2015高三期末各区分类解析:函数与导数(文)
2015最新高考文科数学真题专题分类汇编03导数

( 2)已知函数 f ( x) 在 [ - 1,1] 上存在零点, 0 b 2a 1 ,求 b 的取值范围 .
17.【 2015 高考重庆,文 19】已知函数 f (x)
ax3
x2 ( a
R )在 x=
4
处取得极值 .
3
(Ⅰ ) 确定 a 的值,
(Ⅱ ) 若 g( x) f (x)ex ,讨论的单调性 .
( I )讨论 f x 的导函数 f x 的零点的个数;
( II )证明:当 a 0 时 f x
2 2a a ln .
a
16.【 2015 高考浙江,文 20】(本题满分 15 分)设函数 f (x) x2 ax b,( a, b R) .
( 1)当 b = a2 +1时,求函数 f ( x) 在 [ - 1,1] 上的最小值 g(a) 的表达式; 4
( I )求 f x 的单调区间和极值;
( II ) 证明:若 f x 存 在零点,则 f x 在区间 1, e 上仅有一个零点.
( x 1)2
9.【 2015 高考福建,文 22】已知函数 f ( x) ln x
.
2
(Ⅰ ) 求函数 f x 的单调递增区间;
(Ⅱ)证明:当 x 1 时, f x x 1;
则a
.
5.【2015 高考天津,文 11】已知函数 f x axln x, x 0,
,其中 a 为实数 , f x 为 f x 的导函数 ,
若 f 1 3 ,则 a 的值为
.
6. 【 2015 高考陕西,文 15】函数 y xex 在其极值点处的切线方程为 ____________.
ax
7.【 2015 高考安徽,文 21】已知函数 f ( x)
(2021年整理)2015专题五:函数与导数(含近年高考试题)

(完整)2015专题五:函数与导数(含近年高考试题)编辑整理:尊敬的读者朋友们:这里是精品文档编辑中心,本文档内容是由我和我的同事精心编辑整理后发布的,发布之前我们对文中内容进行仔细校对,但是难免会有疏漏的地方,但是任然希望((完整)2015专题五:函数与导数(含近年高考试题))的内容能够给您的工作和学习带来便利。
同时也真诚的希望收到您的建议和反馈,这将是我们进步的源泉,前进的动力。
本文可编辑可修改,如果觉得对您有帮助请收藏以便随时查阅,最后祝您生活愉快业绩进步,以下为(完整)2015专题五:函数与导数(含近年高考试题)的全部内容。
2015专题五:函数与导数在解题中常用的有关结论(需要熟记):考点一:导数几何意义:角度一求切线方程1.(2014·洛阳统考)已知函数f(x)=3x+cos 2x+sin 2x,a=f′错误!,f′(x)是f(x)的导函数,则过曲线y=x3上一点P(a,b)的切线方程为( )A.3x-y-2=0B.4x-3y+1=0C.3x-y-2=0或3x-4y+1=0D.3x-y-2=0或4x-3y+1=0解析:选A 由f(x)=3x+cos 2x+sin 2x得f′(x)=3-2sin 2x+2cos 2x,则a =f′错误!=3-2sin错误!+2cos错误!=1。
由y=x3得y′=3x2,过曲线y=x3上一点P(a,b)的切线的斜率k=3a2=3×12=3。
又b=a3,则b=1,所以切点P的坐标为(1,1),故过曲线y =x3上的点P的切线方程为y-1=3(x-1),即3x-y-2=0.角度二求切点坐标2.(2013·辽宁五校第二次联考)曲线y=3ln x+x+2在点P0处的切线方程为4x-y-1=0,则点P0的坐标是( )A.(0,1)B.(1,-1)C.(1,3)D.(1,0)解析:选C 由题意知y′=错误!+1=4,解得x=1,此时4×1-y-1=0,解得y=3,∴点P0的坐标是(1,3).角度三求参数的值3.已知f(x)=ln x,g(x)=错误!x2+mx+错误!(m<0),直线l与函数f(x),g(x)的图像都相切,且与f(x)图像的切点为(1,f(1)),则m等于( )A.-1 B.-3C.-4 D.-2解析:选D ∵f′(x)=错误!,∴直线l的斜率为k=f′(1)=1,又f(1)=0,∴切线l的方程为y=x-1.g′(x)=x+m,设直线l与g(x)的图像的切点为(x,y0),则有x0+m=1,y0=x0-1,y0=12x2+mx0+错误!,m〈0,于是解得m=-2,故选D。
2015年高考数学(文)总复习精品课件:专题一 函数、导数与不等式

解:(1)方法一,对函数 f(x)求导, 得 f′(x)=43·x12-+x122. 令 f′(x)=0,得 x=1 或 x=-1. 当 x∈(0,1)时,f′(x)>0,f(x)在(0,1)上单调递增; 当 x∈(1,2)时,f′(x)<0,f(x)在(1,2)上单调递减. 又 f(0)=0,f(1)=23,f(2)=185, ∴当 x∈[0,2]时,f(x)的值域是0,23.
②当 a>0 时,g′(x)=a(x- a)(x+ a). 令 g′(x)=0,得 x= a或 x=- a(舍去). ⅰ)当 x∈[0,2],0< a<2 时,列表:
ห้องสมุดไป่ตู้
x
0 (0, a)
a
( a,2)
2
g′(x)
-
0
+
g(x) 0
-23a2 a
83a-2a2
∵g(0)=0,g( a)<0, 又∵0,23⊆A,
因此,f(x)在区间[1,e]上的最小值为 f(e)=12e2-a. 综上所述,当 0<a≤1 时,f(x)min=12; 当 1<a<e2 时,f(x)min=12a(1-lna); 当 a≥e2 时,f(x)min=12e2-a.
(3)由(2)可知当0<a≤1 或 a≥e2 时,f(x)在(1,e)上是单调递 增或递减函数,不可能存在两个零点.
∴g(2)=83a-2a2≥23. 解得13≤a≤1. ⅱ)当 x∈(0,2), a≥2 时,即 a≥4,g′(x)<0, ∴函数在(0,2)上单调递减. ∵g(0)=0,g(2)=83a-2a2<0, ∴当 a≥4 时,不满足0,23⊆A. 综上所述,实数 a 的取值范围是13,1.
【方法与技巧】函数与方程是高考的重要题型之一,一方 面可以数形结合,考查方程根的分布如 2007 年广东试题;另 一方面可以与导数相结合,考查方程解的情况.如本题:若对任 意 x1∈[0,2],总存在x2∈[0,2],使 fx1=gx2的本质就是函 数 fx的值域是函数 gx值域的子集.
