2020高考数学函数与导数参数与分类讨论大题精做理科
2020高考数学函数和导数知识点归纳汇总(含答案解析)

2020年高考数学(理)函数和导数知识点归纳汇总目录基本初等函数性质及应用 (3)三角函数图象与性质三角恒等变换 (17)函数的图象与性质、函数与方程 (43)导数的简单应用与定积分 (60)利用导数解决不等式问题 (81)利用导数解决函数零点问题 (105)基本初等函数性质及应用题型一 求函数值 【题型要点解析】已知函数的解析式,求函数值,常用代入法,代入时,一定要注意函数的对应法则与自变量取值范围的对应关系,有时要借助函数性质与运算性质进行转化.例1.若函数f (x )=a |2x -4|(a >0,且a ≠1),满足f (1)=19,则f (x )的单调递减区间是( )A .(-∞,2]B .[2,+∞)C .[-2,+∞)D .(-∞,-2]【解析】 由f (1)=19,得a 2=19,解得a =13或a =-13(舍去),即f (x )=4231-⎪⎭⎫⎝⎛x 由于y =|2x -4|在(-∞,2]上递减,在[2,+∞)上递增,所以f (x )在(-∞,2]上递增,在[2,+∞)上递减.【答案】 B例2.已知函数f (x )=⎩⎪⎨⎪⎧3x 2+ln 1+x 2+x ,x ≥0,3x 2+ln 1+x 2-x ,x <0,若f (x -1)<f (2x +1),则x 的取值范围为________.【解析】 若x >0,则-x <0,f (-x )=3(-x )2+ln (1+(-x )2+x )=3x 2+ln (1+x 2+x )=f (x ),同理可得,x <0时,f (-x )=f (x ),且x =0时,f (0)=f (0),所以f (x )是偶函数.因为当x >0时,函数f (x )单调递增,所以不等式f (x -1)<f (2x +1)等价于|x -1|<|2x +1|,整理得x (x +2)>0,解得x >0或x <-2.【答案】 (-∞,-2)∪(0,+∞)例3.已知a >b >1,若log a b +log b a =52,a b=b a ,则a =________,b =________.【解析】 ∵log a b +log b a =log a b +1log a b =52,∴log a b =2或12.∵a >b >1,∴log a b <log a a =1,∴log a b =12,∴a =b 2.∵a b =b a ,∴(b 2)b =bb 2,即b 2b =bb 2.∴2b=b 2,∴b =2,a =4.【答案】 4;2 题组训练一 求函数值1.已知函数f (x )是定义在R 上的偶函数,且在区间[0,+∞)单调递增.若实数a 满足f (log 2 a )+f (log 12a )≤2f (1),则a 的最小值是( )A.32 B .1C.12D .2【解析】 log 12a =-log 2a ,f (log 2 a )+f (log 12a )≤2f (1),所以2f (log 2a )≤2f (1),所以|log 2 a |≤1,解得12≤a ≤2,所以a 的最小值是12,故选C.【答案】 C2.若函数f (x )=a x -2-2a (a >0,a ≠1)的图象恒过定点⎪⎭⎫⎝⎛31,0x ,则函数f (x )在[0,3]上的最小值等于________.【解析】令x -2=0得x =2,且f (2)=1-2a ,所以函数f (x )的图象恒过定点(2,1-2a ),因此x 0=2,a =13,于是f (x )=⎝ ⎛⎭⎪⎫13x -2-23,f (x )在R 上单调递减,故函数f (x )在[0,3]上的最小值为f (3)=-13.【答案】 -13题型二 比较函数值大小 【题型要点解析】三招破解指数、对数、幂函数值的大小比较问题(1)底数相同,指数不同的幂用指数函数的单调性进行比较; (2)底数相同,真数不同的对数值用对数函数的单调性比较;(3)底数不同、指数也不同,或底数不同、真数也不同的两个数,常引入中间量或结合图象比较大小.例1.已知a =3421-⎪⎭⎫ ⎝⎛,b =5241-⎪⎭⎫ ⎝⎛,c =31251-⎪⎭⎫⎝⎛,则( )A .a <b <cB .b <c <aC .c <b <aD .b <a <c【解析】 因为a =3421-⎪⎭⎫ ⎝⎛=243,b =5241-⎪⎭⎫ ⎝⎛=245,c =31251-⎪⎭⎫⎝⎛=523,显然有b <a ,又a =423<523=c ,故b <a <c .【答案】 D例2.已知a =π3,b =3π,c =e π,则a 、b 、c 的大小关系为( ) A .a >b >c B .a >c >b C .b >c >aD .b >a >c【解析】 ∵a =π3,b =3π,c =e π,∴函数y =x π是R 上的增函数,且3>e>1,∴3π>e π,即b >c >1;设f (x )=x 3-3x ,则f (3)=0,∴x =3是f (x )的零点,∵f ′(x )=3x 2-3x ·ln 3,∴f ′(3)=27-27ln 3<0,f ′(4)=48-81ln 3<0,∴函数f (x )在(3,4)上是单调减函数,∴f (π)<f (3)=0,∴π3-3π<0,即π3<3π,∴a <b ;又∵e π<πe <π3,∴c <a ;综上b >a >c .故选D.【答案】 D题组训练二 比较函数值大小 1.若a >b >1,0<c <1,则( ) A .a c <b cB .ab c <ba cC .a log b c <b log a cD .log a c <log b c【解析】 对A :由于0<c <1,∴函数y =x c 在R 上单调递增,则a >b >1⇔a c >bc ,A 错误;对B :由于-1<c -1<0,∴函数y =x c -1在(1,+∞)上单调递减,又∴a >b >1,∴a c -1<b c -1⇔ba c <ab c ,B 错误;对C :要比较a log b c 和b log a c ,只需比较a ln c lnb 和b lnc ln a ,只需比较ln c b ln b 和ln ca ln a,只需b ln b 和a ln a ;构造函数f (x )=x ln x (x >1),则f ′(x )=ln x +1>1>0,f (x )在(1,+∞)上单调递增,因此f (a )>f (b )>0⇔a ln a >b ln b >0⇔1a ln a <1b ln b ,又由0<c <1得ln c <0,∴ln c a ln a >ln cb ln b⇔b log a c >a log b c ,C 正确;对D :要比较log a c 和log b c ,只需比较ln c ln a 和ln cln b,而函数y =ln x 在(1,+∞)上单调递增,故a >b >1⇔ln a >ln b >0⇔1ln a <1ln b ,又由0<c <1得ln c <0,∴ln c ln a >ln c ln b ⇔log a c >log b c ,D 错误.故选C.【答案】 C2.设函数f (x )=e x +2x -4,g (x )=ln x +2x 2-5,若实数a ,b 分别是f (x ),g (x )的零点,则( )A .g (a )<0<f (b )B .f (b )<0<g (a )C .0<g (a )<f (b )D .f (b )<g (a )<0【解析】 依题意,f (0)=-3<0,f (1)=e -2>0,且函数f (x )是增函数,因此函数f (x )的零点在区间(0,1)内,即0<a <1.g (1)=-3<0,g (2)=ln 2+3>0,函数g (x )的零点在区间(1,2)内,即1<b <2,于是有f (b )>f (1)>0.又函数g (x )在(0,1)内是增函数,因此有g (a )<g (1)<0,g (a )<0<f (b ),选A.【答案】 A题型三 求参数的取值范围 【题型要点解析】利用指、对数函数的图象与性质可以求解的两类热点问题及其注意点 (1)对一些可通过平移、对称变换作出其图象的对数型函数,在求解其单调性(单调区间)、值域(最值)、零点时、常利用数形结合思想求解.(2)一些对数型方程、不等式问题常转化为相应的函数图象问题,利用数形结合法求解.(3)注意点:利用对数函数图象求解对数型函数性质及对数方程、不等式问题时切记图象的范围、形状一定要准确,否则数形结合时将误解.对于含参数的指数、指数问题,在应用单调性时,要注意对底数进行讨论.解决对数问题时,首先要考虑定义域,其次再利用性质求解.例1.已知f (x )=⎩⎨⎧(1-2a )x +3a ,x <1,ln x ,x ≥1的值域为R ,那么a 的取值范围是( )A .(-∞,-1]B.⎪⎭⎫ ⎝⎛-21,1C.⎪⎭⎫⎢⎣⎡-21,1D.⎪⎭⎫⎝⎛21,0【解析】 要使函数f (x )的值域为R ,需使⎩⎨⎧1-2a >0,ln 1≤1-2a +3a ,∴⎩⎨⎧a <12,a ≥-1,∴-1≤a <12.故选C.【答案】 C例2.设函数f (x )=⎩⎨⎧x +1,x ≤0,2x,x >0,则满足f (x )+f ⎪⎭⎫ ⎝⎛-21x >1的x 的取值范围是________.【解析】 由题意,当x >12时,f (x )+f ⎪⎭⎫ ⎝⎛-21x =2x +2x -12>1恒成立,即x >12满足题意;当0<x ≤12时,f (x )+f ⎪⎭⎫ ⎝⎛-21x =2x +x -12+1>1恒成立,即0<x ≤12满足题意;当x ≤0时,f (x )+f ⎪⎭⎫ ⎝⎛-21x =x +1+x -12+1>1,解得x >-14,即-14<x ≤0.综上,x 的取值范围是⎪⎭⎫ ⎝⎛+∞,41 【答案】⎪⎭⎫⎝⎛+∞,41题组训练三 求参数的取值范围例1.若函数f (x )=⎩⎨⎧-x +6,x ≤2,3+log a x ,x >2(a >0,且a ≠1)的值域是[4,+∞),则实数a 的取值范围是________. 【解析】 当x ≤2时,f (x )=-x +6,f (x )在(-∞,2]上为减函数,∴f (x )∈[4+∞).当x >2时,若a ∈(0,1),则f (x )=3+log a x 在(2,+∞)上为减函数,f (x )∈(-∞,3+log a 2),显示不满足题意,∴a >1,此时f (x )在(2,+∞)上为增函数,f (x )∈(3+log a 2,+∞),由题意可知(3+log a 2,+∞)⊆[4,+∞),则3+log a 2≥4,即log a 2≥1,∴1<a ≤2.【答案】 (1,2]例2.设函数f (x )=⎩⎪⎨⎪⎧x 2-2x +a ,x <12,4x-3,x ≥12的最小值为-1,则实数a 的取值范围是________.【解析】 当x ≥12时,4x -3为增函数,最小值为f ⎪⎭⎫⎝⎛21=-1,故当x <12时,x 2-2x +a ≥-1.分离参数得a ≥-x 2+2x -1=-(x -1)2,函数y =-(x -1)2开口向下,且对称轴为x =1,故在⎪⎭⎫ ⎝⎛∞-21,上单调递增,所以函数在x =12处有最大值,最大值为-221⎪⎭⎫⎝⎛-=-14,即a ≥-14.【答案】⎪⎭⎫⎢⎣⎡+∞-,41【专题训练】 一、选择题1.定义在R 上的函数f (x )满足f (-x )=-f (x ),f (x -2)=f (x +2),且x ∈(-1,0)时,f (x )=2x +15,则f (log 220)等于( )A .1B.45 C .-1D .-45【解析】 由f (x -2)=f (x +2),得f (x )=f (x +4),因为4<log 220<5,所以f (log 220)=f (log 220-4)=-f (4-log 220)=-f (log 2 45)=-(2log 245+15)=-1.【答案】C2.定义在R 上的偶函数f (x )满足:对任意的x 1,x 2∈(-∞,0)(x 1≠x 2),都有f (x 1)-f (x 2)x 1-x 2<0,则下列结论正确的是( )A .f (0.32)<f (20.3)<f (log 25)B .f (log 25)<f (20.3)<f (0.32)C .f (log 25)<f (0.32)<f (20.3) D .f (0.32)<f (log 25)<f (20.3)【解析】 ∵对任意的x 1,x 2∈(-∞,0), 且x 1≠x 2,都有f (x 1)-f (x 2)x 1-x 2<0,∴f (x )在(-∞,0)上是减函数. 又∵f (x )是R 上的偶函数, ∴f (x )在(0,+∞)上是增函数. ∵0<0.32<20.3<log 25,∴f (0.32)<f (20.3)<f (log 25).故选A. 【答案】 A3.已知f (x )是奇函数,且f (2-x )=f (x ),当x ∈[2,3]时,f (x )=log 2(x-1),则f ⎪⎭⎫⎝⎛31等于( )A .2-log 23B .log 23-log 27C .log 27-log 23D .log 23-2【解析】 因为f (x )是奇函数,且f (2-x )=f (x ),所以f (x -2)=-f (x ),所以f (x -4)=f (x ),所以f ⎪⎭⎫ ⎝⎛31=f ⎪⎭⎫ ⎝⎛-312=f ⎪⎭⎫ ⎝⎛35=-f ⎪⎭⎫ ⎝⎛-354=-f ⎪⎭⎫⎝⎛37.又当x ∈[2,3]时,f (x )=log 2(x -1), 所以f ⎪⎭⎫ ⎝⎛37=log 2⎪⎭⎫⎝⎛-137=log 243=2-log 23,所以f ⎪⎭⎫⎝⎛31=log 23-2,故选D.【答案】 D4.已知函数y =f (x )是R 上的偶函数,设a =ln1π,b =(ln π)2,c =ln π,当对任意的x 1,x 2∈(0,+∞)时,都有(x 1-x 2)·[f (x 1)-f (x 2)]<0,则( ) A .f (a )>f (b )>f (c ) B .f (b )>f (a )>f (c ) C .f (c )>f (b )>f (a )D .f (c )>f (a )>f (b )【解析】 由(x 1-x 2)[f (x 1)-f (x 2)]<0可知,f (x 1)-f (x 2)(x 1-x 2)<0,所以y =f (x )在(0,+∞)上单调递减.又因为函数y =f (x )是R 上的偶函数,所以y =f (x )在(-∞,0)上单调递增,由于a =ln 1π=-lnπ<-1,b =(ln π)2,c =ln π=12ln π,所以|b |>|a |>|c |,因此f (c )>f (a )>f (b ),故选D.【答案】 D5.已知函数y =f (x )的图象关于y 轴对称,且当x ∈(-∞,0)时,f (x )+xf ′(x )<0成立,a =(20.2)·f (20.2),b =(log π3)·f (log π3),c =(log 39)·f (log 39),则a ,b ,c 的大小关系是( )A .b >a >cB .c >a >bC .c >b >aD .a >c >b【解析】 因为函数y =f (x )关于y 轴对称,所以函数y =xf (x )为奇函数.因为[xf (x )]′=f (x )+xf ′(x ),且当x ∈(-∞,0)时,[xf (x )]′=f (x )+xf ′(x )<0,则函数y =xf (x )在(-∞,0)上单调递减;因为y =xf (x )为奇函数,所以当x ∈(0,+∞)时,函数y =xf (x )单调递减.因为1<20.2<2,0<log π3<1,log 39=2,所以0<log π3<20.2<log 39,所以b >a >c ,选A.【答案】 A6.设a =0.23,b =log 0.30.2,c =log 30.2,则a ,b ,c 大小关系正确的是( )A .a >b >cB .b >a >cC .b >c >aD .c >b >a【解析】 根据指数函数和对数函数的增减性知,因为0<a =0.23<0.20=1,b =log 0.30.2>log 0.30.3=1,c =log 30.2<log 31=0,所以b >a >c ,故选B.【答案】B7.对任意实数a ,b 定义运算“Δ”:a Δb =⎩⎨⎧a ,a -b ≤2,b ,a -b >2,设f (x )=3x+1Δ(1-x ),若函数f (x )与函数g (x )=x 2-6x 在区间(m ,m +1)上均为减函数,则实数m 的取值范围是( )A .[-1,2]B .(0,3]C .[0,2]D .[1,3]【解析】 由题意得f (x )=⎩⎨⎧-x +1,x >0,3x +1,x ≤0,∴函数f (x )在(0,+∞)上单调递减,函数g (x )=(x -3)2-9在(-∞,3]上单调递减,若函数f (x )与g (x )在区间(m ,m +1)上均为减函数,则⎩⎨⎧m ≥0,m +1≤3,得0≤m ≤2,故选C.【答案】 C8.已知函数f (x )=a |log 2 x |+1(a ≠0),定义函数F (x )=⎩⎨⎧f (x ),x >0,f (-x ),x <0,给出下列命题:①F (x )=|f (x )|;②函数F (x )是偶函数;③当a <0时,若0<m <n <1,则有F (m )-F (n )<0成立;④当a >0时,函数y =F (x )-2有4个零点.其中正确命题的个数为( )A .0B .1C .2D .3【解析】 ①∵函数f (x )=a |log 2x |+1(a ≠0),定义函数F (x )=⎩⎨⎧f (x ),x >0f (-x ),x <0,∴|f (x )|=|a |log 2x |+1|,∴F (x )≠|f (x )|,①不对;②∵F (-x )=⎩⎨⎧f (-x ),x <0f (x ),x >0=F (x ),∴函数F (x )是偶函数,故②正确;③∵当a <0时,若0<m <n <1,∴|log 2m |>|log 2n |,∴a |log 2m |+1<a |log 2n |+1,即F (m )<F (n )成立,故F (m )-F (n )<0成立,所以③正确;④∵f (x )=a |log 2x |+1(a ≠0),定义函数F (x )=⎩⎨⎧f (x ),x >0,f (-x ),x <0,∴x >0时,(0,1)单调递减,(1,+∞)单调递增, ∴x >0时,F (x )的最小值为F (1)=1, 故x >0时,F (x )与y =-2有2个交点,∵函数F (x )是偶函数,∴x <0时,F (x )与y =-2有2个交点,故当a >0时,函数y =F (x )-2有4个零点,所以④正确.【答案】D 二、填空题1.已知奇函数f (x )在R 上是增函数,g (x )=xf (x ).若a =g (-log 25.1),b =g (20.8),c =g (3),则a ,b ,c 的大小关系为____________.【解析】 依题意a =g (-log 25.1) =(-log 25.1)·f (-log 25.1) =log 25.1f (log 25.1)=g (log 25.1).因为f (x )在R 上是增函数,可设0<x 1<x 2,则f (x 1)<f (x 2). 从而x 1f (x 2)<x 2f (x 2),即g (x 1)<g (x 2). 所以g (x )在(0,+∞)上亦为增函数.又log 25.1>0,20.8>0,3>0,且log 25.1<log 28=3,20.8<21<3,而20.8<21=log 24<log 25.1,所以3>log 25.1>20.8>0,所以c >a >b .【答案】 b <a <c2.