请说出原因.
分析:数轴的三要素原点、正方向和单位长度,这三者对于数轴来说是缺一不可.
解:根据数轴的三要素:
图(1)是数轴,它是具备了原点、正方向和单位长度的直线.
图(2)不是数轴,因为单位长度不一致.
图(3)不是数轴,因为没有原点和单位长度.
图(4)不是数轴,因为它是射线,不是直线.
图(5)不是数轴,有两处错误,一是没有标明正方向;二是负数的排序错误,从原点向左依次应是-1,-2,-3,….
说明:识别一个图形是否是数轴,方法是:第一,这个图形是一条直线;第二,这条直线要满足三要素.即原点、正方向和单位长度,缺一不可.
3.让学生观察画好的数轴,思考以下问题:
(1)原点表示什么数?(表示0)
(2)原点右方表示什么数? (正数) 原点左方表示什么数?(负数)
(3)表示+2的点在什么位置?(原点右侧2个单位)
表示-1的点在什么位置?(原点左侧一个单位)
(4)原点向右0.5个单位长度的A点表示什么数?原点向左个单位长度的B点表示什么数?
(点A表示0.5,点B表示-0.5)
4.归纳数轴上的点的意义:
一般地,设a是一个正数,则数轴上表示a的点在原点的___右___边,与原点的距离是___a___个单位长度;表示-a的点在原点的__左___边,与原点的距离是___a__个单位长度。
5.有理数与数轴上点的关系
思考:
是不是任何有理数都可以用数轴上的点来表示?
通过刚才的学习我们知道所有的有理数都可以用数轴上的点来表示。
三.例题讲解
例1 画一个数轴,并在数轴上画出表示下列各数的点:
例2 指出数轴上A,B,C,D,E各点分别表示什么数.
解:点A表示-3,点B表示5.5,点C表示3,点D表示-0.5,点E表示-1.5
注意:提醒学生不能写成“A=3”的形式。
例3.(1)在数轴上到原点距离为3个单位长度的点有几个?它们表示的数是什么?
(2)如果在数轴上点A所对应的数是-2,那么在数轴上与点A相距3个单位长度的点所表示的数有几个?分别是多少?
解:(1)在数轴上到原点距离为3个单位长度的点有2个,它们分别表示3和-3.
(2)与点A相距3个单位长度的点所表示的数有2个,分别是1和-5.
【课堂作业】
示出来.
2.说出下面数轴上A,B,C,D,O,M各点表示什么数?
3.(1)所有的有理数可以用数轴上的来表示。
(2)数轴上的原点右边的点表示,原点左边的点表示,原点表示,离原点3个单位长度的点有。
4.数轴上表示-6的点,在原点的侧,它距离原点个单位长度;表示4.5的点在
原点的侧,它距离原点个单位长度。
5.数轴上距原点的距离等于6的点有个,它们是。
数轴是非常重要的数学工具,它使数和直线上的点建立了对应关系,它揭示数与形之间的内在联系,是帮助学生理解数学、学习数学的重要思想方法.本章有理数的有关性质和运算都是结合数轴进行的。
本节课要求同学们能掌握数轴的三要素,正确地画出数轴,在此还要提醒同学们,所有
的有理数都可用数轴上的点来表示,但是反过来不成立,即数轴上的点并不是都表示有理数,至于数轴上的哪些点不能表示有理数,这个问题以后再研究.。