2015高考数学(文)质量检测 函数、导数及其应用 (北师大版)

2015高考数学(文)质量检测 函数、导数及其应用(时间:120分钟 满分:150分)一、选择题(本大题共12小题,每小题5分,共60分.在每小题给出的四个选项中,只有一项是符合题目要求的)1.(2014·日照模拟)已知函数f (x )在定义域(0,+∞)上是单调函数,若对于任意x∈(0,+∞),都有f ⎝ ⎛⎭⎪⎫fx -1x =2,则f ⎝ ⎛⎭⎪⎫15的值是( ) A. 5 B. 6 C. 7D. 8解析:因为f (x )是定义在(0,+∞)上的单调函数,且f ⎝ ⎛⎭⎪⎫f x -1x =2对任意x ∈(0,+∞)都成立,所以f (x )-1x =c >0(c 为常数),即f (x )=c +1x,且f (c )=2,故2=c +1c ,解得c =1,故f (x )=1+1x ,所以f ⎝ ⎛⎭⎪⎫15=1+5=6. 答案:B 2.若f (x )=2lg (1-x ),则f (x )的定义域是( )A .(1,+∞)B .(0,1)∪(1,+∞)C .(-∞,-1)∪(-1,0)D .(-∞,0)∪(0,1)解析:要使函数有意义,则⎩⎨⎧1-x >0,1-x ≠1,解得x <1且x ≠0,故函数定义域是(-∞,0)∪(0,1).答案:D 3.若⎝ ⎛⎭⎪⎫2x +1x d x =3+ln 2(a >1),则实数a =( )A .2B .3C .4D .6解析:⎝ ⎛⎭⎪⎫2x +1x d x =(x 2+ln x ) =a 2+ln a -1=3+ln 2,又a >1,所以a =2.答案:A4.(2014·江西模拟)已知偶函数f (x )在区间[0,+∞)上单调递增,则满足f (2x -1)<f (13)的x 的取值范围是( )A. ⎝ ⎛⎭⎪⎫13,23B. ⎣⎢⎡⎭⎪⎫13,23C. ⎝ ⎛⎭⎪⎫12,23 D. ⎣⎢⎡⎭⎪⎫12,23 解析:由f (2x -1)<f (13),得f (|2x -1|)<f (13),∵f (x )在[0,+∞)上单调递增,∴|2x -1|<13,即-13<2x -1<13,解得13<x <23,故选A.答案:A5.已知a >b ,函数f (x )=(x -a )(x -b )的图象如下图所示,则函数g (x )=log a (x +b )的图象可能为( )解析:由图知a >1,排除A ,D ;又0<b <1,排除C ,故选B. 答案:B6.函数f (x )=x 2+(1-a 2)x -ax 是奇函数,且在(0,+∞)上单调递增,则实数a =( )A .0B .-1C .1D .±1解析:解法一:由函数f (x )是奇函数,得f (-x )=(-x )2+(1-a 2)(-x )-a -x =-f (x )=-x 2+(1-a 2)x -a x 对一切实数R 恒成立,即x 2-(1-a 2)x -a-x =x 2+(1-a 2)x -a-x 对一切实数R 恒成立,所以-(1-a 2)x =(1-a 2)x 对一切实数R恒成立,故1-a 2=0,解得a =±1.当a =-1时,f (x )=x 2+1x =x +1x 不满足在(0,+∞)上单调递增;当a =1时,f (x )=x 2-1x =x -1x 满足在(0,+∞)上单调递增.综上,a =1.解法二:f (x )=x -ax +(1-a 2),若函数f (x )是奇函数,则1-a 2=0,解得a =±1.当a =-1时,f (x )=x 2+1x =x +1x 不满足在(0,+∞)上单调递增;当a =1时,f (x )=x 2-1x =x -1x 满足在(0,+∞)上单调递增.综上,a =1.答案:C7.若x ∈(e -1,1),a =ln x ,b =⎝ ⎛⎭⎪⎫12ln x ,c =e ln x ,则( )A .c >b >aB .b >a >cC .a >b >cD .b >c >a解析:因为x ∈(e -1,1),所以-1<a <0,1<b <2,1e <c <1,故b >c >a .答案:D8.(2013年武汉调研测试)某汽车销售公司在A 、B 两地销售同一种品牌的车,在A 地的销售利润(单位:万元)为y 1=4.1x -0.1x 2,在B 地的销售利润(单位:万元)为y 2=2x ,其中x 为销售量(单位:辆),若该公司在两地共销售16辆这种品牌车,则能获得的最大利润是( )A .10.5万元B .11万元C .43万元D .43.025万元解析:依题意,设在A 地销售x 辆汽车,则在B 地销售(16-x )辆汽车, ∴总利润y =4.1x -0.1x 2+2(16-x )=-0.1x 2+2.1x +32=-0.1⎝ ⎛⎭⎪⎫x -2122+0.1×2124+32,∵x ∈[0,16]且x ∈N ,∴当x =10辆或11辆时,总利润y max =43万元,故选C.答案:C9.若函数f (x )=x 2-2bx +3a 在区间(0,1)内有极小值,则实数b 的取值范围是( )A .b <1B .b >1C .0<b <1D .b <12解析:f (x )在(0,1)内有极小值,则f ′(x )=2x -2b =0在(0,1)内有解.∴b ∈(0,1).答案:C10.已知函数f (x )=⎝ ⎛⎭⎪⎫12x -sin x ,则f (x )在[0,2π]上的零点个数为A .1B .2C .3D .4解析:画出y =sin x 和y =⎝ ⎛⎭⎪⎫12x 在同一坐标系下[0,2π)区间内的图象,可知有两个交点,故选B.答案:B11.设函数f (x )定义在实数集上,f (2-x )=f (x ),且当x ≥1时,f (x )=ln x ,则有( )A .f ⎝ ⎛⎭⎪⎫13<f (2)<f ⎝ ⎛⎭⎪⎫12B .f ⎝ ⎛⎭⎪⎫12<f (2)<f ⎝ ⎛⎭⎪⎫13C .f ⎝ ⎛⎭⎪⎫12<f ⎝ ⎛⎭⎪⎫13<f (2)D .f (2)<f ⎝ ⎛⎭⎪⎫12<f ⎝ ⎛⎭⎪⎫13解析:由f (2-x )=f (x )得f (1-x )=f (x +1),即函数f (x )的对称轴为x =1,结合图形可知f ⎝ ⎛⎭⎪⎫12<f ⎝ ⎛⎭⎪⎫13<f (0)=f (2),故选C.答案:C12.(2013年福建六校联考)设函数F (x )=f (x )e x 是定义在R 上的函数,其中f (x )的导函数f ′(x )满足f ′(x )<f (x )对于x ∈R 恒成立,则( )A .f (2)>e 2f (0),f (2 012)>e 2 012f (0)B .f (2)<e 2f (0),f (2 012)<e 2 012f (0)C .f (2)<e 2f (0),f (2 012)>e 2 012f (0)D .f (2)>e 2f (0),f (2 012)<e 2 012f (0)解析:解法一 令f (x )=|x |+2,所以f (2)=4,f (0)=2,f (2 012)=2 014,所以f (2)<e 2f (0),f (2 012)<e 2 012f (0).解法二 因为f ′(x )<f (x ),所以f ′(x )e x <f (x )e x ,即f ′(x )·e x <f (x )·e x ,F ′(x )=f ′(x )·e x -f (x )·e xe 2x<0,所以F (x )=f (x )e x 在R 上为减函数,所以f (2 012)e 2 012<f (2)e 2<f (0)e 0,所以选择B. 答案:B二、填空题(本大题共4小题,每小题5分,共20分.将答案填在题中的横线上)13.函数y =log 12(3x -a )的定义域是⎝ ⎛⎭⎪⎫23,+∞,则a =______.解析:由3x -a >0得x >a 3.因此,函数y =log 12(3x -a )的定义域是⎝ ⎛⎭⎪⎫a 3,+∞,所以a 3=23,a =2.答案:214.(2013年福建六校联考)已知奇函数f (x )满足f (x +2)=-f (x ),且当x ∈(0,1)时,f (x )=2x,则f ⎝ ⎛⎭⎪⎫72的值为________.解析:因为f (x +2)=-f (x ),所以f (x )的周期为4,所以f ⎝ ⎛⎭⎪⎫72=f ⎝ ⎛⎭⎪⎫-12=-f ⎝ ⎛⎭⎪⎫12=- 2.答案:- 215.函数y =4x -1+23-x 单调递减区间为________.解析:易知x ∈⎣⎢⎡⎦⎥⎤14,3,y >0.∵y 与y 2有相同的单调区间,而y 2=11+4-4x 2+13x -3,∴原函数递减区间为⎣⎢⎡⎦⎥⎤138,3.答案:⎣⎢⎡⎦⎥⎤138,316.若函数f (x )=⎩⎨⎧ax +1, x ≥1,x 2-1x 3-1,x <1在点x =1处连续,则实数a =________.解析:x 2-1x 3-1=x +1x 2+x +1,则有f (1)=a +1=1+11+1+1,因此a =-13.答案:-13三、解答题(本大题共6小题,共70分,17题10分,18~22题,每题12分.解答应写出文字说明,证明过程或演算步骤.)17.函数f (x )=x 3+ax 2+bx +c ,曲线y =f (x )上点P (1,f (1))处的切线方程为y =3x +1.(1)若y =f (x )在x =-2时有极值,求函数y =f (x )的解析式; (2)求函数y =f (x )在区间[-3,1]上的最大值.解:(1)由f (x )=x 3+ax 2+bx +c 求导数,得f ′(x )=3x 2+2ax +b ,过y =f (x )上点P (1,f (1))的切线方程为:y -f (1)=f ′(1)(x -1),即y -(a +b +c +1)=(3+2a +b )(x -1).而过y =f (x )上P (1,f (1))的切线方程为y =3x +1,故⎩⎨⎧ 3+2a +b =3,a +b +c -2=1,即⎩⎨⎧2a +b =0, ①a +b +c =3. ② ∵y =f (x )在x =-2时有极值,故f ′(-2)=0, ∴-4a +b =-12. ③由①②③联立,解得a =2,b =-4,c =5, ∴f (x )=x 3+2x 2-4x +5.(2)f ′(x )=3x 2+2ax +b =3x 2+4x -4=(3x -2)(x +2).f (x )极大值f (1)=13+2×1-4×1+5=4,∴f (x )在[-3,1]上最大值为13. 