已知函数f (x )=⎩⎨⎧2x,x ≤1ln (x -1),1<x ≤2若不等式f (x )≤5-mx 恒成立,则实数m 的取值范围是________.【解析】 设g (x )=5-mx ,则函数g (x )的图象是过点(0,5)的直线.在同一坐标系内画出函数y =f (x )和g (x )=5-mx 的图象,如图所示.∵不等式f (x )≤5-mx 恒成立,∴函数y =f (x )图象不在函数g (x )=5-mx 的图象的上方.结合图象可得,①当m <0时不成立;②当m =0时成立;③当m >0时,需满足当x =2时,g (2)=5-2m ≥0,解得0<m ≤52.综上可得0≤m ≤52.∴实数m 的取值范围是⎣⎢⎡⎦⎥⎤0,52.3.已知函数f (x )=⎩⎨⎧x ln (1+x )+x 2,x ≥0-x ln (1-x )+x 2,x <0,若f (-a )+f (a )≤2f (1),则实数a 的取值范围是( )A .(-∞,-1]∪[1,+∞)B .[-1,0]C .[0,1]D .[-1,1]【解析】 函数f (x )=⎩⎨⎧x ln (1+x )+x 2,x ≥0-x ln (1-x )+x 2,x <0,将x 换为-x ,函数值不变,即有f (x )图象关于y 轴对称,即f (x )为偶函数,有f (-x )=f (x ),当x ≥0时,f (x )=x ln(1+x )+x 2的导数为f ′(x )=ln (1+x )+x 1+x+2x ≥0,则f (x )在[0,+∞)递增,f (-a )+f (a )≤2f (1),即为2f (a )≤2f (1),可得f (|a |))≤f (1),可得|a |≤1,解得-1≤a ≤1.【答案】 D4.已知函数f (x )=⎩⎨⎧(3a -1)x -4a ,(x <1),log a x , (x ≥1)在R 上不是单调函数,则实数a 的取值范围是________.【解析】 当函数f (x )在R 上为减函数时,有3a -1<0且0<a <1且(3a -1)·1+4a ≥log a 1,解得17≤a <13,当函数f (x )在R 上为增函数时,有3a -1>0且a >1且(3a -1)·1+4a ≤log a 1,a 无解.∴当函数f (x )在R 上为单调函数时,有17≤a <13,∴当函数f (x )在R 上不是单调函数时,有a >0且a ≠1且a <17或a ≥13即0<a <17或13≤a <1或a >1.5.定义函数y =f (x ),x ∈I ,若存在常数M ,对于任意x 1∈I ,存在唯一的x 2∈I ,使得f (x 1)+f (x 2)2=M ,则称函数f (x )在I 上的“均值”为M ,已知f (x )=log 2x ,x ∈[1,22 016],则函数f (x )=log 2x 在[1,22 016]上的“均值”为 ________.【解析】 根据定义,函数y =f (x ),x ∈I ,若存在常数M ,对于任意x 1∈I ,存在唯一的x 2∈I ,使得f (x 1)+f (x 2)2=M ,则称函数f (x )在I 上的“均值”为M ,令x 1x 2=1·22 016=22 016,当x 1∈[1,22 016]时,选定x 2=22 016x 1∈[1,22 016],可得M =12log 2(x 1x 2)=1 008.【答案】 1 008三角函数图象与性质三角恒等变换题型一 函数y =A sin(ωx +φ)的解析式与图象 【题型要点解析】解决三角函数图象问题的方法及注意事项(1)已知函数y =A sin(ωx +φ)(A >0,ω>0)的图象求解析式时,常采用待定系数法,由图中的最高点、最低点或特殊点求A ;由函数的周期确定ω;确定φ常根据“五点法”中的五个点求解,其中一般把第一个零点作为突破口,可以从图象的升降找准第一个零点的位置.(2)在图象变换过程中务必分清是先相位变换,还是先周期变换,变换只是相对于其中的自变量x 而言的,如果x 的系数不是1,就要把这个系数提取后再确定变换的单位长度和方向.【例1】函数f (x )=A sin(ωx +φ)+b 的部分图象如图,则S =f (1)+…+f (2017)等于( )A .0 B.4 0312C.4 0352 D.4 0392【解析】由题设中提供的图象信息可知⎩⎪⎨⎪⎧A +b =32,-A +b =12,解得A =12,b =1,T =4⇒ω=2π4=π2,所以f(x)=12sin⎪⎭⎫⎝⎛+ϕπx2+1,又f(0)=12sin⎪⎭⎫⎝⎛+⨯ϕπ2+1=12sinφ+1=1⇒sinφ=0,可得φ=kπ,所以f(x)=12sin⎪⎭⎫⎝⎛+ππkx2+1,由于周期T=4,2017=504×4+1,且f(1)+f(2)+f(3)+f(4)=4,所以S=f(1)+…+f(2016)+f(2017)=2016+f(2017)=2016+f(1)=2016+32=4 0352,故选C.【答案】 C【例2】.已知函数f(x)=sin2ωx-12(ω>0)的周期为π2,若将其图象沿x轴向右平移a个单位(a>1),所得图象关于原点对称,则实数a的最小值为( )A.π4B.3π4C.π2D.π8【解析】∵f(x)=1-cos 2ωx2-12=-12cos 2ωx,2π2ω=π2,解得ω=2,从而f(x)=-12cos 4x.函数f(x)向右平移a个单位后,得到新函数为g(x)=-12cos(4x-4a).∴cos 4a=0,4a=π2+kπ,k∈Z,当k=0时,a的最小值为π8.选D.【答案】 D题组训练一函数y=A sin(ωx+φ)的解析式与图象1.已知函数f (x )=A sin(ωx +φ)(A >0,ω>0,0<φ<π)的部分图象如图所示,且f (α)=1,α∈⎪⎭⎫ ⎝⎛3,0π,则cos ⎪⎭⎫ ⎝⎛+652πα等于( )A.13 B .±223C.223D .-223【解析】由题图可知A =3,易知ω=2,φ=5π6,即f (x )=3sin ⎪⎭⎫ ⎝⎛+652πx . 因为f (α)=3sin ⎪⎭⎫ ⎝⎛+652πα=1,所以sin ⎪⎭⎫⎝⎛+652πα=13, 因为α∈⎪⎭⎫⎝⎛3,0π,所以2α+5π6∈⎪⎭⎫ ⎝⎛+652πα, 所以cos ⎪⎭⎫⎝⎛+652πα=-223,故选D. 【答案】 D2.已知曲线C 1:y =cos x ,C 2:y =sin ⎪⎭⎫⎝⎛+322πx ,则下面结论正确的是( ) A .把C 1上各点的横坐标伸长到原来的2倍,纵坐标不变,再把得到的曲线向右平移π6个单位长度,得到曲线C 2B .把C 1上各点的横坐标伸长到原来的2倍,纵坐标不变,再把得到的曲线向左平移π12个单位长度,得到曲线C 2C .把C 1上各点的横坐标缩短到原来的12倍,纵坐标不变,再把得到的曲线向右平移π6个单位长度,得到曲线C 2D .把C 1上各点的横坐标缩短到原来的12倍,纵坐标不变,再把得到的曲线向左平移π12个单位长度,得到曲线C 2【解析】因为C 1,C 2函数名不同,所以将C 2利用诱导公式转化成与C 1相同的函数名,则C 2:y =sin ⎪⎭⎫ ⎝⎛+322πx =cos ⎪⎭⎫ ⎝⎛-+2322ππx =cos ⎪⎭⎫ ⎝⎛+62πx ,则由C 1上各点的横坐标缩短到原来的12倍变为y =cos 2x ,再将曲线向左平移π12个单位得到C 2,故选D.【答案】 D3.设函数y =sin ωx (ω>0)的最小正周期是T ,将其图象向左平移14T 后,得到的图象如图所示,则函数y =sin ωx (ω>0)的单调递增区间是( )A.()Z k k k ∈⎥⎦⎤⎢⎣⎡+-24767,24767ππππ B.()Z k k k ∈⎥⎦⎤⎢⎣⎡+-24737,24737ππππ C.()Z k k k ∈⎥⎦⎤⎢⎣⎡+-12737,12737ππππ D.()Z k k k ∈⎥⎦⎤⎢⎣⎡++242167,24767ππππ 【解析】 方法一 由已知图象知,y =sin ωx (ω>0)的最小正周期是2×7π12=7π6,所以2πω=7π6,解得ω=127,所以y =sin 127x .由2k π-π2≤127x ≤2k π+π2得到单调递增区间是()Z k k k ∈⎥⎦⎤⎢⎣⎡+-24767,24767ππππ 方法二 因为T =2πω,所以将y =sin ωx (ω>0)的图象向左平移14T 后,所对应的解析式为y =sin ω⎪⎭⎫ ⎝⎛+ωπ2x .由图象知,ω⎪⎭⎫ ⎝⎛+ωππ2127=3π2,所以ω=127, 所以y =sin127x .由2k π-π2≤127x ≤2k π+π2得到单调递增区间是 ()Z k k k ∈⎥⎦⎤⎢⎣⎡+-24767,24767ππππ(k ∈Z ). 【答案】 A题型二 三角函数的性质 【题型要点】(1)奇偶性的三个规律:①函数y =A sin(ωx +φ)是奇函数⇔φ=k π(k ∈Z ),是偶函数⇔φ=k π+π2(k ∈Z ); ②函数y =A cos(ωx +φ)是奇函数⇔φ=k π+π2(k ∈Z ),是偶函数⇔φ=k π(k ∈Z );③函数y =A tan(ωx +φ)是奇函数⇔φ=k π(k ∈Z ).(2)对称性的三个规律①函数y =A sin(ωx +φ)的图象的对称轴由ωx +φ=k π+π2(k ∈Z )解得,对称中心的横坐标由ωx +φ=k π(k ∈Z )解得; ②函数y =A cos(ωx +φ)的图象的对称轴由ωx +φ=k π(k ∈Z )解得,对称中心的横坐标由ωx +φ=k π+π2(k ∈Z )解得; ③函数y =A tan(ωx +φ)的图象的对称中心的横坐标由ωx +φ=k π2(k ∈Z )解得.(3)三角函数单调性:求形如y=A sin(ωx+φ)(或y=A cos(ωx+φ))(A、ω、φ为常数,A≠0,ω>0)的单调区间的一段思路是令ωx+φ=z,则y=A sin z(或y=A cos z),然后由复合函数的单调性求得.(4)三角函数周期性:函数y=A sin(ωx+φ)(或y=A cos(ωx+φ))的最小正周期T=2π|ω|.应特别注意y=|A sin(ωx+φ)|的周期为T=π|ω|.【例3】设函数f(x)=sinωx·cosωx-3cos2ωx+32(ω>0)的图象上相邻最高点与最低点的距离为π2+4.(1)求ω的值;(2)若函数y=f(x+φ)(0<φ<π2)是奇函数,求函数g(x)=cos(2x-φ)在[0,2π]上的单调递减区间.【解】(1)f(x)=sinωx·cosωx-3cos2ωx+3 2=12sin2ωx-3(1+cos 2ωx)2+32=12sin2ωx-32cos2ωx=sin⎪⎭⎫⎝⎛-32πωx,设T为f(x)的最小正周期,由f(x)的图象上相邻最高点与最低点的距离为π2+4,得∴22⎪⎭⎫⎝⎛T+[2f(x)max]2=π2+4,∵f(x)max=1,∴22⎪⎭⎫⎝⎛T+4=π2+4,整理得T=2π.又ω>0,T=2π2ω=2π,∴ω=12.(2)由(1)可知f (x )=sin ⎪⎭⎫ ⎝⎛-3πx ,∴f (x +φ)=sin ⎪⎭⎫ ⎝⎛-+3πϕx .∵y =f (x +φ)是奇函数,则sin ⎪⎭⎫ ⎝⎛-3πϕ=0,又0<φ<π2,∴φ=π3, ∴g (x )=cos(2x -φ)=cos ⎪⎭⎫ ⎝⎛-32πx .令2k π≤2x -π3≤2k π+π,k ∈Z ,则k π+π6≤x ≤k π+2π3,k ∈Z , ∴单调递减区间是⎥⎦⎤⎢⎣⎡++32,6ππππk k k ∈Z . 又∵x ∈[0,2π],∴当k =0时,递减区间是⎥⎦⎤⎢⎣⎡32,6ππ;当k =1时,递减区间是⎥⎦⎤⎢⎣⎡35,67ππ∴函数g (x )在[0,2π]上的单调递减区间是⎥⎦⎤⎢⎣⎡32,6ππ,⎥⎦⎤⎢⎣⎡35,67ππ.【例4】.已知函数f (x )=sin(ωx +π6)(ω>0)的最小正周期为4π,则( )A .函数f (x )的图象关于原点对称B .函数f (x )的图象关于直线x =π3对称C .函数f (x )图象上的所有点向右平移π3个单位长度后,所得的图象关于原点对称D .函数f (x )在区间(0,π)上单调递增【解析】2πω=4π⇒ω=12,所以f (x )=sin ⎪⎭⎫⎝⎛+62πx 不是奇函数,图象不关于原点对称;x =π3时f (x )=32不是最值,图象不关于直线x =π3对称; 所有点向右平移π3个单位长度后得y =sin ⎥⎦⎤⎢⎣⎡+-6)3(21ππx =sin 12x 为奇函数,图象关于原点对称;因为x ∈(0,π)⇒12x +π6∈⎪⎭⎫⎝⎛32,6ππ,所以函数f (x )在区间(0,π)上有增有减,综上选C.【答案】 C【例5】.已知函数f (x )=2sin(ωx +φ)(ω>0),x ∈⎥⎦⎤⎢⎣⎡-32,12ππ的图象如图所示,若f (x 1)=f (x 2),且x 1≠x 2,则f (x 1+x 2)等于( )A .1 B. 2 C. 3D .2【解析】 根据函数f (x )=2sin(ωx +φ),x ∈[-π12,2π3]的图象知,3T 4=2π3-⎪⎭⎫ ⎝⎛-12π=3π4,∴T =π,∴ω=2πT =2; 又x =-π12时,2×⎪⎭⎫⎝⎛-12π+φ=0,解得φ=π12, ∴f (x )=2sin ⎪⎭⎫ ⎝⎛+62πx ;又f (x 1)=f (x 2),且x 1≠x 2,不妨令x 1=0,则x 2=π3, ∴x 1+x 2=π3,∴f (x 1+x 2)=2sin ⎪⎭⎫⎝⎛+⨯632ππ=1.故选A. 【答案】 A题组训练二 三角函数的性质1.如图是函数y =A sin(ωx +φ)⎪⎭⎫ ⎝⎛≤>>2,0,0πϕωA 图象的一部分.为了得到这个函数的图象,只要将y =sin x (x ∈R )的图象上所有的点( )A .向左平移π3个单位长度,再把所得各点的横坐标缩短到原来的12,纵坐标不变B .向左平移π3个单位长度,再把所得各点的横坐标伸长到原来的2倍,纵坐标不变C .向左平移π6个单位长度,再把所得各点的横坐标缩短到原来的12,纵坐标不变D .向左平移π6个单位长度,再把所得各点的横坐标伸长到原来的2倍,纵坐标不变【解析】 观察图象知,A =1,T =2⎪⎭⎫⎝⎛-365ππ=π,ω=2πT =2,即y =sin(2x +φ);将点⎪⎭⎫ ⎝⎛0,3π代入得⎪⎭⎫⎝⎛+⨯ϕπ32sin =0,结合|φ|≤π2,得φ=π3,所以y =sin ⎪⎭⎫ ⎝⎛+32πx .故选A. 【答案】 A2.已知函数f (x )=cos 2ωx 2+32sin ωx -12(ω>0),x ∈R ,若f (x )在区间(π,2π)内没有零点,则ω的取值范围是( )A.⎥⎦⎤⎝⎛125,0π B.⎥⎦⎤ ⎝⎛125,0π∪⎪⎭⎫⎢⎣⎡1211,65 C.⎥⎦⎤ ⎝⎛65,0π D.⎥⎦⎤ ⎝⎛125,0π∪⎥⎦⎤⎢⎣⎡1211,65 【解析】 函数f (x )=cos 2ωx 2+32sin ωx -12=12cos ωx +32sin ωx =sin ⎪⎭⎫ ⎝⎛+6πωx ,可得T =2πω≥π,0<ω≤2,f (x )在区间(π,2π)内没有零点,函数的图象如图两种类型,结合三角函数可得:⎩⎪⎨⎪⎧ωπ+π6≥02ωπ+π6≤π或⎩⎪⎨⎪⎧πω+π6≥π2ωπ+π6≤2π,解得ω∈⎥⎦⎤ ⎝⎛125,0π∪⎪⎭⎫⎢⎣⎡1211,65.故选B.【答案】 B题型三 三角恒等变换 【题型要点解析】三角函数恒等变换“四大策略”(1)常值代换:特别是“1”的代换,1=sin 2θ+cos 2θ=tan 45°等; (2)项的分拆与角的配凑:如sin 2α+2cos 2α=(sin 2α+cos 2α)+cos 2α,α=(α-β)+β等;(3)降次与升次:正用二倍角公式升次,逆用二倍角公式降次; (4)弦、切互化:一般是切化弦.【例6】如图,圆O 与x 轴的正半轴的交点为A ,点C ,B 在圆O 上,且点C位于第一象限,点B 的坐标为⎪⎭⎫⎝⎛-135,1312,∠AOC =α.若|BC |=1,则3cos 2α2-sin α2·cos α2-32的值为________.【解析】由题意得|OC |=|OB |=|BC |=1, 从而△OBC 为等边三角形,所以sin ∠AOB =sin ⎪⎭⎫ ⎝⎛-απ3=513,又因为3cos 2α2-sinα2cos α2-32=3·1+cos α2-sin α2-32=-12sin α+32cos α=sin ⎪⎭⎫ ⎝⎛-απ3=513.【答案】513【例7】.已知sin ⎪⎭⎫ ⎝⎛-8πα=45,则cos ⎪⎭⎫ ⎝⎛+83πα等于( ) A .-45B.45 C .-35D.35【解析】 ∵sin ⎪⎭⎫ ⎝⎛-8πα=45,则cos ⎪⎭⎫⎝⎛+83πα=cos ⎥⎦⎤⎢⎣⎡⎪⎭⎫ ⎝⎛-+82παπ=-sin ⎪⎭⎫ ⎝⎛-8πα=-45,故选A.【答案】 A【例8】.已知cos α=35,cos(α-β)=7210,且0<β<α<π2,那么β等于( )A.π12B.π6C.π4D.π3【解析】 cos β=cos[α-(α-β)]=cos αcos(α-β)+sin αsin(α-β),由已知cos α=35,cos(α-β)=7210,0<β<α<π2,可知sinα=45,sin(α-β)=210 ,代入上式得cos β=35×7210+45×210=25250=22,所以β=π4,故选C.【答案】 C题组训练三 三角恒等变换1.若sin α+3sin ⎪⎭⎫⎝⎛+απ2=0,则cos 2α的值为( )A .-35B.35 C .-45D.45【解析】 由sin α+3sin ⎪⎭⎫⎝⎛+απ2=0,则sin α+3cos α=0,可得:tan α=sin αcos α=-3; 则cos 2α=cos 2α-sin 2α=1-tan 2αtan 2α+1=1-91+9=-45.故选C. 【答案】 C2.已知cos ⎪⎭⎫ ⎝⎛-3πx =13,则cos ⎪⎭⎫ ⎝⎛-352πx +sin 2⎪⎭⎫⎝⎛-x 3π的值为( ) A .-19B.19 C.53D .-53【解析】 cos ⎪⎭⎫ ⎝⎛-352πx +sin 2⎪⎭⎫⎝⎛-x 3π =-cos ⎪⎭⎫ ⎝⎛-322πx +sin 2⎪⎭⎫ ⎝⎛-3πx =1-2cos 2⎪⎭⎫ ⎝⎛-3πx +1-cos 2⎪⎭⎫ ⎝⎛-3πx=2-3cos 2⎪⎭⎫ ⎝⎛-3πx =53. 【答案】 C3.已知cos ⎪⎭⎫ ⎝⎛+απ6·cos ⎪⎭⎫ ⎝⎛-απ3=-14,α∈⎪⎭⎫⎝⎛2,3ππ.则sin 2α=________.【解析】 cos ⎪⎭⎫ ⎝⎛+απ6·cos ⎪⎭⎫⎝⎛-απ3=cos ⎪⎭⎫ ⎝⎛+απ6·sin ⎪⎭⎫ ⎝⎛+απ6=12sin ⎪⎭⎫ ⎝⎛+32πα=-14,即sin ⎪⎭⎫ ⎝⎛+32πα=-12.∵α∈⎪⎭⎫⎝⎛2,3ππ,∴2α+π3∈⎪⎭⎫ ⎝⎛34,ππ, ∴cos ⎪⎭⎫ ⎝⎛+32πα=-32,∴sin 2α=sin ⎥⎦⎤⎢⎣⎡-⎪⎭⎫ ⎝⎛+332ππα=sin ⎪⎭⎫ ⎝⎛+32παcos π3-cos ⎪⎭⎫ ⎝⎛+32παsin π3=12.【答案】12题型四 三角函数性质的综合应用 【题型要点】研究三角函数的性质的两个步骤第一步:先借助三角恒等变换及相应三角函数公式把待求函数转化为y =A sin(ωx +φ)+B 的形式;第二步:把“ωx +φ”视为一个整体,借助复合函数性质求y =A sin(ωx +φ)+B 的单调性及奇偶性、最值、对称性等问题.【例9】设函数f (x )=sin ⎪⎭⎫ ⎝⎛-6πωx +sin ⎪⎭⎫ ⎝⎛-2πωx ,其中0<ω<3.