18.已知函数f (x )=a -1|2x -b |是偶函数,a 为实常数. (1)求b 的值;(2)当a =1时,是否存在n >m >0,使得函数y =f (x )在区间[m ,n ]上的函数值组成的集合也是[m ,n ],若存在,求出m ,n 的值,否则,说明理由.解:(1)f (x )的定义域为⎩⎨⎧⎭⎬⎫x |x ≠b 2. ∵f (x )是偶函数,其定义域关于原点对称, ∴b =0.(2)a =1时,f (x )=1-12|x |, x >0时,f (x )=1-12x ,∵f (x )=1-12x 在[m ,n ](m >0)上是增函数, ∴f (x )在[m ,n ]上的值域为⎣⎢⎡⎦⎥⎤1-12m ,1-12n .又f (x )在[m ,n ]上的值域为[m ,n ],∴⎩⎪⎨⎪⎧1-12m =m ,1-12n =n ,即⎩⎨⎧2m 2-2m +1=0,2n 2-2n +1=0. ∴m ,n 为方程2x 2-2x +1=0的两正根,而方程2x 2-2x +1=0无实数根, ∴满足条件的m ,n 不存在.19.(2012年北京海淀期末)已知函数f (x )=e x (x 2+ax -a ),其中a 是常数. (1)当a =1时,求曲线y =f (x )在点(1,f (1))处的切线方程;(2)若存在实数k ,使得关于x 的方程f (x )=k 在[0,+∞)上有两个不相等的实数根,求k 的取值范围.解:(1)由f (x )=e x (x 2+ax -a )可得f ′(x )=e x [x 2+(a +2)x ].当a =1时,f (1)=e ,f ′(1)=4e ,所以曲线y =f (x )在点(1,f (1))处的切线方程为y -e =4e(x -1),即y =4e x -3e.(2)令f ′(x )=e x [x 2+(a +2)x ]=0,解得x =-(a +2)或x =0.当-(a +2)≤0即a ≥-2时,在区间[0,+∞)上,f ′(x )≥0,所以f (x )是[0,+∞)上的增函数,所以方程f (x )=k 在[0,+∞)上不可能有两个不相等的实数根;当-(a +2)>0,即a <-2时,f ′(x ),f (x )随x 的变化情况如下:由上表可知函数f (x )在[0,+∞)上的极小值为f (-(a +2))=ea +2.因为函数f (x )在(0,-(a +2))上是减函数,在(-(a +2),+∞)上是增函数,且当x ≥-a 时,有f (x )≥e -a (-a )>-a ,所以要使方程f (x )=k 在[0,+∞)上有两个不相等的实数根,k 的取值范围必须是⎝ ⎛⎦⎥⎤a +4e a +2,-a .20.定义在D 上的函数f (x ),如果满足:对于任意x ∈D ,存在常数M >0,都有|f (x )|≤M 成立,则称f (x )是D 上的有界函数,其中M 称为函数f (x )的上界.已知函数f (x )=1+a ·⎝ ⎛⎭⎪⎫12x +⎝ ⎛⎭⎪⎫14x; (1)当a =1时,求函数f (x )在(-∞,0)上的值域,并判断函数f (x )在(-∞,0)上是否为有界函数,请说明理由;(2)若函数f (x )在[0,+∞)上是以3为上界的有界函数,求实数a 的取值范围. 解:(1)a =1时,f (x )=1+⎝ ⎛⎭⎪⎫12x +⎝ ⎛⎭⎪⎫14x ,x ∈(-∞,0).令t =⎝ ⎛⎭⎪⎫12x ,则t ∈(1,+∞).∵g (t )=1+t +t 2在(1,+∞)上为增函数, ∴g (t )>g (1)=3.∴f (x )在(-∞,0)上的值域为(3,+∞),故对于任意x ∈(-∞,0),不存在常数M >0,都有|f (x )|≤M 成立,即函数f (x )在(-∞,0)上不是有界函数.(2)若f (x )在[0,+∞)上是以3为上界的有界函数,则|f (x )|≤3在[0,+∞)上恒成立,令t =⎝ ⎛⎭⎪⎫12x ,则t ∈(0,1].∴|1+at +t 2|≤3,即-4≤at +t 2≤2在(0,1]上恒成立, ∴-⎝ ⎛⎭⎪⎫t +4t ≤a ≤2t -t 在(0,1]上恒成立.又0<t ≤1时,-⎝ ⎛⎭⎪⎫t +4t ≤-5,2t -t ≥1,∴-5≤a ≤1,即a 的取值范围是[-5,1]. 21.已知函数f (x )=12x 2+a ln x ,a ∈R . (1)若a =-1,求函数f (x )的单调递增区间; (2)当x >1时,f (x )>ln x 恒成立,求a 的取值范围. 解:(1)若a =-1,f ′(x )=x -1x (x >0), 由f ′(x )>0得x 2-1x >0,又x >0,解得x >1,所以函数f (x )的单调递增区间为(1,+∞). (2)依题意得f (x )-ln x >0,即12x 2+a ln x -ln x >0, ∴(a -1)ln x >-12x 2,∵x >1,∴ln x >0,∴a -1>-12x 2ln x , ∴a -1>⎝ ⎛⎭⎪⎪⎫-12x 2ln x max ,设g (x )=-12x 2ln x ,g ′(x )=-x ln x +12x(ln x )2,令g ′(x )=0,解得x =e 12,当1<x <e 12时,g ′(x )>0,g (x )在⎝ ⎛⎭⎪⎫1,e 12上单调递增;当x >e 12时,g ′(x )<0,g (x )在⎝ ⎛⎭⎪⎫e 12,+∞上单调递减;∴g (x )max =g ⎝ ⎛⎭⎪⎫e 12=-e ,∴a -1>-e ,即a >1-e.22.已知a ∈R ,函数f (x )=ln (x +1)-x 2+ax +2.(1)若函数f (x )在[1,+∞)上为减函数,求实数a 的取值范围;(2)令a =-1,b ∈R ,已知函数g (x )=b +2bx -x 2.若对任意x 1∈(-1,+∞),总存在x 2∈[-1,+∞),使得f (x 1)=g (x 2)成立,求实数b 的取值范围.解:(1)函数f (x )在[1,+∞)上为减函数⇒f ′(x )=1x +1-2x +a ≤0在[1,+∞)上恒成立⇒a ≤2x -1x +1在[1,+∞)上恒成立, 令h (x )=2x -1x +1,由h ′(x )>0⇒h (x )在[1,+∞)上为增函数⇒h (x )min =h (1)=32,所以a ≤32; (2)若对任意x 1∈(-1,+∞),总存在x 2∈[-1,+∞),使得f (x 1)=g (x 2)成立,则函数f (x )在(-1,+∞)上的值域是函数g (x )在[-1,+∞)上的值域的子集.对于函数f (x ),因为a =-1,所以f (x )=ln (x +1)-x 2-x +2,定义域(-1,+∞).f ′(x )=1x +1-2x -1=-2x 2-3x x +1.第 11 页 共 11 页 令f ′(x )=0得x 3=0,x 4=-32(舍去).当x 变化时,f (x )与f ′(x )的变化情况如下表:所以f (x )max 对于函数g (x )=-x 2+2bx +b =-(x -b )2+b +b 2,①当b ≤-1时,g (x )的最大值为g (-1)=-1-b ⇒g (x )值域为(-∞,-1-b ],由-1-b ≥2⇒b ≤-3;②当b >-1时,g (x )的最大值为g (b )=b 2+b ⇒g (x )值域为(-∞,b 2+b ]; 由b 2+b ≥2⇒b ≥1或b ≤-2(舍去),综上所述,b 的取值范围是(-∞,-3]∪[1,+∞).。
全国卷历年高考函数与导数真题归类分析(含答案)

全国卷历年高考函数与导数真题归类分析(含答案)全国卷历年高考函数与导数真题归类分析(含答案)(2015年-2018年共11套)函数与导数小题(共23小题)一、函数奇偶性与周期性1.(2015年1卷13)若函数$f(x)=x\ln(x+a+x^2)$为偶函数,则$a=$解析】由题知$y=\ln(x+a+x^2)$是奇函数,所以$\ln(x+a+x^2)+\ln(-x+a+x^2)=\ln(a+x-x)=\ln a$,解得$a=1$。
考点:函数的奇偶性。
2.(2018年2卷11)已知$$f(x)=\begin{cases}\frac{x+1}{x},x<0\\ax^2,x\geq0\end{cases}$$ 是定义域为$(-\infty,0)\cup[0,+\infty)$的奇函数,满足$f(\frac{1}{2})=1$。
若,$f'(-1)=-2$,则$a=$解:因为$f(x)$是奇函数,所以$f(-\frac{1}{2})=-1$,$f(0)=0$。
又因为$f'(-1)=-2$,所以$f'(-x)|_{x=1}=2$,$f'(0+)=0$,$f'(0-)=0$。
由此可得$$\begin{aligned}a&=\lim\limits_{x\to 0^+}\frac{f(x)-f(0)}{x-0}\\&=\lim\limits_{x\to 0^+}\frac{ax^2}{x}\\&=\lim\limits_{x\to0^+}ax\\&=\lim\limits_{x\to 0^-}ax\\&=-\frac{1}{2}\end{aligned}$$ 故选B。
3.(2016年2卷12)已知函数$f(x)(x\in R)$满足$f(-x)=2-f(x)$,若函数$y=\sum\limits_{i=1}^m(x_i+y_i)$的图像的交点为$(x_1,y_1),(x_2,y_2),\cdots,(x_m,y_m)$,则$\sum\limits_{i=1}^m(x_i+y_i)=( )$解析】由$f(x)$的奇偶性可得$f(0)=1$,又因为$f(x)$是偶函数,所以$f'(0)=0$。
全国卷历年高考函数与导数真题归类分析(含答案)

全国卷历年高考函数与导数真题归类分析(含答案)(2015年-2018年共11套) 函数与导数小题(共23小题)一、函数奇偶性与周期性1.(2015年1卷13)若函数f (x )=2ln()x x a x ++为偶函数,则a=【解析】由题知2ln()y x a x =++是奇函数,所以22ln()ln()x a x x a x +++-++ =22ln()ln 0a x x a +-==,解得a =1.考点:函数的奇偶性2.(2018年2卷11)已知是定义域为的奇函数,满足.若,则A.B. 0C. 2D. 50解:因为是定义域为的奇函数,且,所以,因此,因为,所以,,从而,选C.3.(2016年2卷12)已知函数()()R f x x ∈满足()()2f x f x -=-,若函数1x y x+=与()y f x =图像的交点为()11x y ,,()22x y ,,⋯,()m m x y ,,则()1mi i i x y =+=∑( )(A )0 (B )m (C )2m (D )4m【解析】由()()2f x f x =-得()f x 关于()01,对称,而111x y x x+==+也关于()01,对称,∴对于每一组对称点'0i i x x += '=2i i y y +,∴()111022mmmi i i i i i i mx y x y m ===+=+=+⋅=∑∑∑,故选B .二、函数、方程与不等式4.(2015年2卷5)设函数211log (2),1,()2,1,x x x f x x -+-<⎧=⎨≥⎩,2(2)(log 12)f f -+=( ) (A )3 (B )6 (C )9 (D )12【解析】由已知得2(2)1log 43f -=+=,又2log 121>, 所以22log 121log 62(log 12)226f -===,故,2(2)(log 12)9f f -+=.5.(2018年1卷9)已知函数.若g (x )存在2个零点,则a 的取值范围是A. [–1,0)B. [0,+∞)C. [–1,+∞)D. [1,+∞) 解:画出函数的图像,在y 轴右侧的去掉,画出直线,之后上下移动,可以发现当直线过点A 时,直线与函数图像有两个交点,并且向下可以无限移动,都可以保证直线与函数的图像有两个交点,即方程有两个解,也就是函数有两个零点,此时满足,即,故选C.6.(2017年3卷15)设函数1,0,()2,0,+⎧=⎨>⎩xx x f x x ≤则满足1()()12f x f x +->的x 的取值范围是________.【解析】()1,02 ,0+⎧=⎨>⎩x x x f x x ≤,()112f x f x ⎛⎫+-> ⎪⎝⎭,即()112f x f x ⎛⎫->- ⎪⎝⎭由图象变换可画出12y f x ⎛⎫=- ⎪⎝⎭与()1y f x =-的图象如下:12-1211(,)44-1()2y f x =-1()y f x =-yx由图可知,满足()112f x f x ⎛⎫->- ⎪⎝⎭的解为1,4⎛⎫-+∞ ⎪⎝⎭.7.(2017年3卷11)已知函数211()2(e e )x x f x x x a --+=-++有唯一零点,则a =()A .1-2B .13C .12D .1【解析】由条件,211()2(e e )x x f x x x a --+=-++,得:221(2)1211211(2)(2)2(2)(e e )4442(e e )2(e e )x x x x x x f x x x a x x x a x x a ----+----+-=---++=-+-+++=-++∴(2)()f x f x -=,即1x =为()f x 的对称轴,由题意,()f x 有唯一零点,∴()f x 的零点只能为1x =,即21111(1)121(e e )0f a --+=-⋅++=,解得12a =.三、函数单调性与最值8.(2017年1卷5)函数()f x 在(,)-∞+∞单调递减,且为奇函数.若(11)f =-,则满足21()1x f --≤≤的x 的取值范围是 A .[2,2]- B .[1,1]- C .[0,4] D .[1,3] 【解析】:()()()()12112112113f x f f x f x x -≤-≤⇒≤-≤-⇒-≤-≤⇒≤≤故而选D 。
2015高考数学第二轮复习专题讲解 函数导数 (含试题及答案)

此时 f (x) 在 (−∞,
− − − − − − 2 −a − √a − 3 ( 3 ,
上单调递增,在
− − − − − − 2 −a + √a − 3 , +∞) 3
− − − − − − 2 −a + √a − 3 ) 3
上单调递减,在 (
上单调递
增. II. 设函数 f (x) 在区间 (−
x (x) = − 1 + x
′
.
所以,在区间 (−1, 0) 上,f (x) > 0 ;在区间 (0, +∞) 上,f ′ (x) < 0 . 故 f (x) 的单调递增区间是 (−1, 0) ,单调递减区间是 (0, +∞) . 当 k > 0 时,令 f ′ (x) = 0 得
1 − k x 1 = 0, x 2 = > −1. k
k f (x) = ln (1 + x) − x + 2 x
2
2
(k ⩾ 0)
,求
f ( x)
的单调区间.
解 :由题意
′
x (kx + k − 1) (x) = , x ∈ (−1, +∞) .
f
′
x (kx + k − 1) (x) = 1 + x , x ∈ (−1, +∞) .
当
k = 0
时,f ′
(1, +∞) 2 x − 1
,函数 f (x) 在 (−∞, 1) 上单调递减,在
上单调递减.
2. 已知函数 f (x) = x3 + ax2 + x + 1 ,a ∈ R .
I. 讨论函数 f (x) 的单调区间;
2015年高考文科数学试题分类解析之函数.doc

第三章 导数试题部分1.【2015高考福建,文12】“对任意(0,)2x π∈,sin cos k x x x <”是“1k <”的( )A .充分必要条件B .必要充分条件C . 充分必要条件D .既不充分也不必要条件2.【2015高考湖南,文8】设函数()ln(1)ln(1)f x x x =+--,则()f x 是( ) A 、奇函数,且在(0,1)上是增函数 B 、奇函数,且在(0,1)上是减函数C 、偶函数,且在(0,1)上是增函数D 、偶函数,且在(0,1)上是减函数3.【2015高考北京,文8】某辆汽车每次加油都把油箱加满,下表记录了该车相邻两次加油时的情况.注:“累计里程“指汽车从出厂开始累计行驶的路程在这段时间内,该车每100千米平均耗油量为( )A .6升B .8升C .10升D .12升 4.【2015高考新课标1,文14】已知函数()31f x ax x =++的图像在点()()1,1f 的处的切线过点()2,7,则 a = .5.【2015高考天津,文11】已知函数()()ln ,0,f x ax x x =∈+∞ ,其中a 为实数,()f x '为()f x 的导函数,若()13f '= ,则a 的值为 . 7.【2015高考安徽,文21】已知函数)0,0()()(2>>+=r a r x axx f (Ⅰ)求)(x f 的定义域,并讨论)(x f 的单调性;(Ⅱ)若400=ra,求)(x f 在),0(+∞内的极值. 8.【2015高考北京,文19】(本小题满分13分)设函数()2ln 2x f x k x =-,0k >.(I )求()f x 的单调区间和极值;(II )证明:若()f x 存在零点,则()f x 在区间(上仅有一个零点.9.【2015高考福建,文22】已知函数2(1)()ln 2x f x x -=-.(Ⅰ)求函数()f x 的单调递增区间; (Ⅱ)证明:当1x >时,()1f x x <-;(Ⅲ)确定实数k 的所有可能取值,使得存在01x >,当0(1,)x x ∈时,恒有()()1f x k x >-.10.【2015高考广东,文21】(本小题满分14分)设a 为实数,函数()()()21f x x a x a a a =-+---.(1)若()01f ≤,求a 的取值范围; (2)讨论()f x 的单调性;(3)当2a ≥时,讨论()4f x x+在区间()0,+∞内的零点个数. 11.【2015高考湖北,文21】设函数()f x ,()g x 的定义域均为R ,且()f x 是奇函数,()g x 是偶函数,()()e x f x g x +=,其中e 为自然对数的底数.(Ⅰ)求()f x ,()g x 的解析式,并证明:当0x >时,()0f x >,()1g x >; (Ⅱ)设0a ≤,1b ≥,证明:当0x >时,()()(1)()(1)f x ag x a bg x b x+-<<+-. 12.【2015高考山东,文20】设函数. 已知曲线在点(1,(1))f 处的切线与直线平行.(Ⅰ)求a 的值;(Ⅱ)是否存在自然数k ,使得方程()()f x g x =在(,1)k k +内存在唯一的根?如果存在,求出k ;如果不存在,请说明理由;(Ⅲ)设函数()min{(),()}m x f x g x =({},min p q 表示,,p q 中的较小值),求()m x 的最大值.13.【2015高考四川,文21】已知函数f (x )=-2lnx +x 2-2ax +a 2,其中a >0. (Ⅰ)设g (x )为f (x )的导函数,讨论g (x )的单调性;(Ⅱ)证明:存在a ∈(0,1),使得f (x )≥0恒成立,且f (x )=0在区间(1,+∞)内有唯一解.14.【2015高考天津,文20】(本小题满分14分)已知函数4()4,,f x x x x R =-? (I )求()f x 的单调区间;(II )设曲线()y f x =与x 轴正半轴的交点为P ,曲线在点P 处的切线方程为()y g x =,求证:对于任意的正实数x ,都有()()f x g x £;(III )若方程()=()f x a a 为实数有两个正实数根12x x ,,且12x x <,求证:1321-43a x x <-+.15.【2015高考新课标1,文21】(本小题满分12分)设函数()2ln x f x e a x =-. (I )讨论()f x 的导函数()f x '的零点的个数;(II )证明:当0a >时()22ln f x a a a≥+.16.【2015高考浙江,文20】(本题满分15分)设函数2(),(,)f x x ax b a b R =++∈.(1)当214a b =+时,求函数()f x 在[1,1]-上的最小值()g a 的表达式;(2)已知函数()f x 在[1,1]-上存在零点,021b a ≤-≤,求b 的取值范围.17.