已知f⎪⎭⎫⎝⎛6π=0. (1)求ω;(2)将函数y =f (x )的图象上各点的横坐标伸长为原来的2倍(纵坐标不变),再将得到的图象向左平移π4个单位,得到函数y =g (x )的图象,求g (x )在⎥⎦⎤⎢⎣⎡-43,4ππ上的最小值. 【解析】 (1)因为f (x )=sin ⎪⎭⎫ ⎝⎛-6πωx +sin ⎪⎭⎫ ⎝⎛-2πωx ,所以f (x )=32sin ωx -12cos ωx -cos ωx =32sin ωx -32cos ωx =3⎪⎪⎭⎫ ⎝⎛-x x ωωcos 23sin 21 =3⎪⎭⎫ ⎝⎛-3sin πωx由题设知f ⎪⎭⎫⎝⎛6π=0,所以ωπ6-π3=k π,k ∈Z .故ω=6k +2,k ∈Z ,又0<ω<3,所以ω=2.(2)由(1)得f (x )=3sin ⎪⎭⎫ ⎝⎛-32πx所以g (x )=3sin ⎪⎭⎫ ⎝⎛-+34ππx =3sin ⎪⎭⎫ ⎝⎛-12πx因为x ∈⎥⎦⎤⎢⎣⎡-43,4ππ,所以x -π12∈⎥⎦⎤⎢⎣⎡-32,3ππ,当x -π12=-π3, 即x =-π4时,g (x )取得最小值-32.【答案】 -32题组训练四 三角函数性质的综合应用已知函数f (x )=sin 2x -cos 2x -23sin x cos x (x ∈R ).(1)求f ⎪⎭⎫⎝⎛32π的值.(2)求f (x )的最小正周期及单调递增区间. 【解析】 (1)由sin 2π3=32,cos 2π3=-12,f ⎪⎭⎫⎝⎛32π=223⎪⎪⎭⎫ ⎝⎛-221⎪⎭⎫ ⎝⎛--23×32×⎪⎭⎫ ⎝⎛-21得f ⎪⎭⎫⎝⎛32π=2. (2)由cos 2x =cos 2x -sin 2x 与sin 2x =2sin x cos x 得f (x )=-cos 2x -3sin 2x =-2si ⎪⎭⎫⎝⎛+62πx 所以f (x )的最小正周期是π 由正弦函数的性质得π2+2k π≤2x +π6≤3π2+2k π,k ∈Z . 解得π6+k π≤x ≤2π3+k π,k ∈Z .所以f (x )的单调递增区间是⎣⎢⎡⎦⎥⎤π6+k π,2π3+k πk ∈Z .【专题训练】一、选择题1.已知α满足sin α=13,则cos ⎪⎭⎫ ⎝⎛+απ4cos ⎪⎭⎫⎝⎛-απ4=( )A.718B.2518 C .-718D .-2518【解析】 cos ⎪⎭⎫ ⎝⎛+απ4cos ⎪⎭⎫ ⎝⎛-απ4=22()cos α-sin α·22()cos α+sin α=12()cos 2α-sin 2α=12(1-2sin 2α)=12⎪⎭⎫ ⎝⎛⨯-9121=718,选A. 【答案】 A2.若函数f (x )=4sin ωx ·sin 2⎪⎭⎫⎝⎛+42πωx +cos2ωx -1(ω>0)在⎥⎦⎤⎢⎣⎡-32,2ππ上是增函数,则ω的取值范围是( )A .[0,1)B.⎪⎭⎫⎢⎣⎡+∞,43 C .[1,+∞)D.⎥⎦⎤ ⎝⎛43,0 【解析】 由题意,因为f (x )=4sin ωx ·sin 2⎪⎭⎫⎝⎛+42πωx +cos2ωx -1=4sin ωx ·1-cos ⎝⎛⎭⎪⎫ωx +π22+cos2ωx -1=2sin ωx (1+sin ωx )+cos2ωx-1=2sin ωx 所以⎥⎦⎤⎢⎣⎡-ωπωπ2,2表示函数含原点的递增区间,又因为函数在⎥⎦⎤⎢⎣⎡-32,2ππ上是增函数,所以⎥⎦⎤⎢⎣⎡-32,2ππ⊆⎣⎢⎡⎦⎥⎤-π2ω,π2ω,即⎩⎪⎨⎪⎧-π2ω≤-π2π2ω≥2π3⇒⎩⎨⎧ω≤1ω≤34,又ω>0,所以0<ω≤34,故选D.【答案】 D3.函数f (x )=A sin(ωx +φ)(A >0,ω>0)在x =1和x =-1处分别取得最大值和最小值,且对于∀x 1,x 2∈[-1,1](x 1≠x 2)都有f (x 1)-f (x 2)x 1-x 2>0,则函数f (x +1)一定是( )A .周期为2的偶函数B .周期为2的奇函数C .周期为4的奇函数D .周期为4的偶函数【解析】 由题意可得,[-1,1]是f (x )的一个增区间,函数f (x )的周期为2×2=4,∴2πω=4,ω=π2, ∴f (x )=A sin ⎪⎭⎫ ⎝⎛+ϕπ2x .再根据f (1)=A sin ⎪⎭⎫ ⎝⎛+ϕπ2=A ,可得sin ⎪⎭⎫⎝⎛+ϕπ2=cos φ=1,故φ=2k π,k ∈Z ,∴f (x +1)=A sin ⎥⎦⎤⎢⎣⎡++ππk x 2)1(2=A sin ⎪⎭⎫ ⎝⎛+ϕπ2x =A cos π2x ,∴f (x +1)是周期为4的偶函数,故选D. 【答案】D4.函数f (x )=sin(ωx +φ)(ω>0,|φ|<π2)的最小正周期是π,若其图象向左平移π3个单位后得到的函数为奇函数,则函数f (x )的图象( )A .关于点⎪⎭⎫⎝⎛0,12π对称B .关于直线x =π12对称C .关于点⎪⎭⎫⎝⎛0,6π对称D .关于直线x =π6对称【解析】 由于函数最小正周期为π,所以ω=2,即f (x )=sin(2x +φ).向左平移π3得到sin ⎪⎭⎫⎝⎛++ϕπ322x 为奇函数,故2π3+φ=π,φ=π3,所以f (x )=sin ⎪⎭⎫ ⎝⎛+322πx .f ⎪⎭⎫⎝⎛12π=sin π2=1,故x =π12为函数的对称轴,选B. 【答案】 B5.函数f (x )=A sin(ωx +φ)(A >0,ω>0,|φ|<π2)的部分图象如图,f ⎪⎭⎫⎝⎛-2413π=( )A .-62 B .-32C .-22D .-1【解析】 根据函数f (x )=A sin(ωx +φ)的部分图象知,A =2,T 4=7π12-π3=π4,∴T =2πω=π,解得ω=2; ∴f (x )=2sin(2x +φ). 由五点法画图知,ω×π3+φ=2π3+φ=π,解得φ=π3,∴f (x )= 2 sin(2x +π3),∴f ⎪⎭⎫ ⎝⎛-2413π=2sin(-13π12+π3)=2sin(-3π4)=-1,故选D. 【答案】 D6.函数f (x )=2sin(ωx +φ)⎪⎭⎫ ⎝⎛<<<2,120πϕω,若f (0)=-3,且函数f (x )的图象关于直线x =-π12对称,则以下结论正确的是( )A .函数f (x )的最小正周期为π3B .函数f (x )的图象关于点⎪⎭⎫⎝⎛0,97π对称 C .函数f (x )在区间⎪⎭⎫⎝⎛2411,4ππ上是增函数D .由y =2cos 2x 的图象向右平移5π12个单位长度可以得到函数f (x )的图象 【解析】 函数f (x )=2sin(ωx +φ)⎪⎭⎫ ⎝⎛<<<2,120πϕω,∵f (0)=-3,即2sin φ=-3,∵-π2<φ<π2, ∴φ=-π3又∵函数f (x )的图象关于直线x =-π12对称,∴-ω×π12-π3=π2+k π,k ∈Z . 可得ω=12k -10,∵0<ω<12.∴ω=2.∴f (x )的解析式为:f (x )=2sin ⎪⎭⎫ ⎝⎛-32πx .最小正周期T =2π2=π,∴A 不对. 当x =7π9时,可得y ≠0,∴B 不对. 令-π2≤2x -π3≤π2,可得-π12≤x ≤5π12,∴C 不对.函数y =2cos 2x 的图象向右平移5π12个单位, 可得2cos 2⎪⎭⎫ ⎝⎛-125πx =2cos ⎪⎭⎫ ⎝⎛-652πx=2sin ⎪⎭⎫ ⎝⎛+-2652ππx =2sin ⎪⎭⎫ ⎝⎛-32πx . ∴D 项正确.故选D. 【答案】 D 二、填空题7.已知函数f (x )=A sin(ωx +φ)⎪⎭⎫ ⎝⎛<><2,0,0πϕωA 的图象与y 轴的交点为(0,1),它在y 轴右侧的第一个最高点和第一个最低点的坐标分别为(x 0,2)和(x 0+2π,-2),则f (x )=________.【解析】 由题意可得A =2,T 2=2π,T =4π,∴ω=2πT =2π4π=12,∴f (x )=2sin ⎪⎭⎫⎝⎛+ϕ2x ,∴f (0)=2sin φ=1.由|φ|<π2,∴φ=π6,∴f (x )=2sin ⎪⎭⎫⎝⎛+62πx . 【答案】 2sin ⎪⎭⎫⎝⎛+62πx8.已知函数f (x )=sin ωx +cos ωx (ω>0),x ∈R .若函数f (x )在区间(-ω,ω)内单调递增,且函数y =f (x )的图象关于直线x =ω对称,则ω的值为________.【解析】 f (x )=sin ωx +cos ωx =2sin ⎪⎭⎫ ⎝⎛+4πωx ,因为f (x )在区间(-ω,ω)内单调递增,且函数图象关于直线x =ω对称,所以f (ω)必为一个周期上的最大值,所以有ω·ω+π4=2k π+π2,k ∈Z ,所以ω2=π4+2k π,k ∈Z .又ω-(-ω)≤2πω2,即ω2≤π2,则ω2=π4,所以ω=π2.【答案】π29.已知sin ⎪⎭⎫ ⎝⎛-απ3=13⎪⎭⎫ ⎝⎛<<20πα,则sin ⎪⎭⎫⎝⎛+απ6=________.【解析】 ∵sin ⎪⎭⎫ ⎝⎛-απ3=13,∴cos ⎪⎭⎫ ⎝⎛+απ6=cos ⎥⎦⎤⎢⎣⎡--)3(2αππ=sin ⎪⎭⎫ ⎝⎛-απ3=13;又0<α<π2,∴π6<π6+α<2π3, ∴sin ⎪⎭⎫ ⎝⎛+απ6=223.【答案】22310.已知π2<β<α<34π,cos(α-β)=1213,sin(α+β)=-35,则sin2α=__________A.5665 B .-5665 C.6556D .-6556【解析】由题意得π2<β<α<3π4,则0<α-β<π4,π<α+β<3π2,由cos(α-β)=1213⇒sin(α-β)=513,sin(α+β)=-35⇒cos(α+β)=-45,则sin2α=sin[(α-β)+(α+β)]=sin(α-β)cos(α+β)+cos(α-β)sin(α+β)=513×(-45)+1213×(-35)=-5665,故选B.【答案】 B 三、解答题11.已知函数f (x )=sin ωx cos ωx -3cos 2ωx +32(ω>0)图象的两条相邻对称轴为π2.(1)求函数y =f (x )的对称轴方程;(2)若函数y =f (x )-13在(0,π)上的零点为x 1,x 2,求cos(x 1-x 2)的值.【解析】 (1)函数f (x )=sin ωx ·cos ωx -3cos 2ωx +32.化简可得f (x )=12sin 2ωx -32cos 2ωx =sin ⎪⎭⎫ ⎝⎛-32πωx ,由题意可得周期T =π,∴π=2π2ω∴w =1∴f (x )=sin ⎪⎭⎫ ⎝⎛-32πx故函数y =f (x )的对称轴方程为2x -π3=k π+π2(k ∈Z ),即x =k π2+5π12(k ∈Z )(2)由函数y =f (x )-13在(0,π)上的零点为x 1,x 2,可知sin ⎪⎭⎫ ⎝⎛-321πx =sin ⎪⎭⎫ ⎝⎛-322πx =13>0,且0<x 1<5π12<x 2<2π3. 易知(x 1,f (x 1))与(x 2,f (x 2))关于x =5π12对称, 则x 1+x 2=5π6,∴cos(x 1-x 2)=cos ⎥⎦⎤⎢⎣⎡⎪⎭⎫ ⎝⎛--1165x x π=cos ⎪⎭⎫ ⎝⎛-6521πx =cos ⎥⎦⎤⎢⎣⎡-⎪⎭⎫ ⎝⎛-2321ππx=sin ⎪⎭⎫ ⎝⎛-321πx =13.12.已知函数f (x )=23sin ⎪⎭⎫ ⎝⎛+6πωx cos ωx (0<ω<2),且f (x )的图象过点⎪⎪⎭⎫⎝⎛23,125π(1)求ω的值及函数f (x )的最小正周期; (2)将y =f (x )的图象向右平移π6个单位,得到函数y =g (x )的图象,已知g ⎪⎭⎫ ⎝⎛2α=536,求cos ⎪⎭⎫ ⎝⎛-32πα的值.【解】 (1)f (x )=23sin ⎪⎭⎫ ⎝⎛+6πωx cos ωx =3sin ωx cos ωx +3cos 2ωx =32sin2ωx +32cos2ωx +32=3sin ⎪⎭⎫ ⎝⎛+62πωx +32, 因为函数y =f (x )的图象过点⎪⎪⎭⎫⎝⎛23,125π,。
2020年高考数学《新高考创新题型》之2:函数与导数(含精析)

2020年高考数学(新高考创新题型)之2.函数与导数(含精析)一、选择题。
1.设函数()y f x =在区间(),a b 上的导函数为()f x ',()f x '在区间(),a b 上的导函数为()f x '',若区间(),a b 上()0f x ''>,则称函数()f x 在区间(),a b 上为“凹函数”,已知()54112012f x x mx =- 22x -在()1,3上为“凹函数”,则实数m 的取值范围是( )A .31(,)9-∞ B .31[,5]9C .(,3]-∞D .(),5-∞ 2.德国著名数学家狄利克雷在数学领域成就显著,以其名命名的函数1,()0,R x Qf x x Q∈⎧=⎨∈⎩ð被称为狄利克雷函数,其中R 为实数集,Q 为有理数集,则关于函数()f x 有如下四个命题: ①()()0f f x =; ②函数()f x 是偶函数;③任取一个不为零的有理数T ,()()f x T f x +=对任意的x ∈R 恒成立;④存在三个点()()()112233,(),,(),,()A x f x B x f x C x f x ,使得ABC ∆为等边三角形. 其中真命题的个数是( )A .1B .2C .3D .43.设函数()x f 的定义域为D ,若函数()x f 满足条件:存在[]D b a ⊆,,使()x f 在[]b a ,上的值域是⎥⎦⎤⎢⎣⎡2,2b a 则称()x f 为“倍缩函数”,若函数()()t x f x+=2log 2为“倍缩函数”,则的范围是( ) A.⎪⎭⎫⎝⎛+∞,41 B.()10, ⎥⎦⎤ ⎝⎛210.,C D. ⎪⎭⎫ ⎝⎛410, 4.函数(),0,ln 20,322⎪⎩⎪⎨⎧>-≤+--=x x x x x x f 直线m y =与函数()x f 的图像相交于四个不同的点,从小到大,交点横坐标依次记为d c b a ,,,,有以下四个结论①[)4,3∈m ②[)4,0e abcd ∈ ③562112,2a b c d e e e e ⎡⎫+++∈+-+-⎪⎢⎣⎭④若关于x 的方程()m x x f =+恰有三个不同实根,则m 取值唯一. 则其中正确的结论是( )A. ①②③B. ①②④C. ①③④D. ②③④5.)(x f 是定义在D 上的函数, 若存在区间D n m ⊆],[, 使函数)(x f 在],[n m 上的值域恰为],[kn km ,则称函数)(x f 是k 型函数.给出下列说法:型函数; x 是下列选项正确的是( )A .①③B .②③C .②④D .①④6.已知函数()121f x x =--,[0,1]x ∈.定义:1()()f x f x =,21()(())f x f f x =,……,1()(())n n f x f f x -=,2,3,4,n =满足()n f x x =的点[0,1]x ∈称为()f x 的n 阶不动点.则()f x 的n 阶不动点的个数是( )A.2n 个B.22n 个 C.2(21)n -个 D.2n 个二、填空题。
2020年高考数学试题分类汇编 函数与导数 精品

2020年高考数学试题分类汇编:函数与导数一、选择题1.(安徽理3) 设()f x 是定义在R 上的奇函数,当x ≤0时,()f x x x 2=2-,则()f 1= (A )-3 (B) -1 (C)1 (D)3 【答案】A【命题意图】本题考查函数的奇偶性,考查函数值的求法.属容易题.【解析】2(1)(1)[2(1)(1)]3f f =--=----=-.故选A. 2.(安徽理10) 函数()()m nf x ax x =1-g 在区间〔0,1〕上的图像如图所示,则m ,n 的值可能是(A )1,1m n == (B) 1,2m n == (C) 2,1m n == (D) 3,1m n ==【答案】B 【命题意图】本题考查导数在研究函数单调性中的应用,考查函数图像,考查思维的综合能力.难度大.【解析】代入验证,当1,2m n ==,()()()f x ax x n x x x 232=1-=-2+g ,则()()f x a x x 2'=3-4+1,由()()f x a x x 2'=3-4+1=0可知,121,13x x ==,结合图像可知函数应在10,3⎛⎫ ⎪⎝⎭递增,在1,13⎛⎫ ⎪⎝⎭递减,即在13x =取得最大值,由()()f a 21111=⨯1-=3332g ,知a 存在.故选B.3.(安徽文5)若点(a,b)在lg y x = 图像上,a ≠1,则下列点也在此图像上的是(A )(a 1,b ) (B) (10a,1-b) (C) (a 10,b+1) (D)(a2,2b)【答案】D 【命题意图】本题考查对数函数的基本运算,考查对数函数的图像与对应点的关系.【解析】由题意lg b a =,lg lg b a a 22=2=,即()2,2a b 也在函数lg y x = 图像上.4.(安徽文10) 函数()()n f x ax x 2=1-g 在区间〔0,1〕上的图像如图所示,则n 可能是(A )1 (B) 2 (C) 3 (D) 4【答案】A 【命题意图】本题考查导数在研究函数单调性中的应用,考查函数图像,考查思维的综合能力.难度大.【解析】代入验证,当1n =时,()()()f x ax x a x x x 232=1-=-2+g ,则()()f x a x x 2'=3-4+1,由()()f x a x x 2'=3-4+1=0可知,121,13x x ==,结合图像可知函数应在10,3⎛⎫ ⎪⎝⎭递增,在1,13⎛⎫ ⎪⎝⎭递减,即在13x =取得最大值,由()()f a 21111=⨯1-=3332g ,知a 存在.故选A.5.(北京理6)根据统计,一名工人组装第x件某产品所用的时间(单位:分钟)为()x A f x x A <=≥(A ,c 为常数)。
(完整版)导数含参数取值范围分类讨论题型总结与方法归纳

导数习题题型十七:含参数导数问题的分类讨论问题含参数导数问题的分类讨论问题1.求导后,导函数的解析式含有参数,导函数为零有实根(或导函数的分子能分解因式), 导函数为零的实根中有参数也落在定义域内,但不知这些实根的大小关系,从而引起讨论。
★已知函数ax x a x x f 2)2(2131)(23++-=(a 〉0),求函数的单调区间)2)((2)2()(--=++-='x a x a x a x x f ★★例1 已知函数x a xax x f ln )2(2)(+--=(a 〉0)求函数的单调区间 222))(2(2)2()(x a x x x a x a x x f --=++-='★★★例3已知函数()()22211ax a f x x R x -+=∈+,其中a R ∈。
(Ⅰ)当1a =时,求曲线()y f x =在点()()2,2f 处的切线方程; (Ⅱ)当0a ≠时,求函数()f x 的单调区间与极值。
解:(Ⅰ)当1a =时,曲线()y f x =在点()()2,2f 处的切线方程为032256=-+y x 。
(Ⅱ)由于0a ≠,所以()()12)1(222+-+='x x a x f ,由()'0f x =,得121,x x a a=-=。
这两个实根都在定()()()()()()22'2222122122111a x a x a x x ax a a f x x x ⎛⎫--+ ⎪+--+⎝⎭==++义域R 内,但不知它们之间 的大小。
因此,需对参数a 的取值分0a >和0a <两种情况进行讨论。