【2015高考重庆,文19】已知函数32()f x ax x =+(a R ∈)在x=43-处取得极值.(Ⅰ)确定a 的值,(Ⅱ)若()()x g x f x e =,讨论的单调性参考答案1.【2015高考福建,文12】“对任意(0,)2x π∈,sin cos k x x x <”是“1k <”的( )A .充分不必要条件B .必要不充分条件C . 充分必要条件D .既不充分也不必要条件1.【答案】B 当1k <时,sin cos sin 22k k x x x =,构造函数()sin 22kf x x x =-,则'()cos 210f x k x =-<.故()f x 在(0,)2x π∈单调递增,故()()022f x f ππ<=-<,则sin cos k x x x <; 当1k =时,不等式sin cos k x x x <等价于1sin 22x x <,构造函数1()sin 22g x x x =-,则'()cos 210g x x =-<,故()g x 在(0,)2x π∈递增,故()()022g x g ππ<=-<,则sin cos x x x <.综上所述,“对任意(0,)2x π∈,sin cos k x x x <”是“1k <”的必要不充分条件,选B .2.【答案】A 函数()ln(1)ln(1)f x x x =+--,函数的定义域为(-1,1),函数()ln(1)ln(1)()f x x x f x -=--+=-所以函数是奇函数.()2111'111f x x x x=+=+-- ,在(0,1)上()'0f x > ,所以()f x 在(0,1)上单调递增,故选A.3.【答案】B 因为第一次邮箱加满,所以第二次的加油量即为该段时间内的耗油量,故耗油量48V =升. 而这段时间内行驶的里程数3560035000600S =-=千米. 所以这段时间内,该车每100千米平均耗油量为481008600⨯=升,故选B . 4.【答案】1 ∵2()31f x ax '=+,∴(1)31f a '=+,即切线斜率31k a =+, 又∵(1)2f a =+,∴切点为(1,2a +),∵切线过(2,7),∴273112a a +-=+-,解得a =1.5.【答案】3 因为()()1ln f x a x '=+ ,所以()13f a '==.6.【2015高考陕西,文15】函数x y xe =在其极值点处的切线方程为____________.6.【答案】1y e =- ()()(1)x x y f x xe f x x e '==⇒=+,令()01f x x '=⇒=-,此时1(1)f e-=-函数x y xe =在其极值点处的切线方程为1y e=-7.【答案】(Ⅰ)递增区间是(-r ,r );递减区间为(-∞,-r )和(r ,+∞);(Ⅱ)极大值为100;无极小值.【解析】(Ⅰ)由题意可知r x -≠ 所求的定义域为()()r r -∞--+∞,,. 2222)()(rxr x axr x ax x f ++=+=, 422222)())(()2()22()2()(r x r x x r a r xr x r x ax r xr x a x f ++-=+++-++=' 所以当r x -<或r x >时,0)(<'x f ,当r x r <<-时,0)(>'x f因此,)(x f 单调递减区间为),(),,(+∞--∞r r ;)(x f 的单调递增区间为(),r r -. (Ⅱ)由(Ⅰ)的解答可知0)('=r f )(x f 在()r ,0上单调递增,在()+∞,r 上单调递减.因此r x =是)(x f 的极大值点,所以)(x f 在),0(+∞内的极大值为()100440042)(2====r a r ar r f ,)在(+∞,0)(x f 内无极小值; 综上,)在(+∞,0)(x f 内极大值为100,无极小值.8.【答案】(I )单调递减区间是,单调递增区间是)+∞;极小值(1ln )2k k f -=;(II )证明详见解析.2'()k x kf x x x x-=-=. 由'()0f x =解得x =.()f x 与'()f x 在区间(0,)+∞上的情况如下:所以,()f x 的单调递减区间是,单调递增区间是)+∞;()f x 在x =(1ln )2k k f -=.(Ⅱ)由(Ⅰ)知,()f x 在区间(0,)+∞上的最小值为(1ln )2k k f -=. 因为()f x 存在零点,所以(1ln )02k k -≤,从而k e ≥.当k e =时,()f x 在区间上单调递减,且0f =,所以x =是()f x 在区间上的唯一零点.当k e >时,()f x 在区间上单调递减,且1(1)02f =>,02e kf -=<,所以()f x 在区间上仅有一个零点.综上可知,若()f x 存在零点,则()f x 在区间上仅有一个零点.9.【答案】(Ⅰ) ⎛ ⎝;(Ⅱ)详见解析;(Ⅲ)(),1-∞. 【解析】(I )()2111x x f x x x x-++'=-+=,()0,x ∈+∞.由()0f x '>得2010x x x >⎧⎨-++>⎩解得0x <<故()f x 的单调递增区间是⎛ ⎝.(II )令()()()F 1x f x x =--,()0,x ∈+∞.则有()21F x x x -'=.当()1,x ∈+∞时,()F 0x '<,所以()F x 在[)1,+∞上单调递减,故当1x >时,()()F F 10x <=,即当1x >时,()1f x x <-. (III )由(II )知,当1k =时,不存在01x >满足题意.当1k >时,对于1x >,有()()11f x x k x <-<-,则()()1f x k x <-,从而不存在01x >满足题意.当1k <时,令()()()G 1x f x k x =--,()0,x ∈+∞,则有()()2111G 1x k x x x k x x-+-+'=-+-=.由()G 0x '=得,()2110x k x -+-+=.解得10x =<,21x =>.当()21,x x ∈时,()G 0x '>,故()G x 在[)21,x 内单调递增. 从而当()21,x x ∈时,()()G G 10x >=,即()()1f x k x >-, 综上,k 的取值范围是(),1-∞.【名师点睛】利用导数判断或求函数的单调区间,通过不等式'()0f x >或'()0f x <求解,但是要兼顾定义域;利用导数研究函数的单调性,再用单调性来证明不等式是函数、导数、不等式综合中的一个难点,解题技巧是构造辅助函数,把不等式的证明转化为利用导数研究函数的单调性或最值,从而证得不等式,注意()()f x g x >与min max ()()f x g x >不等价,min max ()()f x g x >只是()()f x g x >的特例,但是也可以利用它来证明,在2014年全国Ⅰ卷理科高考21题中,就是使用该种方法证明不等式;导数的强大功能就是通过研究函数极值、最值、单调区间来判断函数大致图象,这是利用研究基本初等函数方法所不具备的,而是其延续.10【答案】(1)1,2⎛⎤-∞ ⎥⎝⎦;(2))(x f 在),(+∞a 上单调递增,在),(a -∞上单调递减;(3)当2=a 时,()4f x x +有一个零点2x =;当2>a 时,()4f x x+有两个零点.【解析】试题分析:(1)先由()01f <可得1≤+a a ,再对a 的取值范围进行讨论可得1≤+a a 的解,进而可得a 的取值范围;(2)先写函数()f x 的解析式,再对a 的取值范围进行讨论确定函数()f x 的单调性;(3)先由(2)得函数()f x 的最小值,再对a 的取值范围进行讨论确定()4f x x+在区间()0,+∞内的零点个数. 试题解析:(1)22(0)f a a a a a a =+-+=+,因为()01f ≤,所以1≤+a a , 当0≤a 时,10≤,显然成立;当0>a ,则有12≤a ,所以21≤a .所以210≤<a . 综上所述,a 的取值范围是1,2⎛⎤-∞ ⎥⎝⎦.(2)()⎪⎩⎪⎨⎧<++-≥--=ax a x a x ax x a x x f ,2)12(,12)(22对于()x a x u 1221--=,其对称轴为a a a x <-=-=21212,开口向上, 所以)(x f 在),(+∞a 上单调递增;对于()a x a x u 21221++-=,其对称轴为a a a x >+=+=21212,开口向上, 所以)(x f 在),(a -∞上单调递减.综上所述,)(x f 在),(+∞a 上单调递增,在),(a -∞上单调递减.(3)由(2)得)(x f 在),(+∞a 上单调递增,在),0(a 上单调递减,所以2min )()(a a a f x f -==. (i)当2=a 时,2)2()(min -==f x f ,⎪⎩⎪⎨⎧<+-≥-=2,452,3)(22x x x x x x x f令()40f x x +=,即xx f 4)(-=(0x >). 因为)(x f 在)2,0(上单调递减,所以2)2()(-=>f x f而x y 4-=在)2,0(上单调递增,2)2(-=<f y ,所以)(x f y =与xy 4-=在)2,0(无交点.当2≥x 时,xx x x f 43)(2-=-=,即04323=+-x x ,所以042223=+--x x x ,所以()0)1(22=+-x x ,因为2≥x ,所以2=x ,即当2=a 时,()4f x x+有一个零点2x =.(ii)当2>a 时,2min )()(a a a f x f -==,当),0(a x ∈时,42)0(>=a f ,2)(a a a f -=,而xy 4-=在),0(a x ∈上单调递增,当a x =时,a y 4-=.下面比较2)(a a a f -=与a4-的大小因为0)2)(2()4()4(2232<++--=---=---aa a a a a a a a a所以aa a a f 4)(2-<-=结合图象不难得当2>a 时,)(x f y =与xy 4-=有两个交点.综上所述,当2=a 时,()4f x x +有一个零点2x =;当2>a 时,()4f x x+有两个零点.11【答案】(Ⅰ)1()(e e )2x x f x -=-,1()(e e )2x x g x -=+.证明:当0x >时,e 1x >,0e 1x -<<,故()0.f x >又由基本不等式,有1()(e e )12x x g x -=+>=,即() 1.g x > (Ⅱ)由(Ⅰ)得2111e 1()(e )(e )(e e )()2e 2e 2x x x x x x x f x g x -''=-=+=+=⑤2111e 1()(e )(e )(e e )()2e 2e 2x x x x x x x g x f x -''=+=-=-=⑥当0x >时,()()(1)f x ag x a x >+-等价于()()(1)f x axg x a x >+- ⑦ ()()(1)f x bg x b x<+-等价于()()(1).f x bxg x b x <+- ⑧于是设函数 ()()()(1)h x f x cxg x c x =---,由⑤⑥,有()()()()(1)h x g x cg x cxf x c '=----(1)[()1]().c g x cxf x =--- 当0x >时,(1)若0c ≤,由③④,得()0h x '>,故()h x 在[0,)+∞上为增函数,从而()(0)0h x h >=,即()()(1)f x cxg x c x >+-,故⑦成立.(2)若1c ≥,由③④,得()0h x '<,故()h x 在[0,)+∞上为减函数,从而()(0)0h x h <=,即()()(1)f x cxg x c x <+-,故⑧成立.综合⑦⑧,得 ()()(1)()(1)f x ag x a bg x b x+-<<+-.12【答案】(I )1a = ;(II) 1k = ;(III) 24e. 【解析】(I )由题意知,曲线在点(1,(1))f 处的切线斜率为2,所以'(1)2f =,又'()ln 1,af x x x=++所以1a =. (II )1k =时,方程()()f x g x =在(1,2)内存在唯一的根.设2()()()(1)ln ,x x h x f x g x x x e =-=+-当(0,1]x ∈时,()0h x <. 又2244(2)3ln 2ln 8110,h e e=-=->-= 所以存在0(1,2)x ∈,使0()0h x =.因为1(2)'()ln 1,x x x h x x x e -=+++所以当(1,2)x ∈时,1'()10h x e>->,当(2,)x ∈+∞时,'()0h x >,所以当(1,)x ∈+∞时,()h x 单调递增.所以1k =时,方程()()f x g x =在(,1)k k +内存在唯一的根.(III )由(II )知,方程()()f x g x =在(1,2)内存在唯一的根0x ,且0(0,)x x ∈时,()()f x g x <,0(,)x x ∈+∞时,()()f x g x >,所以020(1)ln ,(0,](),(,)xx x x x m x x x x e +∈⎧⎪=⎨∈+∞⎪⎩. 当0(0,)x x ∈时,若(0,1],()0;x m x ∈≤若0(1,),x x ∈由1'()ln 10,m x x x=++>可知00()();m x m x <≤故0()().m x m x ≤ 当0(,)x x ∈+∞时,由(2)'(),xx x m x e -=可得0(,2)x x ∈时,'()0,()m x m x >单调递增;(2,)x ∈+∞时,'()0,()m x m x <单调递减;可知24()(2),m x m e≤=且0()(2)m x m <. 综上可得函数()m x 的最大值为24e.13.【解析】(Ⅰ)由已知,函数f (x )的定义域为(0,+∞)g (x )=f '(x )=2(x -1-lnx -a ) 所以g '(x )=2-22(1)x x x-= 当x ∈(0,1)时,g '(x )<0,g (x )单调递减 当x ∈(1,+∞)时,g '(x )>0,g (x )单调递增(Ⅱ)由f '(x )=2(x -1-lnx -a )=0,解得a =x -1-lnx令Φ(x )=-2xlnx +x 2-2x (x -1-lnx )+(x -1-lnx )2=(1+lnx )2-2xlnx 则Φ(1)=1>0,Φ(e )=2(2-e )<0 于是存在x 0∈(1,e ),使得Φ(x 0)=0令a 0=x 0-1-lnx 0=u (x 0),其中u (x )=x -1-lnx (x ≥1)由u '(x )=1-1x≥0知,函数u (x )在区间(1,+∞)上单调递增 故0=u (1)<a 0=u (x 0)<u (e )=e -2<1 即a 0∈(0,1)当a =a 0时,有f '(x 0)=0,f (x 0)=Φ(x 0)=0 再由(Ⅰ)知,f '(x )在区间(1,+∞)上单调递增 当x ∈(1,x 0)时,f '(x )<0,从而f (x )>f (x 0)=0 当x ∈(x 0,+∞)时,f '(x )>0,从而f (x )>f (x 0)=0 又当x ∈(0,1]时,f (x )=(x -a 0)2-2xlnx >0 故x ∈(0,+∞)时,f (x )≥0综上所述,存在a ∈(0,1),使得f (x )≥0恒成立,且f (x )=0在区间(1,+∞)内有唯一解.14【答案】(I )()f x 的单调递增区间是(),1-∞ ,单调递减区间是()1,+∞;(II )见试题解析;(III )见试题解析. 【解析】(I )由3()44f x x ¢=-,可得()f x 的单调递增区间是(),1-∞ ,单调递减区间是()1,+∞;(II )()()()00g x f x x x '=-,()()()F x f x g x =- ,证明()F x 在()0,x -∞单调递增,在()0,x +∞单调递减,所以对任意的实数x ,()()00F x F x ≤= ,对于任意的正实数x ,都有()()f x g x £;(III )设方程()g x a = 的根为2x ' ,可得132412ax '=-+,由()g x 在(),-∞+∞ 单调递减,得()()()222g x f x a g x '≥== ,所以22x x '≤ .设曲线()y f x = 在原点处的切线为(),y h x = 方程()h x a = 的根为1x ' ,可得14ax '=,由()4h x x = 在在(),-∞+∞ 单调递增,且()()()111h x a f x h x '==≤ ,可得11,x x '≤ 所以13212143ax x x x ''-≤-=-+ .试题解析:(I )由4()4f x x x =-,可得3()44f x x ¢=-,当()0f x '> ,即1x < 时,函数()f x 单调递增;当()0f x '< ,即1x > 时,函数()f x 单调递减.所以函数()f x的单调递增区间是(),1-∞ ,单调递减区间是()1,+∞.(II )设()0,0P x ,则1304x = ,()012,f x '=- 曲线()y f x = 在点P 处的切线方程为()()00y f x x x '=- ,即()()()00g x f x x x '=-,令()()()F x f x g x =- 即()()()()0F x f x f x x x '=-- 则()()()0F x f x f x '''=-.由于3()44f x x ¢=-在(),-∞+∞ 单调递减,故()F x '在(),-∞+∞ 单调递减,又因为()00F x '=,所以当()0,x x ∈-∞时,()0F x '>,所以当()0,x x ∈+∞时,()0F x '<,所以()F x 在()0,x -∞单调递增,在()0,x +∞单调递减,所以对任意的实数x ,()()00F x F x ≤= ,对于任意的正实数x ,都有()()f x g x £.(III )由(II )知()13124g x x ⎛⎫=-- ⎪⎝⎭ ,设方程()g x a = 的根为2x ' ,可得132412ax '=-+,因为()g x 在(),-∞+∞ 单调递减,又由(II )知()()()222g x f x a g x '≥== ,所以22x x '≤ .类似的,设曲线()y f x = 在原点处的切线为(),y h x = 可得()4h x x = ,对任意的(),x ∈-∞+∞,有()()40f x h x x -=-≤ 即()()f x h x ≤ .设方程()h x a = 的根为1x ' ,可得14ax '= ,因为()4h x x = 在(),-∞+∞ 单调递增,且()()()111h x a f x h x '==≤ ,因此,11,x x '≤所以13212143ax x x x ''-≤-=-+ .15.【答案】(I )当0a £时,()f x ¢没有零点;当0a >时,()f x ¢存在唯一零点.(II )见解析 【解析】(I )()f x 的定义域为()0+¥,,()2()=20x a f x e x x¢->.当0a £时,()0f x ¢>,()f x ¢没有零点; 当0a >时,因为2x e 单调递增,ax-单调递增,所以()f x ¢在()0+¥,单调递增.又()0f a ¢>,当b 满足04a b <<且14b <时,(b)0f ¢<,故当0a >时,()f x ¢存在唯一零点.(II )由(I ),可设()f x ¢在()0+¥,的唯一零点为0x ,当()00x x Î,时,()0f x ¢<;当()0+x x 违,时,()0f x ¢>.故()f x 在()00x ,单调递减,在()0+x ¥,单调递增,所以当0x x=时,()f x 取得最小值,最小值为0()f x . 由于0202=0x a e x -,所以00022()=2ln 2ln 2a f x ax a a a x a a++?. 故当0a >时,2()2ln f x a a a?.16【答案】(1)222,2,4()1,22,2,24a a a g a a a a a ⎧++≤-⎪⎪⎪=-<≤⎨⎪⎪-+>⎪⎩;(2)[3,9--【解析】解:(1)当214a b =+时,2()()12a f x x =++,故其对称轴为2ax =-.当2a ≤-时,2()(1)24a g a f a ==++.