(1)当0a >时,则12x x <.易得()f x 在区间1,a ⎛⎫-∞- ⎪⎝⎭,(),a +∞内为减函数,在区间1,a a ⎛⎫- ⎪⎝⎭为增函数。
故函数()f x 在11x a =-处取得极小值21f a a ⎛⎫-=- ⎪⎝⎭;函数()f x 在2x a =处取得极大值()1f a =。
2020年全国卷1函数与导数压轴题一题多解,深度解析

全国卷1导数题一题多解,深度解析1、2020年全国卷1理科数学第21题的解析已知函数2()e xf x ax x =+-.(1)当a =1时,讨论f (x )的单调性; (2)当x ≥0时,f (x )≥12x 3+1,求a 的取值范围.。
2.2020年 全国卷1文科数学第20题的解析已知函数()(2)xf x e a x =-+. (1)当1a =时,讨论()f x 的单调性; (2)若()f x 有两个零点,求a 的取值范围.。
3. 2020年新高考1卷(山东考卷)第21题已知函数1()eln ln x f x a x a -=-+(1).当a=e 时,求曲线y=f(x)在点(1,f(1))处的切线与两坐标轴围城的三角形的面积; (2)若()1f x ≥,求a 的取值范围。
1、2020年全国卷1理科数学第21题的解析已知函数2()e xf x ax x =+-.(1)当a =1时,讨论f (x )的单调性; (2)当x ≥0时,f (x )≥12x 3+1,求a 的取值范围.。
解析:(1) 单调性,常规题,a 已知,求一个特定函数f(x)的单调性。
若一次求导不见底,则可二次或多次清仓,即二次求导或多次求导,然后逐层返回。
通常二次求导的为多。
(2) 恒成立,提高题,在恒成立情况下,求参数的取值范围。
常常是把恒成立化成最值问题。
由于这里的a 只在一项中出现,故可以优先考虑分离参数法。
这里介绍了两种方法。
解:(1) 当a=1时, 2()e xf x x x =+-,定义域为R ,'()e 21x f x x =+-,易知f ’(x)是单调递增函数。
而f ’(0)=0,∴ 当x ∈(-∞,0),f ’(x)<0 当x ∈(0,+∞),f ’(x)>0∴当x ∈(-∞,0),f(x)单调递减;当x ∈(0,+∞),f(x)单调递增。
(2)解法一 ,分离参数法 当x ≥0时,31()12f x x ≥+ ,即231()e 12x f x ax x x =+≥+- 当x=0时,上式恒成立,此时a ∈R 。
专题21 函数与导数综合-2020年高考数学(理)母题题源解密(全国Ⅰ专版)(解析版)

专题21 函数与导数综合【母题来源一】【2020年高考全国Ⅰ卷理数】已知函数2()e x f x ax x =+-.(1)当a =1时,讨论f (x )的单调性; (2)当x ≥0时,f (x )≥12x 3+1,求a 的取值范围. 【解析】(1)当a =1时,f (x )=e x +x 2–x ,则()f x '=e x +2x –1.故当x ∈(–∞,0)时,()f x '<0;当x ∈(0,+∞)时,()f x '>0.所以f (x )在(–∞,0)单调递减,在(0,+∞)单调递增. (2)31()12f x x ≥+等价于321(1)e 12x x ax x --++≤. 设函数321()(1)e (0)2xg x x ax x x -=-++≥,则32213()(121)e 22x g x x ax x x ax -'=--++-+-21[(23)42]e 2x x x a x a -=--+++1(21)(2)e 2x x x a x -=----.(i )若2a +1≤0,即12a ≤-,则当x ∈(0,2)时,()g x '>0.所以g (x )在(0,2)单调递增,而g (0)=1,故当x ∈(0,2)时,g (x )>1,不合题意.(ii )若0<2a +1<2,即1122a -<<,则当x ∈(0,2a +1)∪(2,+∞)时,g'(x )<0;当x ∈(2a +1,2)时,g'(x )>0.所以g (x )在(0,2a +1),(2,+∞)单调递减,在(2a +1,2)单调递增.由于g (0)=1,所以g (x )≤1当且仅当g (2)=(7−4a )e −2≤1,即a ≥27e 4-. 所以当27e 142a -≤<时,g (x )≤1. (iii )若2a +1≥2,即12a ≥,则g (x )≤31(1)e 2xx x -++.由于27e 10[,)42-∈,故由(ii )可得31(1)e 2x x x -++≤1. 故当12a ≥时,g (x )≤1.综上,a 的取值范围是27e [,)4-+∞. 【点睛】导数是研究函数的单调性、极值(最值)最有效的工具,而函数是高中数学中重要的知识点,对导数的应用的考查主要从以下几个角度进行:(1)考查导数的几何意义,往往与解析几何、微积分相联系.(2)利用导数求函数的单调区间,判断单调性;已知单调性,求参数.(3)利用导数求函数的最值(极值),解决生活中的优化问题.(4)考查数形结合思想的应用.【母题来源二】【2019年高考全国Ⅰ卷理数】已知函数()sin ln(1)f x x x =-+,()f x '为()f x 的导数.证明:(1)()f x '在区间(1,)2π-存在唯一极大值点; (2)()f x 有且仅有2个零点. 【答案】(1)见解析;(2)见解析.【解析】(1)设()()g x f 'x =,则1()cos 1g x x x=-+,21sin ())(1x 'x g x =-++.当1,2x π⎛⎫∈- ⎪⎝⎭时,()g'x 单调递减,而(0)0,()02g'g'π><,可得()g'x 在1,2π⎛⎫- ⎪⎝⎭有唯一零点,设为α.则当(1,)x α∈-时,()0g'x >;当,2x α⎛π⎫∈ ⎪⎝⎭时,()0g'x <. 所以()g x 在(1,)α-单调递增,在,2απ⎛⎫⎪⎝⎭单调递减, 故()g x 在1,2π⎛⎫- ⎪⎝⎭存在唯一极大值点, 即()f 'x 在1,2π⎛⎫- ⎪⎝⎭存在唯一极大值点. (2)()f x 的定义域为(1,)-+∞.(i )当(1,0]x ∈-时,由(1)知,()f 'x 在(1,0)-单调递增,而(0)0f '=,所以当(1,0)x ∈-时,()0f 'x <,故()f x 在(1,0)-单调递减,又(0)=0f ,从而0x =是()f x 在(1,0]-的唯一零点.(ii )当0,2x ⎛π⎤∈ ⎥⎝⎦时,由(1)知,()f 'x 在(0,)α单调递增,在,2απ⎛⎫ ⎪⎝⎭单调递减,而(0)=0f ',02f 'π⎛⎫< ⎪⎝⎭,所以存在,2βαπ⎛⎫∈ ⎪⎝⎭,使得()0f 'β=,且当(0,)x β∈时,()0f 'x >;当,2x βπ⎛⎫∈ ⎪⎝⎭时,()0f 'x <.故()f x 在(0,)β单调递增,在,2βπ⎛⎫⎪⎝⎭单调递减. 又(0)=0f ,1ln 1022f ππ⎛⎫⎛⎫=-+>⎪ ⎪⎝⎭⎝⎭,所以当0,2x ⎛π⎤∈ ⎥⎝⎦时,()0f x >.从而,()f x 在0,2⎛⎤ ⎥⎝⎦π没有零点. (iii )当,2x π⎛⎤∈π⎥⎝⎦时,()0f 'x <,所以()f x 在,2π⎛⎫π ⎪⎝⎭单调递减.而02f π⎛⎫> ⎪⎝⎭,()0f π<,所以()f x 在,2π⎛⎤π⎥⎝⎦有唯一零点. (iv )当(,)x ∈π+∞时,ln(1)1x +>,所以()f x <0,从而()f x 在(,)π+∞没有零点. 综上,()f x 有且仅有2个零点.【名师点睛】本题考查导数与函数极值之间的关系、利用导数解决函数零点个数的问题.解决零点问题的关键一方面是利用零点存在性定理或最值点来说明存在零点,另一方面是利用函数的单调性说明在区间内零点的唯一性,二者缺一不可.【母题来源三】【2018年高考全国Ⅰ卷理数】已知函数1()ln f x x a x x=-+. (1)讨论()f x 的单调性;(2)若()f x 存在两个极值点12,x x ,证明:()()12122f x f x a x x -<--.【答案】(1)见解析;(2)见解析.【解析】(1)()f x 的定义域为(0,)+∞,22211()1a x ax f x x x x -+'=--+=-.(i )若2a ≤,则()0f x '≤,当且仅当2a =,1x =时()0f x '=,所以()f x 在(0,)+∞单调递减.(ii )若2a >,令()0f x '=得,242a a x --=或242a a x +-=.当2244()a a a a x --+-∈+∞时,()0f x '<; 当2244(22a a a a x --+-∈时,()0f x '>. 所以()f x 在2244(0,),()22a a a a --+-+∞单调递减,在2244(22a a a a ---单调递增. (2)由(1)知,()f x 存在两个极值点当且仅当2a >.由于()f x 的两个极值点12,x x 满足210x ax -+=,所以121x x =,不妨设12x x <,则21x >. 由于12121221212121222()()ln ln ln ln 2ln 11221f x f x x x x x x a a a x x x x x x x x x x ----=--+=-+=-+----, 所以1212()()2f x f x a x x -<--等价于22212ln 0x x x -+<.设函数1()2ln g x x x x=-+, 由(1)知,()g x 在(0,)+∞单调递减, 又(1)0g =,从而当(1,)x ∈+∞时,()0g x <.所以22212ln 0x x x -+<, 即1212()()2f x f x a x x -<--.【名师点睛】该题考查的是应用导数研究函数的问题,涉及的知识点有应用导数研究函数的单调性、应用导数研究函数的极值以及极值所满足的条件,在解题的过程中,需要明确导数的符号对单调性的决定性作用,再者就是要先确定函数的定义域,要对参数进行讨论,还有就是在做题的时候,要时刻关注第一问对第二问的影响,通过构造新函数来解决问题的思路要明确. 【母题来源四】【2017年高考全国Ⅰ卷理数】已知函数2()e (2)e xx f x a a x =+--.(1)讨论()f x 的单调性;(2)若()f x 有两个零点,求a 的取值范围.【答案】(1)见解析;(2)(0,1).【解析】(1)()f x 的定义域为(,)-∞+∞,2()2e (2)e 1(e 1)(2e 1)x x x x f x a a a '=+--=-+,(ⅰ)若0a ≤,则()0f x '<,所以()f x 在(,)-∞+∞单调递减. (ⅱ)若0a >,则由()0f x '=得ln x a =-.当(,ln )x a ∈-∞-时,()0f x '<;当(ln ,)x a ∈-+∞时,()0f x '>, 所以()f x 在(,ln )a -∞-单调递减,在(ln ,)a -+∞单调递增. (2)(ⅰ)若0a ≤,由(1)知,()f x 至多有一个零点.(ⅱ)若0a >,由(1)知,当ln x a =-时,()f x 取得最小值,最小值为1(ln )1ln f a a a-=-+. ①当1a =时,由于(ln )0f a -=,故()f x 只有一个零点; ②当(1,)a ∈+∞时,由于11ln 0a a-+>,即(ln )0f a ->,故()f x 没有零点; ③当(0,1)a ∈时,11ln 0a a-+<,即(ln )0f a -<. 又422(2)e(2)e 22e 20f a a ----=+-+>-+>,故()f x 在(,ln )a -∞-有一个零点.设正整数0n 满足03ln(1)n a>-,则00000000()e (e 2)e 20n n n nf n a a n n n =+-->->->. 由于3ln(1)ln a a->-,因此()f x 在(ln ,)a -+∞有一个零点. 综上,a 的取值范围为(0,1).【名师点睛】研究函数零点问题常常与研究对应方程的实数根问题相互转化.已知函数()f x 有2个零点求参数a 的取值范围,第一种方法是分离参数,构造不含参数的函数,研究其单调性、极值、最值,判断y a =与其交点的个数,从而求出a 的取值范围;第二种方法是直接对含参函数进行研究,研究其单调性、极值、最值,注意点是若()f x 有2个零点,且函数先减后增,则只需其最小值小于0,且后面还需验证最小值两边存在大于0的点.【命题意图】考查导数的概念、导数公式、求导法则、导数的几何意义及导数的应用,考查数学式子的变形能力、运算求解能力、分类讨论思想、函数与方程思想、化归与转化思想及分析问题与解决问题的能力. 【命题规律】从全国看,高考在逐年加大对导数问题的考查力度,问题的难度、深度与广度在不断加大,对本部分的要求一般有三个层次:第一层次主要考查求导公式,求导法则与导数的几何意义;第二层次是导数的简单应用,包括求函数的单调区间、极值、最值等;第三层次是综合考查,如零点、证明不等式、恒成立问题、求参数等,包括解决应用问题,将导数内容和传统内容中有关不等式、数列及函数单调性有机结合,设计综合题. 【答题模板】求解应用导数研究函数的性质问题的一般思路:第一步:牢记求导法则,正确求导.在函数与导数类解答题中,通常都会涉及求导,正确的求导是解题关键,因此要牢记求导公式,做到正确求导,解题时应先写出函数定义域.第二步:研究(1)(2)问的关系,注意利用第(1)问的结果.在题设条件下,如果第(1)问的结果第(2)问能用得上,可以直接用,有些题目不用第(1)问的结果甚至无法解决.第三步:根据条件,寻找或构造目标函数,注意分类讨论.高考中函数与导数解答题,一般都会涉及分类讨论,并且讨论的步骤也是得分点,所以一定要重视分类讨论.第四步:选择恰当的方法求解,注意写全得分关键:在函数与导数问题中,求导的结果、分类讨论的条件、单调区间、零点等一些关键式子和结果都是得分点,在解答时一定要写清楚. 【方法总结】1.函数的单调性及应用是高考中的一个重点内容,常见的题型及其解法如下:(1)利用导数判断或证明一个函数在给定区间上的单调性,实质上就是判断或证明不等式()0f x '>(()0f x '<)在给定区间上恒成立.一般步骤为: ①求f ′(x );②确认f ′(x )在(a ,b )内的符号;③作出结论,()0f x '>时为增函数,()0f x '<时为减函数.注意:研究含参数函数的单调性时,需注意依据参数取值对不等式解集的影响进行分类讨论.(2)在利用导数求函数的单调区间时,首先要确定函数的定义域,解题过程中,只能在定义域内讨论,定义域为实数集R 可以省略不写.在对函数划分单调区间时,除必须确定使导数等于零的点外,还要注意在定义域内的不连续点和不可导点.(3)由函数()f x 的单调性求参数的取值范围的方法①可导函数在某一区间上单调,实际上就是在该区间上()0f x '≥(或()0f x '≤)(()f x '在该区间的任意子区间内都不恒等于0)恒成立,然后分离参数,转化为求函数的最值问题,从而获得参数的取值范围; ②可导函数在某一区间上存在单调区间,实际上就是()0f x '>(或()0f x '<)在该区间上存在解集,这样就把函数的单调性问题转化成了不等式问题;③若已知()f x 在区间I 上的单调性,区间I 中含有参数时,可先求出()f x 的单调区间,令I 是其单调区间的子集,从而可求出参数的取值范围.(4)利用导数解决函数的零点问题时,一般先由零点的存在性定理说明在所求区间内至少有一个零点,再利用导数判断在所给区间内的单调性,由此求解. 2.函数极值问题的常见类型及解题策略(1)函数极值的判断:先确定导数为0的点,再判断导数为0的点的左、右两侧的导数符号. (2)求函数()f x 极值的方法: ①确定函数()f x 的定义域. ②求导函数()f x '. ③求方程()0f x '=的根.④检查()f x '在方程的根的左、右两侧的符号,确定极值点.如果左正右负,那么()f x 在这个根处取得极大值;如果左负右正,那么()f x 在这个根处取得极小值;如果()f x '在这个根的左、右两侧符号不变,则()f x 在这个根处没有极值.(3)利用极值求参数的取值范围:确定函数的定义域,求导数()f x ',求方程()0f x '=的根的情况,得关于参数的方程(或不等式),进而确定参数的取值或范围. 3.求函数f (x )在[a ,b ]上最值的方法(1)若函数f (x )在[a ,b ]上单调递增或递减,则f (a )与f (b )一个为最大值,一个为最小值.(2)若函数f (x )在区间(a ,b )内有极值,先求出函数f (x )在区间(a ,b )上的极值,与f (a )、f (b )比较,其中最大的一个是最大值,最小的一个是最小值.(3)函数f (x )在区间(a ,b )上有唯一一个极值点时,这个极值点就是最大(或最小)值点. 注意:(1)若函数中含有参数时,要注意分类讨论思想的应用.(2)极值是函数的“局部概念”,最值是函数的“整体概念”,函数的极值不一定是最值,函数的最值也不一定是极值.要注意利用函数的单调性及函数图象直观研究确定. 4.利用导数解决不等式恒成立问题的“两种”常用方法:(1)分离参数法:将原不等式分离参数,转化为不含参数的函数的最值问题,利用导数求该函数的最值,根据要求得所求范围.一般地,()f x a ≥恒成立,只需min ()f x a ≥即可;()f x a ≤恒成立,只需max ()f x a ≤即可.(2)函数思想法:将不等式转化为某含待求参数的函数的最值问题,利用导数求该函数的极值(最值),然后构建不等式求解.1.2020届河北省衡水中学高三卫冕联考数学试题已知函数()ln x f x x e =-. (1)求曲线()y f x =在点(1, (1))P f 处的切线方程; (2)证明:()20f x +<.【答案】(1)(1)1y e x =--;(2)证明见解析. 【解析】 【分析】(1)根据导数的几何意义求出斜率,即可写出切线的方程;(2)由原不等式可转化为ln 11x x e +<-,构造函数()ln 1g x x x =+-,()1(0)xh x e x x =-->,利用导数分别求最大值与最小值即可求解. 【详解】(1)由()ln xf x x e =-,得1()e xf x x'=-, 所以切线的斜率(1)1k f e '==-,又因为当1x =时,(1)e f =-, 所以切线方程为(1)(1)y e e x +=--, 即(1)1y e x =--.(2)欲证()20f x +<,即证ln 20x x e -+<, 即证ln 11x x e +<-,设()ln 1g x x x =+-,则11()1x g x x x-'=-=,, 当01x <<时,()0g x '>,()g x 在(0,1)上单调递增, 当1x >时,()0g x '<,()g x 在(1,)+∞上单调递减, 所以()g x 在1x =处取得极大值,即为最大值, 所以()(1)0g x g ≤=, 所以ln 1x x +≤.设()1(0)xh x e x x =-->,则()10xh x e '=->, 所以()h x 在(0,)+∞上单调递增, 所以()(0)0h x h >=, 所以1x e x ->在0x >时成立, 所以ln 11x x x e +≤<-, 所以ln 11x x e +<-, 所以ln 20x x e -+<, 即()20f x +<成立. 【点睛】本题主要考查了导数的几何意义,切线方程,利用导数求函数的最值,不等式的证明,属于中档题. 2.陕西省商洛市洛南中学2020-2021学年高三上学期第一次模拟数学试题已知函数2()ln (2)f x a x x a x =+-+.(1)当4a =时,求函数()f x 的单调增区间;(2)当0a >时,对于任意的[1,)x ∈+∞,不等式2()1f x a >-恒成立,求实数a 的取值范围.【答案】(1)(0,1],[2,)+∞;(2)2a >. 【解析】 【分析】 (1)()()()()2122x a x af x x a x x --=+-+=',将a=4代入,解()()()2410x x f x x-'-=≥求单调区间即可;(2)令()()21g x f x a =+-,得()()()()21x a x g x f x x'--='=,讨论2a 与1的大小关系得g(x)的最值解a 的不等式求解即可 【详解】(1)∵()()2ln 2f x a x x a x =+-+,()0,x ∈+∞∴()()()()2122x a x af x x a x x--=+-+=' 当4a =时,()24ln 6f x x x x =+-∴()()()241x x f x x--'=令()()()2410x x f x x-'-=≥解得2x或01x <.∴()f x 的单调增区间为(]0,1,[)2,+∞; (2)令()()21g x f x a =+-,则()()()()21x a x g x f x x'--='= ()1x(i )当012a<<时,即02a <<, 当[)1,x ∈+∞时,有()0g x ',(当且仅当1x =时取等号). ∴()g x 在[)1,+∞上单调递增,∴()()()()2min 12210g x g a a a a ==--=-+<,(不符合题意,舍去).(ⅱ)当12a =时,即2a =,()()2210g x x x -'=,(仅当1x =时取等号),∴()g x 在[)1,+∞上单调递增,∴()()min 10g x g ==,(不符合题意,舍去). (ⅲ)当12a >时,即2a >,()g x 在1,2a ⎡⎤⎢⎥⎣⎦上单调递减,在,2a ⎡⎫+∞⎪⎢⎣⎭上单调递增. ∴()2min3ln 1224a a a g x g a a ⎛⎫==+-- ⎪⎝⎭令()23ln 124x x h x x x =+-- (2)x >,则()3ln 22x h x x '=+. 当2x >时,()0h x '>,∴()h x 在()2,+∞上单调递增. ∴()()20h x h >=.∴()02a g x g ⎛⎫> ⎪⎝⎭恒成立,满足题意.综上所述:2a >. 【点睛】本题考查导数与函数的单调性及最值,考查不等式恒成立及分类讨论思想,考查转化化归能力,是中档题3.(2020届河北省衡水中学高三卫冕联考数学试题)已知函数()()()ln 1xaf x x e e x a a R =-+-+∈.(1)当0a =时,证明不等式()20f x +<;(2)若不等式()0f x ≤恒成立,求实数a 的取值范围. 【答案】(1)证明见详解;(2)(],1-∞ 【解析】 【分析】(1)将0a =代入,求出()1x xe f x x-'=,记()1xg x xe =-,利用导数判断函数的单调性,求出函数的最大值,()()0max 2f x f x =<即可. (2)将不等式转化为()ln ln a xx ea x e x +++≤+在()0,∞+恒成立,构造函数()x x e x ϕ=+,根据单调性可得ln a x x +≤,只需ln a x x ≤-恒成立,记()ln h x x x =-,利用导数求出()min h x 即可. 【详解】(1)当0a =时,()ln xf x x e =-,函数的定义域为()0,∞+所以()11xx xe f x e x x-'=-=,记()1xg x xe =-,所以()()1xg x x e '=-+,当()0,x ∈+∞时,()0g x '<,()g x 单调递减, 又因为()010g =>,()110g e =-<, 所以存在()00,1x ∈,使得()000010x g x x e=⇒-=,所以当()00,x x ∈时,()0g x >,即()0f x '>, 当()0,x x ∈+∞时,()0g x <,即()0f x '<, 所以()()000max ln xf x f x x e ==-,又因为000000110ln x x x ee x x x -=⇒=⇒=-, 所以()000000011ln 2x f x x e x x x x ⎛⎫=-=--=-+<- ⎪⎝⎭, 即()020f x +<,所以()20f x +<,即证.(2)不等式()0f x ≤恒成立等价于()ln 10xax e e x a -+-+≤在()0,∞+恒成立,即ln a x xe a x e x ++≤+在()0,∞+恒成立, 也就是()ln ln a xx ea x e x +++≤+在()0,∞+恒成立,构造函数()xx e x ϕ=+,()10xx e ϕ'=+>, 所以()x ϕ在(),-∞+∞单调递增, 所以()()ln ln a x x a x x ϕϕ+≤⇒+≤, 即ln a x x ≤-, 记()ln h x x x =-,所以()111x h x x x-'=-=, 当()0,1x ∈时,()0h x '<,()h x 单调递减, 当()1,x ∈+∞时,()0h x '>,()h x 单调递增, 所以()()11h x h ≥=,所以1a ≤,故实数a 的取值范围(],1-∞. 【点睛】本题考查了利用导数证明不等式、利用导数研究不等式恒成立,考查了转化与划归的思想,属于难题. 4.(河南省名校联考2020-2021学年高三上学期第一次模拟考试数学试题)已知函数()x f x e ax =+. (1)当a =-1时,①求曲线y = f (x )在点(0,f (0))处的切线方程; ②求函数f (x )的最小值;(2)求证:当()2,0a ∈-时,曲线() y f x =与1y lnx =-有且只有一个交点. 【答案】(1)切线方程1y =;min ()1f x =;(2)证明见解析 【解析】 【分析】(1)函数求导'()1xf x e =-,求出(0)k f '=得切线方程;解()0f x '>求单增区间,解()0f x '<求单减区间;利用单调性求最值;(2)构造()()ln 10xg x e ax x x =++->得到函数调调性,由零点存在性定理证有且只有一个零点.【详解】(1)当1a =-时,①函数()xf x e x =-,0(0)=1f e ∴=,()1x f x e =-',即0(0)1=0f e -'=,∴曲线()y f x =在点()(0)0f ,处的切线方程为1y =.②令()1>0x f x e -'=,得0x >,令()1<0x f x e -'=,得0x <,所以()f x 在(0,+)∞上单增,在(,0)-∞单减,∴函数()f x 的最小值为min ()(0)1f x f ==.(2) 当()2,0a ∈-时,曲线() y f x =与1ln y x =-有且只有一个交点. 等价于()()ln 10xg x e ax x x =++->有且只有一个零点.()()10x g x e a x x'=++>, 当()0,1x ∈时,11,1xe x >>,()2,0a ∈-,则()10x g x e a x'=++>, 当[)1,x ∈+∞时,12,0xe e x >>>, ()2,0a ∈-,则()10x g x e a x'=++>,()g x ∴在()0,∞+上单增,又1121()220ea g e e e e=+-<-<, ()220e g e e ae e e =+>->,由零点存在性定理得()g x 有唯一零点,即曲线() y f x =与1ln y x =-有且只有一个交点. 【点睛】判断函数零点个数及分布区间的方法:(1)解方程法:当对应方程易解时,可通过解方程确定方程是否有根落在给定区间上; (2)定理法:利用零点存在性定理进行判断;(3)数形结合法:画出相应的函数图象,通过观察图象与x 轴在给定区间上是否有交点来判断,或者转化为两个函数图象在给定区间上是否有交点来判断.5.(黑龙江省大庆实验中学2020-2021学年高三上学期第一次月考数学试题)已知实数0a >,函数()22ln f x a x a x x=++,()0,10x ∈. (1)讨论函数()f x 的单调性;(2)若1x =是函数()f x 的极值点,曲线()y f x =在点()()11,P x f x ,()()22,Q x f x ()12xx <处的切线分别为12,l l ,且12,l l 在y 轴上的截距分别为12,b b .若12//l l ,求12b b -的取值范围. 【答案】(1)当10,10a ⎛⎤∈ ⎥⎝⎦时,()f x 在()0,10上单调递减;当1,10a ⎛⎫∈+∞ ⎪⎝⎭时,()f x 在10,a ⎛⎫⎪⎝⎭上单调递减,在1,10a ⎛⎫ ⎪⎝⎭上单调递增;(2)6ln 4,05⎛⎫- ⎪⎝⎭.【解析】 【分析】(1)求导后得()()()()221010ax ax f x x x +-'=<<;分别在110a ≥和1010a<<两种情况下,根据()f x '的符号可确定()f x 的单调性;(2)由极值点定义可构造方程求得a ,得到()f x 和()f x ';根据导数的几何意义可求得在,P Q 处的切线方程,进而求得12,b b ;由12//l l 可求得12,x x 的关系,同时确定1x 的取值范围;将12b b -化为12112221ln 1x x x x x x ⎛⎫- ⎪⎝⎭++,令12x t x =,()()21ln 1t g t t t -=++,利用导数可求得()g t 的单调性,进而求得()g t 的值域即为12b b -的范围. 【详解】 (1)()()()()222212010ax ax a f x a x x x x+-'=-++=<<. 0a >,010x <<,20ax ∴+>.①当110a ≥,即10,10a ⎛⎤∈ ⎥⎝⎦时,()0f x '<,()f x ∴在()0,10上单调递减;②当1010a <<,即1,10a ⎛⎫∈+∞ ⎪⎝⎭时, 当10,x a ⎛⎫∈ ⎪⎝⎭时,()0f x '<;当1,10x a ⎛⎫∈ ⎪⎝⎭时,()0f x '>,()f x ∴在10,a ⎛⎫⎪⎝⎭上单调递减,在1,10a⎛⎫ ⎪⎝⎭上单调递增.综上所述:当10,10a ⎛⎤∈ ⎥⎝⎦时,()f x 在()0,10上单调递减;当1,10a ⎛⎫∈+∞ ⎪⎝⎭时,()f x 在10,a ⎛⎫⎪⎝⎭上单调递减,在1,10a ⎛⎫⎪⎝⎭上单调递增.(2)1x =是()f x 的极值点,()10f '∴=,即()()210a a +-=,解得:1a =或2a =-(舍),此时()2ln f x x x x =++,()2211f x x x'=-++. 1l ∴方程为:()1112111221ln 1y x x x x x x x ⎛⎫⎛⎫-++=-++-⎪ ⎪⎝⎭⎝⎭, 令0x =,得:1114ln 1b x x =+-;同理可得:2224ln 1b x x =+-. 12//l l ,221122212111x x x x ∴-++=-++,整理得:()12122x x x x =+,12122x x x ∴=-, 又12010x x <<<,则1112102x x x <<-,解得:1542x <<,()1212211111211221222221244ln ln ln 1x x x x x x x x xb b x x x x x x x x x ⎛⎫- ⎪--⎝⎭∴-=+=+=+++.令12x t x =,则1111211,1224x x t x x -⎛⎫=⋅=-∈ ⎪⎝⎭, 设()()21ln 1t g t t t -=++,()()()()222141011t g t t t t t -'∴=-+=>++, ()g t ∴在1,14⎛⎫ ⎪⎝⎭上单调递增,又()10g =,16ln 445g ⎛⎫=- ⎪⎝⎭,()6ln 4,05g t ⎛⎫∴∈- ⎪⎝⎭,即12b b -的取值范围为6ln 4,05⎛⎫- ⎪⎝⎭. 【点睛】本题考查导数在研究函数中的应用,涉及到利用导数讨论含参数函数的单调性、极值点的定义、导数的几何意义、利用导数求解参数的取值范围等问题;关键是能够通过构造函数的方式将所求式子的范围转化为函数值域的求解问题.6.(河南省信阳市罗山县2020届高三毕业班第一次调研数学理)试题)已知函数()xf x e =,()215122g x x x =--(e 为自然对数的底数). (1)记()()ln F x x g x =+,求函数()F x 在区间[]1,3上的最大值与最小值; (2)若k ∈Z ,且()()0f x g x k +-≥对任意x ∈R 恒成立,求k 的最大值. 【答案】(1)()min 4ln 2F x =-+,()max 4ln3F x =-+;(2)1-. 【解析】 【分析】(1)对函数()F x 求导,根据导数的方法研究其在[]1,3上的单调性,进而可得出最值; (2)先将不等式恒成立转化为215122xk e x x ≤+--对任意x ∈R 恒成立,令()215122xh x e x x =+--,根据导数的方法求出最值,即可得出结果. 【详解】(1)∵()()215ln ln 122F x x g x x x x =+=+--,∴()()()2122x x F x x--'=, 令()0F x '=,则112x =,22x =, 当()1,2x ∈时,()()()21202x x F x x--'=<,则函数()F x 在区间()1,2上单调递减;当()2,3x ∈时,()()()21202x x F x x--'=>,则函数()F x 在区间()2,3上单调递增;∴()()min 24ln 2F x F ==-+,又()()33ln 143F F =-<=-+,所以()max 4ln3F x =-+; (2)∵()()0f x g x k +->对任意x ∈R 恒成立, ∴2151022xe x x k +---≥对任意x ∈R 恒成立,∴215122xk e x x ≤+--对任意x ∈R 恒成立. 令()215122x h x e x x =+--,则()52xh x e x '=+-.由于()10xh x e '=+>,所以()h x '在R 上单调递增.又()3002h =-<',()3102h e =->',121202h e ⎛⎫'=-< ⎪⎝⎭,3437044h e ⎛⎫'=-= ⎪⎝⎭,所以存在唯一的013,24x ⎛⎫∈⎪⎝⎭,使得()00h x '=, 且当()0,x x ∈-∞时,()0h x '<,()0,x x ∈+∞时,()0h x '>. 即()h x 在()0,x -∞单调递减,在()0,x +∞上单调递增.∴()()02000min 15122xh x h x e x x ==+--. 又()00h x '=,即00502x e x +-=,∴0052xe x =-.∴()()2200000051511732222h x x x x x x =-+--=-+.∵013,24x ⎛⎫∈⎪⎝⎭,∴()0271,328h x ⎛⎫∈-- ⎪⎝⎭. 又∵215122xk e x x ≤+--对任意x ∈R 恒成立,∴()0k h x ≤, 又k ∈Z ,∴max 1k =-. 【点睛】本题主要考查用导数的方法求函数的最值,考查导数的方法研究等式恒成立问题,属于常考题型. 7.(西藏日喀则市2020届高三上学期学业水评测试(模拟)数学试题)已知函数()ln ,()f x ax x a R =+∈.(1)当1a =-时,求()f x 的单调区间;(2)若函数()f x 在区间(0,]e 上的最大值为3-,求a 的值. 【答案】(1) 单增区间(0,1),单减区间(1,)+∞(2)2a e =- 【解析】 【分析】(1)在定义域(0,)+∞内对函数()f x 求导,再根据导数求出单调区间.(2)在定义域(0,)+∞内对函数()f x 求导,对a 进行分类讨论并判断其单调性,根据()f x 在区间(0,]e 上的单调性求其最大值,并判断其最大值是否为3-,若是就可求出相应的最大值. 【详解】(1)当1a =-时,()f x x lnx =-+,∴1()xf x x-'=, 又0x >,所以当(0,1)x ∈时,()0f x '>,()f x 在区间(0,1)上为增函数, 当(1,)x ∈+∞时,()0f x '<,()f x 在区间(1,)+∞上为减函数, 即()f x 在区间(0,1)上为增函数,在区间(1,)+∞上为减函数. (2)1()axf x x+'=, ①若0a ,0x ,则()0f x '>,在区间(0,]e 上恒成立,()f x 在区间(0,]e 上为增函数,()13max f x ae lne ae =+=+=-,∴40a e=-<,舍去;②当1[,0)a e∈-时,(0x ∈,]e ,10ax ∴+,()0f x '∴,()f x 在区间(0,]e 上为增函数, ()13max f x ae lne ae =+=+=-,∴41a e e=-<-,舍去;③若1a e <-,当1(0,)x a ∈-时,()0f x '>,()f x 在区间1(0,)a-上为增函数,当1(,)x e a ∈-时,()0f x '<,()f x 在区间1(,)e a -上为减函数11()()1()3max f x f ln a a =-=-+-=-,∴21a e e=-<-.综上2a e =-. 【点睛】本题主要考查利用导数求函数的单调区间和最值,意在考查学生对这些知识的理解掌握水平和分析推理能力.8.(吉林省通化市梅河口五中2020届高三数学文科)五模试题)已知函数()ln f x x ax =-(a 为常数). (1)求函数()f x 的单调区间; (2)若0a >,求不等式()20f x f x a ⎛⎫-->⎪⎝⎭的解集; (3)若存在两个不相等的整数1x ,2x 满足()()12f x f x =,求证:122x x a+>. 【答案】(1)答案见解析;(2)12,a a ⎛⎫⎪⎝⎭;(3)证明见解析. 【解析】 【分析】(1)求出函数的导数,通过讨论a 的范围,求出函数的单调区间即可; (2)设()()2F x f x f x a ⎛⎫=--⎪⎝⎭,根据函数的单调性求出不等式的解集即可; (3)求出0a >,不妨设1210x x a <<<,则121,x a a ⎛⎫-∈+∞ ⎪⎝⎭,根据函数的单调性得到()112f x f x a ⎛⎫<- ⎪⎝⎭,由()()12f x f x =,替换即可.