当22a -<≤时,()()12ag a f =-=.当2a >时,2()(1)24a g a f a =-=-+.综上,222,2,4()1,22,2,24a a a g a a a a a ⎧++≤-⎪⎪⎪=-<≤⎨⎪⎪-+>⎪⎩(2)设,s t 为方程()0f x =的解,且11t -≤≤,则s t ast b+=-⎧⎨=⎩.由于021b a ≤-≤,因此212(11)22t ts t t t --≤≤-≤≤++. 当01t ≤≤时,222222t t t b t t --≤≤++,由于222032t t --≤≤+和212932t t t --≤≤-+,所以293b -≤≤-当10t -≤≤时,222222t t t b t t --≤≤++, 由于22202t t --≤<+和2302t t t --≤<+,所以30b -≤<.综上可知,b 的取值范围是[3,9--. 17【答案】(Ⅰ)12a =,(Ⅱ)g()x 在(,4)(1,0)-?-和 内为减函数,(4,1)(0,)--+?和内为增函数.. 【解析】(1)对()f x 求导得2()32f x ax x ¢=+因为()f x 在43x =-处取得极值,所以4()03f ¢-=, 即16416832()09333a a ??=-=,解得12a =.(2)由(1)得,321g()2xx x x e 骣琪=+琪桫,故232323115g ()222222x x x x x x e x x e x x x e 骣骣骣¢琪琪琪=+++=++琪琪琪桫桫桫1(1)(4)2x x x x e =++ 令g ()0x ¢=,解得0,1=-4x x x ==-或. 当-4x <时,g ()0x ¢<,故g()x 为减函数, 当41x -<<-时,g ()0x ¢>,故g()x 为增函数, 当-10x <<时,g ()0x ¢<,故g()x 为减函数, 当0x >时,g ()0x ¢>,故g()x 为增函数,综上知g()x 在(,4)(1,0)-?-和 内为减函数,(4,1)(0,)--+?和内为增函数.。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
函数与导数 文科一、选择题1.(东城区第2题)下列函数中,既是奇函数,又在区间(0+)∞,上为增函数的是 (A )x y ln = (B )3y x = (C )3x y = (D )x y sin = 答案:B2.(西城区第8题)如图,在空间四边形ABCD 中,两条对角线,AC BD 互相垂直,且长度分别为4和6,平行于这两条对角线的平面与边,,,AB BC CD DA 分别相交于点,,,E F G H ,记四边形EFGH 的面积为y ,设BEx AB=,则( ) (A )函数()y f x =的值域为(0,4] (B )函数()y f x =的最大值为8(C )函数()y f x =在2(0,)3上单调递减(D )函数()y f x =满足()(1)f x f x =- 答案:D3.(海淀区第7题)某堆雪在融化过程中,其体积V (单位:3m )与融化时间t (单位:h )近似满足函数关系:31()(10)10V t H t =-(H 为常数),其图象如图所示. 记此堆雪从融化开始到结束的平均融化速度为3(m /h)v . 那么瞬时融化速度等于3(m /h)v 的时刻是图中的( )(A )1t (B )2t(C )3t(D )4t答案:C4.(朝阳区第7题)已知定义在R 上的函数(1)1,()221,x x x x f x x ⎧+<⎪=⎨-≥⎪⎩若直线y a =与函数()f x 的图象恰有两个公共点,则实数a 的取值范围是A. ()0,2B.[)0,2C.(]0,2D. []1,2 答案:B5.(丰台区第4题)已知32log 2a =,14log 2b =,132c -=,则a ,b ,c 的大小关系是(A) a > b > c (B) c > b > a (C) c > a >b(D) a >c >b答案:D6.(丰台区第6题)已知函数sin y a bx =+(b >0且b ≠1)的图象如图所示,那么函数log ()b y x a =-的图象可能是(C)答案:C7.(昌平区第2题)下列函数中,在区间(0,π2)上是减函数的是A . cos y x =B . sin y x =C .2y x = D . 21y x =+答案:A8.(昌平区第7题)某位股民购进某只股票,在接下来的交易时间内,他的这只股票先经历 了n 次涨停(每次上涨10%),又经历了n 次跌停(每次下跌10%),则该股民这只股票的盈 亏情况(不考虑其它费用)是A. 略有盈利B. 略有亏损C.没有盈利也没有亏损D.无法判断盈亏情况 答案:B9.(石景山区第2题)下列函数中,在)0(∞+,上单调递增,并且是偶函数的是( )A.2x y =B.3x y -=C.||lg x y -=D.x y 2= 答案:A10.(石景山区第6题)函数()22f x log x x =+-的零点所在的区间是( )A.(0,1)B.(1,2)C.(2,3)D.(3,4) 答案:B11.(石景山区第8性质,构造了如图所示的两个边长为1的正方形ABCD 和BEFC ,点P 是边BC 上的一个动点,设x CP =,则()f x PF AP =+.那么可推知方程()f x = )A.0B.1C.2D.4 答案:A 二、填空题1.(东城区第13题)设函数2log , 0,()4, 0,xx x f x x >⎧=⎨⎩≤则1(())2f f =________;若函数()()g x f x k =-存在两个零点,则实数k 的取值范围是________. 答案:142.(东城区第14题)某商场对顾客实行购物优惠活动,规定购物付款总额要求如下:①如果一次性购物不超过200元,则不给予优惠;②如果一次性购物超过200元但不超过500元,则按标价..给予9折优惠; ③如果一次性购物超过500元,则500元按第②条给予优惠,剩余部分给予7折优惠. 甲单独购买A 商品实际付款100元,乙单独购买B 商品实际付款....450元,若丙一次性购买A ,B 两件商品,则应付款________ 元. 答案:5203.(西城区第14题)设函数3||, 1,()log , 1.x a x f x x x -⎧=⎨>⎩≤(1)如果(1)3f =,那么实数a =___;(2)如果函数()2y f x =-有且仅有两个零点,那么实数a 的取值范围是___. 答案:2-或4 ;(1,3]-4.(朝阳区第14题)设2212()cos (1)sin cos 3sin f x a x a x x x =+-+(22120a a +≠),若无论x 为何值,函数()f x 的图象总是一条直线,则12a a +的值是______. 答案:45.(丰台区第14题)设函数()f x 与()g x 是定义在同一区间[,]a b 上的两个函数,如果函数()()y f x g x =-在区间[,]a b 上有*()k k ∈N 个不同的零点,那么称函数()f x 和()g x 在区间[,]a b 上为“k 阶关联函数”.现有如下三组函数: ①()f x x =,()sin2g x x π=;②()2x f x -=,()ln g x x =; ③()|1|f x x =-,()g x =其中在区间[0,4]上是“2阶关联函数”的函数组的序号是___.(写出所有..满足条件的函数组的序号) 答案:①③6.(昌平区第14题)在下列函数①13,x y +=②,log 3x y =③21,y x =+④,sin x y =⑤cos()6y x π=+中,满足“对任意的1x ,2x ∈(0,1),则1212()()22x x f x f x f ++⎛⎫≤ ⎪⎝⎭恒成立”的函数是________.(填上所有正确的序号) 答案:① ③ 三、解答题1.(东城区第20题)已知函数2()ln f x a x bx =-,a ,b ∈R . (Ⅰ)若()f x 在1x =处与直线12y =-相切,求a ,b 的值; (Ⅱ)在(Ⅰ)的条件下,求()f x 在1[,e]e上的最大值;(Ⅲ)若不等式()f x x ≥对所有的(,0]b ∈-∞,2(e,e ]x ∈都成立,求a 的取值范围. 答案: (Ⅰ)()2af x bx x'=-. 由函数()f x 在1x =处与直线12y =-相切,得(1)0,1(1).2f f '=⎧⎪⎨=-⎪⎩即20,1.2a b b -=⎧⎪⎨-=-⎪⎩解得1,1.2a b =⎧⎪⎨=⎪⎩ ………………………………4分(Ⅱ)由(Ⅰ)得21()ln 2f x x x =-,定义域为(0,)+∞. 此时1()f x x x '=-21=xx-.令()0f x '>,解得01x <<,令()0f x '<,得1x >. 所以()f x 在(1e,1)上单调递增,在(1,e )上单调递减, 所以()f x 在1[,e]e 上的最大值为1(1)2f =-. ……………………………8分 (Ⅲ)若不等式()f x x ≥对所有的(,0]b ∈-∞,2(e,e ]x ∈都成立,即2ln a x bx x -≥对所有的(,0]b ∈-∞,2(e,e ]x ∈都成立, 即2ln a x x bx -≥对所有的(,0]b ∈-∞,2(e,e ]x ∈都成立,即ln 0a x x -≥对2(e,e ]x ∈恒成立. …………………11分 即ln xa x≥对2(e,e ]x ∈恒成立, 即a 大于或等于ln xx在区间2(e,e ]上的最大值. 令()ln x h x x=,则2ln 1(=(ln )x h x x -'),当2(e,e ]x ∈时,()0h x '>,()h x 单调递增, 所以()ln x h x x =,2(e,e ]x ∈的最大值为22e (e )2h =.即2e 2a ≥.所以a 的取值范围是2e[,)2+∞. ………………………………14分2.(西城区第20题)对于函数(),()f x g x ,如果它们的图象有公共点P ,且在点P 处的切线 相同,则称函数()f x 和()g x 在点P 处相切,称点P 为这两个函数的切点. 设函数2()(0)f x ax bx a =-≠,()ln g x x =.(Ⅰ)当1a =-,0b =时, 判断函数()f x 和()g x 是否相切?