【详解】(1)()f x 的定义域为()0,∞+,()11ax f x a x x-'=-=, (1)当0a ≤时,恒有()0f x '>,故()f x 在()0,∞+上单调递增; (2)当0a >时,由()0f x '>,得10x a<<, 故()f x 在10,a ⎛⎫ ⎪⎝⎭上单调递增,在1,a ⎛⎫+∞⎪⎝⎭上单调递减, 综上(1)(2)可知:当0a ≤时,()f x 的单调递增区间为()0,∞+; 当0a >时,()f x 的单调递增区间为10,a ⎛⎫ ⎪⎝⎭,单调递减区间为1,a ⎛⎫+∞⎪⎝⎭;(2)()f x 的定义域为()0,∞+,所以0x >,且20x a ->,而0a >,20x a<<; 设()()2222ln ln ln ln 22F x f x f x x ax x a x x x ax a a a a ⎛⎫⎛⎫⎛⎫⎛⎫=--=---+-==--+⎪ ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭⎝⎭, ()21202a x a F x x x a ⎛⎫- ⎪⎝⎭'=≥⎛⎫- ⎪⎝⎭,且当且仅当1x a =时取等号,所以()F x 在20,a ⎛⎫ ⎪⎝⎭上单调递增,又因为1x a =时,()10F x F a ⎛⎫== ⎪⎝⎭,所以当10,x a ⎛⎫∈ ⎪⎝⎭时,()0F x <,当12,x a a ⎛⎫∈ ⎪⎝⎭时,()0F x >, 故()20f x f x a ⎛⎫-->⎪⎝⎭的解集为12,a a ⎛⎫⎪⎝⎭; (3)由(1)知0a ≤时,()f x 在()0,∞+上单调递增,若()()12f x f x =, 则12x x =不合题意;故0a >,而()f x 在10,a ⎛⎫ ⎪⎝⎭上单调递增,在1,a ⎛⎫+∞⎪⎝⎭上单调递减, 若存在两个不相等的正数1x ,2x 满足()()12f x f x =, 则1x ,2x 必有一个在10,a ⎛⎫ ⎪⎝⎭上,另一个在1,a ⎛⎫+∞⎪⎝⎭, 不妨设1210x x a <<<,则121,x a a ⎛⎫-∈+∞ ⎪⎝⎭,又由(2)知10,x a ⎛⎫∈ ⎪⎝⎭时,()0F x <,即()20f x f x a ⎛⎫--< ⎪⎝⎭, 所以()112f x f x a ⎛⎫<-⎪⎝⎭, 因为()()12f x f x =,所以()212f x f x a ⎛⎫<- ⎪⎝⎭,又因为()f x 在1,a ⎛⎫+∞ ⎪⎝⎭上单调递减,所以212x x a>-, 即122x x a+>. 【点睛】本题考查了函数的单调性、最值问题,考查导数的应用,考查分类讨论思想和转化思想,属于中档题. 9.(四川省泸县第四中学2020-2021学年高三上学期开学考试数学试题)已知函数()x mf x ae-=,其中,a m R ∈.(1)当1a m ==时,设()()ln g x f x x =-.求函数()g x 的单调区间; (2)当4a =,2m =时,证明:()()1ln f x x x >+.【答案】(1)单调递减区间为()0,1,单调递增区间为()1,+∞.;(2)证明见解析. 【解析】 【分析】(1)当1a m ==时,()1ln x g x ex -=-,求出导数()11x g x e x-'=-,根据()g x '在0,上单调递增,且()10g '=,即可利用导数与单调性的关系求出; (2)当4a =,2m =时,()()1ln f x x x >+即为()241ln x ex x ->+,因为ln 1x x ≥+在0,上恒成立,即可证224x e x ->,不等式可变形为2ln 42ln x x -+>,构造函数()2ln 2ln 4x x t x =--+,求出该函数在0,上的最小值大于等于零,即得证.【详解】(1)当1a m ==时,()1ln x g x e x -=-,则()11x g x e x-'=-.∵()g x '在0,上单调递增,且()10g '=,∴当()0,1∈x 时,0g x ;当()1,∈+∞x 时,0g x.∴()g x 的单调递减区间为0,1,单调递增区间为1,.(2)设()1ln h x x x =--,则()11h x x'=-. 令()0h x '=,解得1x =.∴当()0,1∈x 时,()0h x '<,即()h x 在0,1上单调递减; 当()1,∈+∞x 时,()0h x '>,即()h x 在1,上单调递增.∴()()min 10h x h ==. ∴ln 1x x ≥+在0,上恒成立.现要证()241ln x ex x ->+,只需证224x e x ->.可证()22ln 4ln x ex->,即2ln 42ln x x -+>.设()2ln 2ln 4x x t x =--+,则()21t x x'=-. 令()0t x '=,解得2x =.∴当()0,2x ∈时,()0t x '<,即()t x 在()0,2上单调递减; 当()2,x ∈+∞时,()0t x '>,即()t x 在2,上单调递增.∴()()min 20t x t ==. ∴2ln 42ln x x -+≥在0,上恒成立.综上,可知ln 1x x ≥+,当1x =时等号成立;2ln 42ln x x -+≥,当2x =时等号成立. ∴当4a =,2m =时,()()1ln f x x x >+. 【点睛】本题主要考查利用导数求函数的单调区间,证明函数不等式的恒成立问题,涉及到构造函数,利用导数研究其单调性和最值,意在考查学生的转化能力和数学运算能力,属于难题.10.(贵州省贵阳市四校2021届高三上学期联合考试(一)数学试题)已知函数()3()xf x e ax a R =--∈.(1)若函数f (x )在(1,f (1))处的切线与直线x -y =0平行,求实数a 的值; (2)当a =2,k 为整数,且当x >1时,()()210,x k f x x '-++>求k 的最大值.【答案】(1)a=e-1;(2)2 【解析】 【分析】(1)先求导,再由(1)1f e a '=-=即可得解;(2)当2a =,且当1x >时,()()2210xx k e x --++>等价于当1x >时,min212x x k x e +⎛⎫<+⎪-⎝⎭,再构造函数21(),(1)2xx g x x x e +=+>-,利用导数求解即可. 【详解】解:(1)由()3x f x e ax =--,则'()xf x e a =-,又函数f (x )在(1,f (1))处的切线与直线x -y =0平行, 则(1)1f e a '=-=, 所以1a e =-;(2)当2a =,且当1x >时,()()2210xx k e x --++>等价于 当1x >时,min212x x k x e +⎛⎫<+⎪-⎝⎭ 令21(),(1)2xx g x x x e +=+>-,则()()223(),(1)2x x xe e x g x x e'--=>-,再令()23(1)xh x e x x =-->,则()20xh x e -'=>, 所以,()h x 在(1,)+∞上单调递增,且(1)0,(2)0h h <>,所以,()h x 在(1,2)上有唯一的零点,设该零点为0x ,则0(1,2)x ∈,且0023x ex =+,当()01,x x ∈时,()0h x <,即()0g x '<;当()0,x x ∈+∞时,()0h x >,即()0g x '>, 所以,()g x 在()01,x 单调递减,在()0,x +∞单调递增, 所以,()00min 00021()12x x g x g x x x e +==+=+-, 而0(1,2)x ∈,故01(2,3)x +∈且()0k g x <, 又k 为整数,所以k 的最大值为2. 【点睛】本题考查了导数的几何意义,重点考查了导数的综合应用,属中档题.11.(江西省赣州市会昌县七校2021届高三联合月考数学试题)已知函数()2ln f x ax bx x =+-.(1)当2a =-时,函数()f x 在0,上是减函数,求b 的取值范围;(2)若方程0f x的两个根分别为()1212,x x x x <,求证:1202x x f +⎛⎫'> ⎪⎝⎭.【答案】(1)4b ≤;(2)证明见解析. 【解析】 【分析】(1)由()f x 在0,上是减函数,可知()140f x x b x'=-+-≤对()0,x ∈+∞恒成立,然后分离参数得14b x x≤+,所以只要min 14b x x ⎛⎫≤+ ⎪⎝⎭即可;(2)由已知得()()2111122222ln 0ln 0f x ax bx x f x ax bx x ⎧=+-=⎪⎨=+-=⎪⎩,即21112222ln ln x ax bx x ax bx ⎧=+⎪⎨=+⎪⎩,两式相减得()()()11212122lnx a x x x x b x x x =+-+-()()1212x x a x x b =-++⎡⎤⎣⎦,由()12f x ax b x'=+-知()12121222x x f a x x b x x +⎛⎫'=++- ⎪+⎝⎭12111222211ln 1x x x x x x x x ⎡⎤⎛⎫-⎢⎥ ⎪⎝⎭⎢⎥=-⎢⎥-+⎢⎥⎢⎥⎣⎦,设()120,1x t x =∈,可得12112221ln 1x x x x x x ⎛⎫- ⎪⎝⎭-=+()()211ln t g t t t -=-+,再利用导数研究其单调性可得结论 【详解】(1)∵()f x 在0,上递减,∴()140f x x b x'=-+-≤对()0,x ∈+∞恒成立. 即14b x x≤+对()0,x ∈+∞恒成立,所以只需min 14b x x ⎛⎫≤+ ⎪⎝⎭.∵0x >,∴144x x+≥,当且仅当12x =时取“=”,∴4b ≤. (2)由已知,得()()2111122222ln 0ln 0f x ax bx x f x ax bx x ⎧=+-=⎪⎨=+-=⎪⎩, ∴21112222ln ln x ax bx x ax bx ⎧=+⎪⎨=+⎪⎩两式相减, 得()()()11212122lnx a x x x x b x x x =+-+-()()1212x x a x x b =-++⎡⎤⎣⎦. 由()12f x ax b x '=+-知()12121222x x f a x x b x x +⎛⎫'=++- ⎪+⎝⎭()121112212122122121ln ln x x x x x x x x x x x x x x -⎡⎤=-=-⎢⎥-+-+⎣⎦12111222211ln 1x x x x x x x x ⎡⎤⎛⎫-⎢⎥ ⎪⎝⎭⎢⎥=-⎢⎥-+⎢⎥⎢⎥⎣⎦, 设()120,1x t x =∈,则12112221ln 1x x x x x x ⎛⎫- ⎪⎝⎭-=+()()211ln t g t t t -=-+. ∴()()()()222114011t g t t t t t -'=-=>++. ∴g t 在0,1上递增,∴()()10g t g <=. ∵120x x -<,∴12111222211ln 1x x x x x x x x ⎡⎤⎛⎫-⎢⎥ ⎪⎝⎭⎢⎥-⎢⎥-+⎢⎥⎢⎥⎣⎦()1210g t x x =>-. 即1202x x f +⎛⎫'>⎪⎝⎭. 【点睛】此题考查利用导数研究函数单调性极值与最值,考查基本不等的性质,考查推理能力和计算能力,属于难题12.(福建省厦门外国语学校2021届高三上学期第一次阶段性检测数学试题)设函数ln ()4x xf x x =+,已知ln 20.69≈(1)证明:11(,)42t ∃∈,()f x 在(,)t +∞上单调递增; (2)若1()16f x m >对(0,)x ∈+∞恒成立,求整数m 的最大值. 【答案】(1)证明见详解;(2)- 2 【解析】 【分析】(1)根据()f x 的导数形式及定义域,设()44ln g x x x =++,利用导数可知()g x 在(0,)+∞上单调递增,根据零点存在性定理011(,)42x ∃∈,0()0g x =,可得()f x 在0(,)x +∞上单调递增,进而可得当01(,)2t x ∈时,()f x 在(,)t +∞上单调递增,即可得证;(2)只需求出()f x 的最小值即可,由0044ln 0x x ++= 可求出关于0x 的min ()f x 表达式,而011(,)42x ∈,得min ()f x 的范围,进而有2m ≤-,整数m 的最大值即可知 【详解】(1)证明:函数()f x 的定义域为(0,)+∞,而244ln ()(4)x xf x x ++'=+设函数()44ln g x x x =++,有4()10g x x'=+>,()g x 在(0,)+∞上单调递增 又19()4ln 2022g =->,117()8ln 2044g =-<,即011(,)42x ∃∈,0()0g x = 当0x x >时,()0>g x ,有()0f x '> ∴()f x 在0(,)x +∞上单调递增,∴当01(,)2t x ∈时,()f x 在(,)t +∞上单调递增故11(,)42t ∃∈,()f x 在(,)t +∞上单调递增.(2)解:由(1)知,()f x 在0(0,)x 上单调递减,在0(,)x +∞上单调递增,且0044ln 0x x ++=,即0044ln x x +=- ∴000min 00ln ()()44x x xf x f x x ===-+,而011(,)42x ∈,有min11()(,)816f x ∈-- 又1()16f x m >对(0,)x ∈+∞恒成立,故11168m ≤-,即2m ≤- ∴整数m 的最大值为2-. 【点睛】本题考查导数在研究函数中的应用,零点存在性及不等式恒成立问题处理方法,属于较难题.利用()g x 存在唯一的零点0x 得到0044ln 0x x ++=,将0000ln ()4x x f x x =+化简为00()4xf x =-,从而简化问题13.(山东省2020届高三新高考模拟猜想卷(三)数学试题)已知函数2()2ln f x x x a x =--,()g x ax =.(1)求函数()()()F x f x g x =+的极值;(2)若不等式sin ()2cos xg x x≤+对0x ≥恒成立,求a 的取值范围.【答案】(1)答案见解析;(2)1[,)3+∞.【解析】试题分析:(1)对函数求导得到()()222'x a x aF x x+--=()()21x a x x+-=,讨论2a -和0和1 的大小关系,在不同情况下求得导函数的正负即得到原函数的单调性,根据极值的概念得到结果;(2)设()sin 2cos xh x ax x=-+ ()0x ≥,构造以上函数,研究函数的单调性,求得函数的最值,使得最小值大于等于0即可. 解析:(1)()22ln F x x x a x ax =--+,()()222'x a x aF x x+--=()()21x a x x+-=,∵()F x 的定义域为()0,+∞. ①02a-≤即0a ≥时,()F x 在()0,1上递减,()F x 在()1,+∞上递增,()1F x a =-极小,()F x 无极大值.②012a <-<即20a -<<时,()F x 在0,2a ⎛⎫- ⎪⎝⎭和()1,+∞上递增,在,12a ⎛⎫- ⎪⎝⎭上递减,()2a F x F ⎛⎫=- ⎪⎝⎭极大2ln 42a a a a ⎛⎫=--- ⎪⎝⎭,()()11F x F a ==-极小.③12a-=即2a =-时,()F x 在()0,+∞上递增,()F x 没有极值. ④12a ->即2a <-时,()F x 在()0,1和,2a ⎛⎫-+∞ ⎪⎝⎭上递增,()F x 在1,2a ⎛⎫- ⎪⎝⎭上递减,∴()()11F x f a ==-极大,()2a F x F ⎛⎫=- ⎪⎝⎭极小2ln 42a a a a ⎛⎫=--- ⎪⎝⎭.综上可知:0a ≥时,()1F x a =-极小,()F x 无极大值;20a -<<时,()2a F x F ⎛⎫=- ⎪⎝⎭极大2ln 42a a a a ⎛⎫=--- ⎪⎝⎭,()()11F x F a ==-极小;2a =-时,()F x 没有极值;2a <-时,()()11F x f a ==-极大,()2a F x F ⎛⎫=- ⎪⎝⎭极小2ln 42a a a a ⎛⎫=--- ⎪⎝⎭.(2)设()sin 2cos xh x ax x=-+ ()0x ≥,()()212cos '2cos xh x a x +=-+,设cos t x =,则[]1,1t ∈-,()()2122tt t ϕ+=+,()()()()4221'2t t t t ϕ-+-=+ ()()32102t t --=≥+,∴()t ϕ在[]1,1-上递增,∴()t ϕ的值域为11,3⎡⎤-⎢⎥⎣⎦,①当13a ≥时,()'0h x ≥,()h x 为[]0,+∞上的增函数, ∴()()00h x h ≥=,适合条件. ②当0a ≤时,∵10222h a ππ⎛⎫=⋅-<⎪⎝⎭,∴不适合条件.。
2020年全国卷1函数与导数压轴题一题多解,深度解析

全国卷1导数题一题多解,深度解析1、2020年全国卷1理科数学第21题的解析已知函数2()e xf x ax x =+-.(1)当a =1时,讨论f (x )的单调性; (2)当x ≥0时,f (x )≥12x 3+1,求a 的取值范围.。
2.2020年 全国卷1文科数学第20题的解析已知函数()(2)xf x e a x =-+. (1)当1a =时,讨论()f x 的单调性; (2)若()f x 有两个零点,求a 的取值范围.。
3. 2020年新高考1卷(山东考卷)第21题已知函数1()eln ln x f x a x a -=-+(1).当a=e 时,求曲线y=f(x)在点(1,f(1))处的切线与两坐标轴围城的三角形的面积; (2)若()1f x ≥,求a 的取值范围。
1、2020年全国卷1理科数学第21题的解析已知函数2()e xf x ax x =+-.(1)当a =1时,讨论f (x )的单调性; (2)当x ≥0时,f (x )≥12x 3+1,求a 的取值范围.。
解析:(1) 单调性,常规题,a 已知,求一个特定函数f(x)的单调性。
若一次求导不见底,则可二次或多次清仓,即二次求导或多次求导,然后逐层返回。
通常二次求导的为多。
(2) 恒成立,提高题,在恒成立情况下,求参数的取值范围。
常常是把恒成立化成最值问题。
由于这里的a 只在一项中出现,故可以优先考虑分离参数法。
这里介绍了两种方法。
解:(1) 当a=1时, 2()e xf x x x =+-,定义域为R ,'()e 21x f x x =+-,易知f ’(x)是单调递增函数。
而f ’(0)=0,∴ 当x ∈(-∞,0),f ’(x)<0 当x ∈(0,+∞),f ’(x)>0∴当x ∈(-∞,0),f(x)单调递减;当x ∈(0,+∞),f(x)单调递增。
(2)解法一 ,分离参数法 当x ≥0时,31()12f x x ≥+ ,即231()e 12x f x ax x x =+≥+- 当x=0时,上式恒成立,此时a ∈R 。
2020年高考数学(理)重难点专练06 函数与导数(解析版)

重难点06 函数与导数【命题趋势】在目前高考全国卷的考点中,导数板块常常作为压轴题的形式出现,这块部分的试题难度呈现非减的态势,因此若想高考中数学拿高分的同学,都必须拿下导数这块的内容.函数单调性的讨论、零点问题和不等式恒成立的相关问题(包含不等式证明和由不等式恒成立求参数取值范围)是出题频率最高的.对于导数内容,其关键在于把握好导数,其关键在于把握好导数的几何意义即切线的斜率,这一基本概念和关系,在此基础上,引申出函数的单调性与导函数的关系,以及函数极值的概念求解和极值与最值的关系以及最值的求解.本专题选取了有代表性的选择,填空题与解答题,通过本专题的学习熟悉常规导数题目的思路解析与解题套路,从而在以后的导数题目中能够快速得到导数问题的得分技巧.【满分技巧】对于导数的各类题型都是万变不离其宗,要掌握住导数的集中核心题型,即函数的极值问题,函数的单调性的判定.因为函数零点问题可转化为极值点问题,函数恒成立与存在性问题可以转化为函数的最值问题,函数不等式证明一般转化为函数单调性和最值求解,而函数的极值和最值是由函数的单调性来确定的.所以函数导数部分的重点核心就是函数的单调性.对于函数零点问题贴别是分段函数零点问题是常考题型,数形结合是最快捷的方法,在此方法中应学会用导数的大小去判断原函数的单调区间,进而去求出对应的极值点与最值.恒成立与存在性问题也是伴随着导数经典题型,对于选择题来说,恒成立选择小题可以采用排除法与特殊值法相结合的验证方法能够比较快捷准确得到答案,对于填空以及大题则采用对函数进行求导,从而判定出函数的最值.函数的极值类问题是解答题中的一个重难点,对于非常规函数,超出一般解方程的范畴类题目则采用特殊值验证法,特殊值一般情况下是0,1等特殊数字进行验证求解.对于理科类导数类题目,对于比较复杂的导数题目.一般需要二次求导,但是要注意导数大小与原函数之间的关系,搞清楚导数与原函数的关系是解决此类题目的关键所在.含参不等式证明问题也是一种重难点题型,对于此类题型应采取的方法是:一双变量常见解题思路:1双变量化为单变量→寻找两变量的等量关系;2转化为构造新函数;二含参不等式常见解题思路:1参数分离;2通过运算化简消参(化简或不等关系);3将参数看成未知数,通过它的单调关系来进行消参.那么两种结构的解题思路理顺了,那么我们来看这道题.这是含参的双变量问题,一般来说,含参双变量问题我们一般是不采用转化为构造新函数,我们最好就双变量化为单变量,这就是我们解这道题的一个非常重要的思路:① 寻找双变量之间的关系并确定范围,并且确定参数的取值范围;②化简和尝试消参;③双变量化为单变量.④证明函数恒成立(求导、求极值……)(经典题型2018年全国一卷理21题)【考查题型】选择题,填空,解答题21题【限时检测】(建议用时:90分钟)一、单选题1.(2020·安徽高三月考(理))定义在R 上的函数2,10(),01x x f x x x -≤<⎧=⎨≤<⎩,且1(2)(),()2f x f xg x x +==-,则方程()()f x g x =在区间[5,9]-上的所有实数根之和最接近下列哪个数( ) A .14 B .12C .11D .10【答案】A 【解析】∵f (x+2)=f (x ),∵函数f (x )是周期为2的周期函数, ∵g (x )=12x -,∵g (x )关于直线x=2对称. 分别作出函数f (x ),g (x )在[﹣5,9]上的图象,由图象可知两个函数的交点个数为8个,设8个交点的横坐标从小到大为x 1,x 2,x 3,x 4,x 5,x 6,78,,x x 且这8个交点接近点(2,0)对称, 则12(x 1+x 8)=2,x 1+x 8=4, 所以若x 1+x 2+x 3+x 4+x 5+x 67x +8x + =4(x 1+x 8)=4×4=16,但是不都是对称的, 由图象可知,x 1+ x 8>4,x 2+x 7>4,364x x +>,454x x +> 第五个交点为空心的,跟等于3∵x 1+x 2+x 4+x 5+x 678x x ++ 最接近14. 故选A .【点睛】:这个题目考查了导数在研究函数的极值和零点问题中的应用;对于函数的零点问题,它和方程的根的问题,和两个函数的交点问题是同一个问题,可以互相转化;在转化为两个函数交点时,如果是一个常函数一个非常函数,注意让非常函数式子尽量简单一些.注意函数的图像画的要准确一些.2.(2020·四川高三期末(理))函数()[]cos sin ,,=-∈-f x x x x x ππ的大致图象为( )A .B .C .D .【答案】D 【解析】 【分析】判断函数的奇偶性和对称性,利用2f π⎛⎫⎪⎝⎭的符号进行排除即可. 【详解】()()()cos sin cos sin f x x x x x x x f x -=-+=--=-,函数()f x 是奇函数,图象关于原点对称,排除,A Ccos sin 102222f ππππ⎛⎫=-=-< ⎪⎝⎭,排除B ,故选:D .【点睛】本题考查函数的图象的判断与应用,考查函数的零点以及特殊值的计算,是中档题;已知函数解析式,选择其正确图象是高考中的高频考点,主要采用的是排除法,最常见的排出方式有根据函数的定义域、值域、单调性、奇偶性、周期性等性质,同时还有在特殊点处所对应的函数值或其符号,其中包括,,0,0x x x x +-→+∞→-∞→→等.3.(2020·安徽高三月考(理))已知函数()()()ln 1220f x x a x a a =+-+->.若不等式()0f x >的解集中整数的个数为3,则a 的取值范围是( )A .(]1ln3,0-B .(]1ln3,22ln -C .(]1ln3,12ln -- D .(]0,1ln2- 【答案】D 【解析】 【分析】对()0f x >进行变形,得到()2ln 2a x x x ->-+-,令()()2h x a x =-,()ln 2g x x x =-+-,即()()h x g x >的整数个数为3,再由()g x 的函数图像和()h x 的函数图像,写出限制条件,得到答案 【详解】()0f x >Q()ln 1220x a x a +∴+-->,即()2ln 2a x x x ->-+-设()()()2,ln 2h x a x g x x x =-=-+-, 其中2x =时,()()20,2ln 20h g ==-<3x =时,()()30,3ln30h a g =>=-<即2,3x x ==符合要求()111x g x x x-'=-+=,所以()0,1x ∈时,()0g x '<,()g x 单调递减()1,x ∈+∞,()0g x '>,()g x 单调递增,()11g =-为极小值. ()()h x g x >Q 有三个整数解,则还有一个整数解为1x =或者是4x =∵当解集包含1x =时,0x →时,()()20,h x a g x →-<→+∞所以需要满足()()()()01144a h g h g ⎧>⎪>⎨⎪≤⎩即012ln 442a a a >⎧⎪->-⎨⎪≤-+-⎩,解得01ln 2a <≤-∵当解集包含4x =时,需要满足()()()()()()0114455a h g h g h g >⎧⎪≤⎪⎨>⎪⎪≤⎩即012ln 4423ln 552a a a a >⎧⎪-≤-⎪⎨>-+-⎪⎪≤-+-⎩ 整理得011ln 23ln 53a a a a >⎧⎪≥⎪⎪>-⎨⎪-⎪≤⎪⎩,而3ln 513-<,所以无解集,即该情况不成立. 综上所述,由∵∵得,a 的范围为(]0,1ln 2- 故选D 项. 【点睛】利用导数研究函数图像,两个函数图像的位置关系与解析式大小之间的关系,数形结合的数学思想,题目较综合,考查内容比较多,属于难题.4.(2019·山东高考模拟(理))已知函数()f x 和(2)f x +都是定义在R 上的偶函数,当[0,2]x ∈时,()2x f x =,则20192f ⎛⎫-= ⎪⎝⎭( )A .2 B.CD【答案】B 【解析】 【分析】由()f x 和(2)f x +都是定义在R 上的偶函数,可推导出周期为4,而20192f ⎛⎫-= ⎪⎝⎭20192f ⎛⎫= ⎪⎝⎭(4252 1.5)(1.5)f f ⨯+=,即可计算.【详解】因为(2)f x +都是定义在R 上的偶函数,所以(2)(2)f x f x -+=+,即()(4)f x f x =-,又()f x 为偶函数,所以()()(4)f x f x f x =-=+,所以函数周期4T =,所以20192f ⎛⎫-= ⎪⎝⎭20192f ⎛⎫= ⎪⎝⎭(4252 1.5)(1.5)f f ⨯+== B.【点睛】本题主要考查了函数的奇偶性,周期性,利用周期求函数值,属于中档题.5.(2019·四川高考模拟(理))在直角坐标系中,如果相异两点()(),,,A a b B a b --都在函数y=f(x)的图象上,那么称,A B 为函数()y f x =的一对关于原点成中心对称的点(,A B 与,B A 为同一对).函数()7cos ,0{2log ,0x x f x x x π≤=>的图象上关于原点成中心对称的点有( ) A .1对B .3对C .5对D .7对【答案】C 【解析】 【分析】函数()7,02log ,0cos x x f x x x π⎧≤⎪=⎨⎪>⎩的图象上关于原点成中心对称的点的组数,就是y cos,02x x π=≤与()7y log ,0x x =--<图象交点个数,利用数形结合可得结果.【详解】因为7y log ,0x x =>关于原点对称的函数解析式为()7y log ,0x x =--<,所以函数()7,02log ,0cos x x f x x x π⎧≤⎪=⎨⎪>⎩的图象上关于原点成中心对称的点的组数, 就是y cos,02x x π=≤与为()7y log ,0x x =--<图象交点个数,同一坐标系内,画出y cos,02x x π=≤与()7y log ,0x x =--<图象,如图,由图象可知,两个图象的交点个数有5个,7,02log ,0cos x x x x π⎧≤⎪⎨⎪>⎩的图象上关于原点成中心对称的点有5组,故选C. 【点睛】本题主要考查三角函数与对数函数的图象与性质,以及数形结合思想、转化与划归思想的应用,属于难题. 数形结合是根据数量与图形之间的对应关系,通过数与形的相互转化来解决数学问题的一种重要思想方法,.函数图象是函数的一种表达形式,它形象地揭示了函数的性质,为研究函数的数量关系提供了“形”的直观性.归纳起来,图象的应用常见的命题探究角度有:1、确定方程根的个数;2、求参数的取值范围;3、求不等式的解集;4、研究函数性质.6.(2019·湖北黄冈中学高考模拟(理))定义在R 上函数()f x 满足()()f x f x -=,且对任意的不相等的实数[)12,0,x x ∈+∞有()()12120f x f x x x -<-成立,若关于x 的不等式()()()2ln 3232ln 3f mx x f f mx x --≥--++在[]1,3x ∈上恒成立,则实数m 的取值范围是( ) A .1ln6,126e ⎡⎤+⎢⎥⎣⎦B .1ln3,126e ⎡⎤+⎢⎥⎣⎦C .1ln3,23e ⎡⎤+⎢⎥⎣⎦D .1ln6,23e ⎡⎤+⎢⎥⎣⎦【答案】B 【分析】结合题意可知()f x 是偶函数,且在[)0,+∞单调递减,化简题目所给式子,建立不等式,结合导函数与原函数的单调性关系,构造新函数()(),h x g x ,计算最值,即可. 【详解】结合题意可知()f x 为偶函数,且在[)0,+∞单调递减,故()()()2ln 3232ln 3f mx x f f mx x --≥--++可以转换为()()2ln 33f mx x f --≥对应于[]1,3x ∈恒成立,即2ln 33mx x --≤即02ln 6mx x ≤-≤对[]1,3x ∈恒成立即ln 6ln 22x xm m x x +≥≤且对[]1,3x ∈恒成立 令()ln x g x x =,则()[)1ln '1,xg x e x-=在上递增,在(],3e 上递减, 所以()max 1g x e =令()()26ln 5ln ,'0x xh x h x x x +--==<,在[]1,3上递减 所以()min 6ln33h x +=.故1ln3,126m e ⎡⎤∈+⎢⎥⎣⎦,故选B. 【点睛】本道题考查了函数的基本性质和导函数与原函数单调性关系,计算范围,可以转化为函数,结合导函数,计算最值,即可得出答案.7.(2019·河北高考模拟(理))已知函数2()35f x x x =-+,()ln g x ax x =-,若对(0,)x e ∀∈,12,(0,)x x e ∃∈且12x x ≠,使得()()(1,2)i f x g x i ==,则实数a 的取值范围是()A .16(,)e eB .746[,)e eC .741[,)e eD .7416(0,][,)e e eU【答案】B 【分析】对∵x ∵(0,e ),f (x )的值域为[114,5),g ′(x )=a 11ax x x--=,推导出a >0,g (x )min =g (1a)=1+lna ,作出函数g (x )在(0,e )上的大致图象,数形结合由求出实数a 的取值范围. 【详解】当()0,x e ∈时,函数()f x 的值域为11,54⎡⎫⎪⎢⎣⎭.由()11'ax g x a x x -=-=可知:当0a ≤时,()'0g x <,与题意不符,故0a >.令()'0g x =,得1x a=,则()10,e a ∈,所以()min 11ln g x g a a ⎛⎫==+ ⎪⎝⎭,作出函数()g x 在()0,e 上的大致图象如图所示,观察可知()111415lna g e ae ⎧+<⎪⎨⎪=-≥⎩,解得746e a e ≤<. 故选:B 【点睛】本题考查实数的取值范围的求法,考查导数的性质、函数的单调性、最值等基础知识,考查运算求解能力,考查化归与转化思想,是中档题.二、解答题8.(2018·江西高考模拟(理))已知函数2()()x f x ax x a e -=++()a R ∈. (1)若0a ≥,函数()f x 的极大值为5e,求实数a 的值; (2)若对任意的0a ≤,()ln(1)f x b x ≤+,在[0,)x ∈+∞上恒成立,求实数b 的取值 【答案】(1)2a =;(2)1b ≥ 【解析】试题分析:(1)先求导数,再根据导函数零点分类讨论,根据导函数符号变化规律确定函数极大值,最后根据绝对值求实数a 的值;(2)先求0a ≤,()f x 最大值,再变量分离得ln(1)x xe b x -≥+ ,最后根据导数研究函数ln(1)xxe y x -=+最大值,即得实数b 的取值范围.试题解析:(1)由题意,.∵当时,, 令,得;,得,所以()f x 在(),1-∞单调递增()1,+∞单调递减. 所以()f x 的极大值为()151f e e=≠,不合题意. ∵当时,,令,得;,得或,所以()f x 在11,1a ⎛⎫-⎪⎝⎭单调递增,1,1a ⎛⎫-∞- ⎪⎝⎭,()1,+∞单调递减. 所以()f x 的极大值为()2151a f e e+==,得2a =. 综上所述2a =. (2)令,当时,,故()(]-0g a ∞于,上递增, ()()()0,0xg a g xe x -∴≤=≥ ∴原问题()[)ln 10,x xe b x x -⇔≤+∈+∞于上恒成立∵当时,,,,此时,不合题意.∵当时,令,,则,其中,,令,则()p x 在区间[)0,+∞上单调递增(∵)时,,所以对,,从而在上单调递增,所以对任意,,即不等式在上恒成立. (∵)时,由,及在区间上单调递增, 所以存在唯一的使得,且时,.从而时,,所以在区间上单调递减, 则时,,即,不符合题意.综上所述,.【点睛】:对于求不等式成立时的参数范围问题,在可能的情况下把参数分离出来,使不等式一端是含有参数的不等式,另一端是一个区间上具体的函数,这样就把问题转化为一端是函数,另一端是参数的不等式,便于问题的解决.但要注意分离参数法不是万能的,如果分离参数后,得出的函数解析式较为复杂,性质很难研究,就不要使用分离参数法. 9.(2019·广东高考模拟(理))已知函数()()212ln 22f x a x x x x =--+.(1)讨论()f x 的单调性;(2)若()f x 有两个不同的零点,求a 的取值范围. 【答案】(1)见解析(2)10ln 21a <<-【分析】(1)求出函数的定义域以及导函数,根据导数与函数单调性的关系,分类讨论0a ≤,02a <<,2a =,2a >,可求得()f x 的单调性(2)由(1)求得在0a ≤,02a <<,2a =,2a >时,函数的单调区间,讨论出零点的个数,从而求得实数a 的取值范围. 【详解】解析:(1)()()()()211220f x a x x a x x x x'=--⎛⎫+=-- ⎪⎝>⎭ ∵0a ≤,0a x -<,(0,2)x ∈,()0f x '>,()f x 单调递增;(2,)x ∈+∞,()0f x '<,()f x 单调递减∵02a <<,()02f x x '=⇒=或x a =,当(0,)x a ∈,()0f x '<,()f x 单调递减;(),2x a ∈,()0f x '>,()f x 单调递增;()2,x ∈+∞,()0f x '<,()f x 单调递减∵2a =,()()2120f x x x'=--<,()f x 在()0,∞+单调递减 ∵2a >,()02f x x '=⇒=或x a =,当()0,2x ∈,()0f x '<,()f x 单调递减;()2,x a ∈,()0f x '>,()f x 单调递增; (),x a ∈+∞,()0f x '<,()f x 单调递减(2)由(1)得当0a =时,()2122f x x x =-+在定义域上只有一个零点 0a <,由(1)可得,要使()f x 有两个零点,则()()()20222ln220f f a >⇒=-+>∵10ln 21a <<-下证()f x 有两个零点取1a x e =,1111112202a a a a f e a e e e a ⎛⎫⎛⎫⎛⎫=--+< ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭,满足()120a f e f ⎛⎫⋅< ⎪⎝⎭,故()f x 在()0,2有且只有一个零点()()442ln40f a =-<,满足()()240f f <,故()f x 在()2,+∞有且只有一个零点当02a <<时,由(1)可得()0,2x ∈,()()()()22112ln 221ln 022f x f a a a a a a a a a ≥=--+=+->,故()f x 在()0,2无零点,又因为()f x 在()2,+∞单调递减,∵()f x 在()0,∞+至多一个零点,不满足条件当2a >时,()0,x a ∈,()()()222ln 220f x f a ≥=-+>故()f x 在()0,a 上无零点, 又因为()f x 在(),a +∞单调递减,∵()f x 在()0,∞+至多一个零点,不满足条件 ∵满足条件a 的取值范围10ln 21a <<-【点睛】本题考查导数的综合应用,考查利用导数求函数单调性及最值,考查函数零点的判断,考查学生的计算能力,属于难题.10.(2019·湖北高考模拟(理))已知函数()e (ln )x f x a x =⋅+,其中a ∈R . (1)若曲线()y f x =在1x =处的切线与直线exy =-垂直,求a 的值; (2)记()f x 的导函数为()g x .当(0,ln 2)a ∈时,证明:()g x 存在极小值点0x ,且0()0f x <.【答案】(1)0;(2)见解析 【解析】分析:第一问对函数求导,利用两直线垂直,斜率所满足的条件求得切线的斜率,即函数在对应点处的导数,从而求得0a =,第二问写出函数()g x 的解析式,对其求导,根据0x e >,从而将研究'()g x 的符号转化为研究()221ln h x a x x x=+-+的符号,对其再求导,从而确定出函数在给定区间上的变化趋势,以及极小值点所满足的条件,最后证得结果.详解:(1)()()11e ln e e ln xxx f x a x a x x x ⎛⎫=⋅++⋅=⋅++ ⎝'⎪⎭依题意,有 ()()1e 1e f a =⋅+=',解得0a =. (2)令()1e ln xg x a x x ⎛⎫=⋅++ ⎪⎝⎭, 所以()2211121e ln e e ln xx x g x a x a x x x x x x ⎛⎫⎛⎫⎛⎫=⋅+++⋅-=⋅+-+ ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭'. 因为e 0x >,所以()g x '与221ln a x x x +-+同号. 设()221ln h x a x x x =+-+,则 ()()22331122x x x h x x x-='+-+=.所以对任意()0,x ∈+∞,有()0h x '>,故()h x 在()0,+∞单调递增. 