并说明理由; (Ⅱ)已知a b =,0a >,且函数()f x 和()g x 相切,求切点P 的坐标;(Ⅲ)设0a >,点P 的坐标为1(,1)e-,问是否存在符合条件的函数()f x 和()g x ,使得它们在点P 处相切?若点P 的坐标为2(e ,2)呢?(结论不要求证明)答案:(Ⅰ)解:结论:当1a =-,0b =时,函数()f x 和()g x 不相切. …………………1分 理由如下:由条件知2()f x x =-, 由()ln g x x =,得0x >,又因为 ()2f x x '=-,1()g x x'=, …………………2分所以当0x >时,()20f x x '=-<,1()0g x x'=>,所以对于任意的0x >,()()f x g x ''≠.当1a =-,0b =时,函数()f x 和()g x 不相切. …………………3分 (Ⅱ)解:若a b =,则()2f x ax a '=-,1()g x x'=,设切点坐标为(,)s t ,其中0s >,由题意,得 2ln as as s -=, ① 12as a s-=, ② …………………4分 由②,得 1(21)a s s =-,代入①,得 1ln 21s s s -=-. (*) …………………5分 因为 10(21)a s s =>-,且0s >,所以 12s >. 设函数 1()ln 21x F x x x -=--,1(,)2x ∈+∞, 则 2(41)(1)()(21)x x F x x x ---'=-. …………………6分 令()0F x '= ,解得1x =或14x =(舍). …………………7分 当x 变化时,()F x '与()F x 的变化情况如下表所示,…………………8分所以当1x =时,()F x QUOTE取到最大值(1)0F = QUOTE,且当1(,1)(1,)2x ∈+∞时()0F x < QUOTE.因此,当且仅当1x =时()0F x =. 所以方程(*)有且仅有一解1s =. 于是 ln 0t s ==,因此切点P 的坐标为(1,0). …………………9分 (Ⅲ)解:当点P 的坐标为1(,1)e-时,存在符合条件的函数()f x 和()g x ,使得它们在点P 处相切; …………11分 当点P 的坐标为2(e ,2)时,不存在符合条件的函数()f x 和()g x ,使得它们在点P 处相 切. …………13分3.(海淀区第19题)已知函数e ()xf x x=.(Ⅰ)若曲线()y f x =在点00(,())x f x 处的切线方程为0ax y -=,求0x 的值; (Ⅱ)当0x >时,求证:()f x x >;(Ⅲ)问集合{()0}x f x bx ∈-=R (b ∈R 且为常数)的元素有多少个?(只需写出结论) 答案:(Ⅰ)解:2e e '()x x xf x x-=. ………………1分 因为 切线0ax y -=过原点(0,0),所以 00000200e e e x x x x x x x -=. ………………3分 解得:02x =. ………………4分(Ⅱ)证明:设2()e ()(0)x f x g x x x x==>,则24e (2)'()x x x g x x -=.令24e (2)'()0x x x g x x-==,解得2x =. ………………6分 x 在(0,)+∞上变化时,'(),()g x g x 的变化情况如下表所以 当2x =时,()g x 取得最小值e 4. ………………8分所以 当0x >时,2e ()14g x ?,即()f x x >. ………………9分(Ⅲ)解:当0b ≤时,集合{()0}x f x bx ∈-=R 的元素个数为0;当2e 04b <<时,集合{()0}x f x bx ∈-=R 的元素个数为1;当2e 4b =时,集合{()0}x f x bx ∈-=R 的元素个数为2;当2e 4b >时,集合{()0}x f x bx ∈-=R 的元素个数为3. …………13分4.(朝阳区第19题)已知函数()e ln x f x a x =-,a ∈R . (I )若1x =是()f x 的极值点,求a 的值: (Ⅱ)当e a =时,求证:()e f x ≥. 答案:(I )函数()f x 的定义域为(0,)+∞.因为()e xa f x x'=-, 又1x =是()f x 的极值点,所以(1)e 0f a '=-=,解得e a =. 经检验,1x =是()f x 的极值点, 所以a 的值为e . ………5分 (Ⅱ)证明: 方法1:当e a =时,()e eln x f x x =-.所以e e e()e x xx f x x x-'=-=. 若01x <<,则1<e e x <,所以e e x x <,所以e e<0x x -. 所以函数()f x 在(0,1)单调递减.若1x >,则e >e x ,所以e >e x x ,所以e e>0x x -. 所以函数()f x 在(1,)+∞单调递增. 所以当1x =时,min ()(1)e f x f ==.(0x →时, e eln x x -→+∞;x →+∞时, e eln x x -→+∞.) 所以()e f x ≥. ………13分 方法2:当e a =时,()e eln x f x x =-,所以e e e()e x xx f x x x-'=-=. 设()e e x g x x =-,则()e (1)x g x x '=+,所以()g x 在(0,)+∞单调递增.又(1)0g =,所以当(0,1)x ∈时,()0g x <,即()0f x '<,所以()f x 在(0,1)单调递减; 当(1,)x ∈+∞时,()0g x >,即()0f x '>,所以()f x 在(1,)+∞单调递增. (接下来表述同解法1相应内容) 所以()e f x ≥. ………13分5.(丰台区第18题)已知函数1()1ex f x x =+-. (Ⅰ)求函数()f x 的极小值;(Ⅱ)过点(0,)B t 能否存在曲线()y f x =的切线,请说明理由. 答案:(Ⅰ)函数的定义域为R .因为 1()1xf x x e =-+, 所以 1()x xe f x e -'=. …………………2分令()0f x '=,则0x =. …………………3分5分所以01()=(0)010f x f e =-+=极小值. …………………6分 (Ⅱ)假设存在切线,设切点坐标为00(,)x y ,则切线方程为000'()()y y f x x x -=- 即00001(1)(1)()x x y x e x x e---+=-- 将(0,)B t 代入得0011x x t e+=-. 方程0011x x t e+=-有解,等价于过点(0,)B t 作曲线()f x 的切线存在.…………8分 令1()1xx M x e +=-, 所以 ()x x M x e -'=.当()0xxM x e -'==时,00x =. 所以 当(,0)x ∈-∞时,()0M x '>,函数()M x 在(,0)x ∈-∞上单调递增; 当(0,)x ∈+∞时,()0M x '<,()M x 在(0,)x ∈+∞上单调递减. ………10分 所以 当00x =时,max ()(0)0M x M ==,无最小值. 当0t ≤时,方程0011x x t e +=-有解; ………………11分当0t >时,方程0011x x t e+=-无解. ………………12分 综上所述,当0t ≤时存在切线;当0t >时不存在切线. …………13分 6.(昌平区第19题)已知函数() 1.x x f x e xe =-- (I )求函数()f x 的最大值; (Ⅱ)设()(),f x g x x= 其中1,0x x >-≠且,证明: ()g x <1. 答案:解:(Ⅰ)'(),x f x xe =- …………………2分 当(,0)x ∈-∞时,f '(x )>0,f (x )单调递增; …………………4分 当(0,)x ∈+∞时,f '(x )<0,f (x )单调递减. …………………6分…………………7分(Ⅱ)由(Ⅰ)知,当0x >时,()0,()0 1.f x g x <<< …………………9分 当10x -<<时,()1g x <等价于().f x x > 设()()h x f x x =-,则'()1xh x xe =--.当(1,0)x ∈-时,01,01,xx e <-<<<则01,xxe <-<从而当(1,0)x ∈-时,'()0h x <,()h x 在(1,0)-单调递减.…………………12分 当(1,0)x ∈-时,()(0)0,h x h >= 即()(0)0,()f x x h f x x ->=>所以, 故g (x )<1. 综上,总有g (x )<1.…………………14分7.(石景山区第20题)已知函数32()(,)f x ax x bx a b R =-+∈,()f x '为其导函数,且3x =时()f x 有极小值9-. (Ⅰ)求()f x 的单调递减区间;(Ⅱ)若不等式()(ln 1)64f x k x x x '>---(k 为正整数)对任意正实数x 恒成立,求k的最大值.(解答过程可参考使用以下数据:ln7 1.95,ln8 2.08≈≈)答案:(Ⅰ)由2()32f x ax x b '=-+,因为函数在3x =时有极小值9-,所以276027939a b a b -+=⎧⎨-+=-⎩,从而得 ………………2分 ,所以2()23f x x x '=--, 由0)(<'x f 解得31<<-x , 所以()f x 的单调递减区间为()13-,. ………………4分 (Ⅱ)因为2()23f x x x '=--,所以()(ln 1)64f x k x x x '>---等价于 241(ln 1)x x k x x ++>-,即……………6分由()0g x '=,得=1x k +, 所以()g x 在(0,1)k +上单调递减,在(1,)k ++∞上单调递增, 所以()(1)6ln(1)g x g k k k k +=+-+≥, ……………8分 ()0>x g 对任意正实数x 恒成立, 等价于6ln(1)0k k k +-+>,即……………10分,所以()h x 在(0,)+∞上单调递减,所以k 的最大值为6. ……………13分。