因()0,ln2a ∈,所以()110h a =+>,11ln 022h a ⎛⎫=+<⎪⎝⎭, 故存在01,12x ⎛⎫∈⎪⎝⎭,使得()00h x =. ()g x 与()g x '在区间1,12⎛⎫⎪⎝⎭上的情况如下:所以()g x 在区间上单调递减,在区间上单调递增.所以若()0,ln2a ∈,存在01,12x ⎛⎫∈ ⎪⎝⎭,使得0x 是()g x 的极小值点.令()00h x =,得到002012ln x a x x -+=,所以()()000002012e ln e 0x x x f x a x x -=⋅+=⋅<. 【点睛】:该题属于导数的综合应用问题,一是要明确两直线垂直时斜率的关系,再结合导数的几何意义求导对应的参数的值,第二问研究的是函数的极值问题,通过研究导数的符号确定函数的单调区间,从而确定函数在哪个点处取得极值,在这里需要注意的是对导函数的转化问题,从而将函数解析式简化.11.(2019·山东省实验中学高考模拟(理))已知函数()()1xf x a x e =--,x ∈R .(1)求函数()f x 的单调区间及极值; (2)设()()22ln m g x x t x t ⎛⎫=-+- ⎪⎝⎭,当1a =时,存在()1,x ∈-∞+∞,()20,x ∈+∞,使方程()()12f x g x =成立,求实数m 的最小值.【答案】(1)单调递增区间为(,1)x a ∈-∞-,单调递减区间为(1,)x a ∈-+∞.函数()f x 有极大值且为1(1)1a f a e --=-,()f x 没有极小值.(2)1e-【分析】(1)通过求导,得到导函数零点为1x a =-,从而可根据导函数正负得到单调区间,并可得到极大值为()1f a -,无极小值;(2)由()f x 最大值为0且()0g x ≥可将问题转化为ln x xm=有解;通过假设()ln h x x x =,求出()h x 的最小值,即为m 的最小值. 【详解】(1)由()()1xf x a x e =--得:()()1xf x a x e '=--令()0f x '=,则()10xa x e --=,解得1x a =-当(),1x a ∈-∞-时,()0f x '> 当()1,x a ∈-+∞时,()0f x '<()f x 的单调递增区间为(),1x a ∈-∞-,单调递减区间为()1,x a ∈-+∞当1x a =-时,函数()f x 有极大值()111a f a e--=-,()f x 没有极小值(2)当1a =时,由(1)知,函数()f x 在10x a =-=处有最大值()0010f e =-=又因为()()22ln 0m g x x t x t ⎛⎫=-+-≥ ⎪⎝⎭∴方程()()12f x g x =有解,必然存在()20,x ∈+∞,使()20g x =x t ∴=,ln mx t =等价于方程ln x xm=有解,即ln m x x =在()0,∞+上有解记()ln h x x x =,()0,x ∈+∞()ln 1h x x '∴=+,令()0h x '=,得1x e=当10,e x ⎛⎫∈ ⎪⎝⎭时,()0h x '<,()h x 单调递减当1,x e ⎛⎫∈+∞ ⎪⎝⎭时,()0h x '>,()h x 单调递增所以当1x e =时,()min 1h x e=- 所以实数m 的最小值为1e-【点睛】本题考查利用导数求解函数单调区间和极值、能成立问题的求解.解题关键是能够将原题的能成立问题转化为方程有解的问题,从而进一步转化为函数最值问题的求解,对于学生转化与化归思想的应用要求较高.12.(2019·江西省都昌县第一中学高考模拟(理))已知函数1()ln f x x a x x=-+. (1)讨论()f x 的单调性;(2)若()f x 存在两个极值点12,x x ,证明:()()12122f x f x a x x -<--.【答案】(1)见解析;(2)见解析 【解析】分析:(1)首先确定函数的定义域,之后对函数求导,之后对a 进行分类讨论,从而确定出导数在相应区间上的符号,从而求得函数对应的单调区间;(2)根据()f x 存在两个极值点,结合第一问的结论,可以确定2a >,令'()0f x =,得到两个极值点12,x x 是方程210x ax -+=的两个不等的正实根,利用韦达定理将其转换,构造新函数证得结果.详解:(1)()f x 的定义域为()0,+∞,()222111a x ax f x x x x-+=--+-'=. (i )若2a ≤,则()0f x '≤,当且仅当2a =,1x =时()0f x '=,所以()f x 在()0,+∞ 单调递减.(ii )若2a >,令()0f x '=得,x =或x =.当0,22a a x ⎛⎫⎛⎫∈⋃+∞ ⎪ ⎪ ⎪ ⎪⎝⎭⎝⎭时,()0f x '<;当22a a x ⎛∈⎪⎝⎭时,()0f x '>.所以()f x在,⎛⎫+∞ ⎪ ⎪⎝⎭⎝⎭单调递减,在⎝⎭单调递增.(2)由(1)知,()f x 存在两个极值点当且仅当2a >.由于()f x 的两个极值点12,x x 满足210x ax -+=,所以121x x =,不妨设12x x <,则21x >.由于()()12121221212121222ln ln ln ln 2ln 11221f x f x x x x x x a a ax x x x x x x x x x ----=--+=-+=-+----, 所以()()12122f x f x a x x -<--等价于22212ln 0x x x -+<.设函数()12ln g x x x x=-+,由(1)知,()g x 在()0,+∞单调递减,又()10g =,从而当()1,x ∈+∞时,()0g x <.所以22212ln 0x x x -+<,即()()12122f x f x a x x -<--. 【点睛】:该题考查的是应用导数研究函数的问题,涉及到的知识点有应用导数研究函数的单调性、应用导数研究函数的极值以及极值所满足的条件,在解题的过程中,需要明确导数的符号对单调性的决定性作用,再者就是要先保证函数的生存权,先确定函数的定义域,要对参数进行讨论,还有就是在做题的时候,要时刻关注第一问对第二问的影响,再者就是通过构造新函数来解决问题的思路要明确. 13.(2019·广东高考模拟(理))已知函数ln 2()x f x x+=. (1)求函数()f x 在[1,)+∞上的值域;(2)若x ∀∈[1,)+∞,ln (ln 4)24x x ax +≤+恒成立,求实数a 的取值范围. 【答案】(1)(0,2](2)24a e≥ 【分析】(1)对函数()f x 求导,确定函数在[)1,+∞上单调性和最值,即可求出函数()f x 在[)1,+∞上的值域;(2)通过构造函数()()ln ln 424g x x x ax =+--,将问题转化为在[)1,+∞区间上()0max g x ≤问题,求导函数()ln 22x g x a x +⎛⎫=-⎝'⎪⎭,通过分类讨论确定实数a 的取值范围. 【详解】解:(1)易知()()21ln 01xf x x x -<'-=≥, ()f x ∴在[)1,+∞上单调递减,()max 2f x =,1x ≥Q 时,()0f x >, ()f x ∴在[)1,+∞上的值域为(]0,2.(2)令()()ln ln 424g x x x ax =+--,则()ln 22x g x a x +⎛⎫=-⎝'⎪⎭,∵若0a ≤,则由(1)可知,()0g x '>,()g x 在[)1,+∞上单调递增, ()e 12e>0g a =-Q ,与题设矛盾,0a ∴≤不符合要求;∵若2a ≥,则由(1)可知,()0g x '≤,()g x 在[)1,+∞上单调递减,()()1240g x g a ≤=--<Q ,2a ∴≥符合要求;∵若02a <<,则()01,x ∃∈+∞,使得00ln 2x a x +=, 且()g x 在()01,x 上单调递增,在()0,x +∞上单调递减,()()()0000max ln ln 424g x g x x x ax ∴==+--, 00ln 2x ax =-Q , ()()()()()()000000max =222424g x g x ax ax ax ax ax ∴=-+--=+-.由题:()max 0g x ≤,即()()00240ax ax +-≤,024ax -≤≤,即2002ln 241e x x -≤+≤⇒<≤.00ln 2x a x +=Q ,且由(1)可知ln 2x y x+=在()1,+∞上单调递减, 242ea ∴≤<. 综上,24a e≥.【点睛】本题主要考查函数的极值、最值与函数的单调性问题,考查利用导数研究恒成立问题的分类讨论方法. 分类讨论时要注意不重不漏,仔细审题,根据已知条件合理分类.根据题意构造新函数并合理运用已知结论是解题关键.。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
2020高考数学函数与导数参数与分类讨论大题精做理科1.已知函数()1e kxkx f x k -=(k ∈R ,0k ≠). (1)讨论函数()f x 的单调性;(2)当1x ≥时,ln x f x k ⎛⎫≤ ⎪⎝⎭,求k 的取值范围.2.已知函数()()()2ln 2f x x a x ax a =-+-∈R . (1)求函数()f x 的单调区间;(2)若对任意()0,x ∈+∞,函数()f x 的图像不在x 轴上方,求a 的取值范围.3.已知函数()()()e 1e 1x x f x x a =+--.(1)若曲线()y f x =在点()()1,1f 处切线的斜率为1,求实数a 的值; (2)当()0,x ∈+∞时,()0f x >恒成立,求实数a 的取值范围.4.已知函数()1ln f x x ax x =--. (1)求()f x 在[)1,+∞上的最值; (2)设()()1f xg x x =+,若当01a <≤,且0x >时,()g x m ≤,求整数m 的最小值.1.【答案】(1)见解析;(2)0k <或1ek ≥.【解析】(1)()()()22e 112e e e e kx kx kx kx kx k x k kx k kx k f x k ⎛⎫-- ⎪---⎝⎭'=⋅==, ①若0k >,当2,x k ⎛⎫∈-∞ ⎪⎝⎭时,()0f x '>,()f x 在2,k ⎛⎫-∞ ⎪⎝⎭上单调递增;当2,x k ⎛⎫∈+∞ ⎪⎝⎭时,()0f x '<,()f x 在2,k ⎛⎫+∞ ⎪⎝⎭上单调递减.②若0k <,当2,x k ⎛⎫∈-∞ ⎪⎝⎭时,()0f x '<,()f x 在2,k ⎛⎫-∞ ⎪⎝⎭上单调递减;当2,x k ⎛⎫∈+∞ ⎪⎝⎭时,()0f x '>,()f x 在2,k ⎛⎫+∞ ⎪⎝⎭上单调递增.∴当0k >时,()f x 在2,k ⎛⎫-∞ ⎪⎝⎭上单调递增,在2,k ⎛⎫+∞ ⎪⎝⎭上单调递减;当0k <时,()f x 在2,k ⎛⎫-∞ ⎪⎝⎭上单调递减,在2,k ⎛⎫+∞ ⎪⎝⎭上单调递增.(2)()1ln 1ex x x f x x k k -⎛⎫=≤≥ ⎪⎝⎭,当0k <时,上不等式成立,满足题设条件;当0k >时,1ln ex x x f x k k -⎛⎫=≤ ⎪⎝⎭,等价于1l 0e n x x k x --≤,设()()1ln 1ex x g x k x x -=-≥,则()222e e e x x xx k x x k g x x x ---'=-=, 设()()22e 1x h x x x k x =--≥,则()()21e 0x h x x k '=--<, ∴()h x 在[)1,+∞上单调递减,得()()11e h x h k ≤=-. ①当1e 0k -≤,即1ek ≥时,得()0h x ≤,()0g x '≤,∴()g x 在[)1,+∞上单调递减,得()()10g x g ≤=,满足题设条件; ②当1e 0k ->,即10ek <<时,()10h >,而()22e 0h k =-<, ∴()01,2x ∃∈,()00h x =,又()h x 单调递减,∴当()01,x x ∈,()0h x >,得()'0g x >, ∴()g x 在[)01,x 上单调递增,得()()10g x g ≥=,不满足题设条件; 综上所述,0k <或1ek ≥.2.【答案】(1)见解析;(2)[)1,-+∞. 【解析】(1)函数()f x 的定义域为()0,+∞,()()()()()22121221122x a x a x ax f x a x a x x x++-⎡⎤++-⎣⎦=-+-=--'=. 当2a ≤-时,()0f x '>恒成立,函数()f x 的单调递增区间为()0,+∞; 当2a >-时,由()0f x '=,得12x a =+或12x =-(舍去), 则由()0f x '>,得102x a <<+;由()0f x '<,得12x a >+, 所以()f x 的单调递增区间为10,2a ⎛⎫ ⎪+⎝⎭,单调递减区间为1,2a ⎛⎫+∞⎪+⎝⎭. (2)对任意()0,x ∈+∞,函数()f x 的图像不在x 轴上方,等价于对任意()0,x ∈+∞,都有()0f x ≤恒成立,即在()0,+∞上()max 0f x ≤. 由(1)知,当2a ≤-时,()f x 在()0,+∞上是增函数,又()()1210f a =-+>,不合题意; 当2a >-时,()f x 在12x a =+处取得极大值也是最大值, 所以()()max 11ln 2122f x f a a a ⎛⎫==-++- ⎪++⎝⎭. 令()()()11ln 21222u a f a a a a ⎛⎫==-++->- ⎪++⎝⎭,所以()()21122u a a a =--++'. 在()2,-+∞上,()0u a '<,()u a 是减函数.又()10u -=,所以要使得()max 0f x ≤,须()0u a ≤,即1a ≥-. 故a 的取值范围为[)1,-+∞. 3.【答案】(1)2a =;(2)2a ≤. 【解析】(1)()e e 1e x x x f x x a +'=+-, 因为()1e e 1e 1f a =++-=',所以2a =.(2)()e 1e e x x x f x x a =++-',设()e 1e e x x x g x x a =++-, 设()()()e 1e e 2e x x x x g x x a x a =++-=+-',设()2h x x a =+-, 注意到()00f =,()()002f g a ='=-,(ⅰ)当2a ≤时,()20h x x a =+->在()0,+∞上恒成立,所以()0g x '>在()0,+∞上恒成立,所以()g x 在()0,+∞上是增函数, 所以()()020g x g a >=-≥,所以()0f x '>在()0,+∞上恒成立, 所以()f x 在()0,+∞上是增函数,所以()()00f x f >=在()0,+∞上恒成立,符合题意;(ⅱ)当2a >时,()020h a =-<,()20h a =>,所以()00,x a ∃∈,使得()00h x =, 当()00,x x ∈时,()0h x <,所以()0g x '<,所以()g x 在()00,x 上是减函数, 所以()f x '在()00,x 上是减函数,所以()()020f x f a <=-'<',所以()f x 在()00,x 上是减函数, 所以()()00f x f <=,不符合题意; 综上所述2a ≤.4.【答案】(1)详见解析;(2)2.【解析】解法一:(1)()1ln f x a x a =---',[)1,x ∈+∞,①当0a ≥时,因为()1ln 0f x a x a '=---<,所以()f x 在[)1,+∞上单调递减, 所以()()max 10f x f ==,无最小值. ②当10a -<<时, 令()0f x '<,解得111eax --<<,()f x 在111,e a --⎛⎫ ⎪⎝⎭上单调递减;令()0f x '>,解得11eax -->,()f x 在11e ,a --⎛⎫+∞ ⎪⎝⎭上单调递增;所以()1111mine e 1aa f x f a ----⎛⎫==+ ⎪⎝⎭,无最大值.③当1a ≤-时,因为()()1ln 10f x a x '=--+≥,等号仅在1a =-,1x =时成立, 所以()f x 在()1,+∞上单调递增, 所以()()min 10f x f ==,无最大值.综上,当0a ≥时,()max 0f x =,无最小值;当10a -<<时,()11min e 1af x a --=+,无最大值;当1a ≤-时,()min 0f x =,无最大值. (2)()1ln 1x ax xg x x --=+,当1x ≥时,因为01a <≤,由(1)知()0f x ≤,所以()0g x ≤(当1x =时等号成立),所以0m ≥.当01x <<时,因为01a <≤,所以()1ln f x x x x ≤--,所以()1ln 1x x xg x x --≤+,令()1ln 1x x xh x x --=+,()0,1x ∈,已知化为()h x m ≤在()0,1上恒成立,因为()()23ln 1x xh x x ---+'=,令()3ln k x x x =---,()0,1x ∈,则()110k x x=--<',()k x ∴在()0,1上单调递减, 又因为441110e e k ⎛⎫=-> ⎪⎝⎭,3310e e 1k ⎛⎫=-< ⎪⎝⎭,所以存在043e e 11,x ⎛⎫∈ ⎪⎝⎭使得()0003ln 0k x x x =---=,当00x x <<时,()0h x >,()0h x '>,()h x 在()00,x 上单调递增; 当0x x >时,()0h x <,()0h x '<,()h x 在()0,x +∞上单调递减; 所以()()()20000000000max000131ln 211111x x x x x x x x h x h x x x x x -++--++=====++++,因为043e e 11,x ⎛⎫∈ ⎪⎝⎭,所以0431111,1e e x ⎛⎫+∈++ ⎪⎝⎭,所以()43max 111,ee 1h x ⎛⎫∈++ ⎪⎝⎭,所以m 的最小整数值为2. 解法二: (1)同解法一. (2)()1ln 1x ax xg x x --=+,①当1x ≥时,因01a <≤为,由(1)知()0f x ≤,所以()0g x ≤,所以0m ≥, ②当01x <<时,因为01a <≤,()1ln f x x x x ≤--,所以()1ln 1x x xg x x --≤+,令()1ln 1x x xh x x --=+,()0,1x ∈,已知化为()h x m ≤在()0,1上恒成立,因为()3332111,211e e e h +⎛⎫=∈ ⎪⎝⎭+在()0,1上,所以2m ≥, 下面证明()2h x ≤,即证31ln 0x x x ++≥在()0,1x ∈上恒成立, 令()31ln t x x x x =++,()0,1x ∈,则()4ln t x x ='+,令()0t x '=,得,当4e 10,x ⎛⎫∈ ⎪⎝⎭时,()0t x '<,()t x 在区间410,e ⎛⎫⎪⎝⎭上递减;当41,1e x ⎛⎫∈ ⎪⎝⎭时,()0t x '>,()t x 在区间41e ,1⎛⎫⎪⎝⎭上递增,所以()4e 1t x t ⎛⎫≥ ⎪⎝⎭,且441110e e t ⎛⎫=-> ⎪⎝⎭,所以当()0,1x ∈时,()0t x >,即()2h x ≤. 由①②得当0x >时,()2g x ≤, 所以m 的最小整数值为2.。