抽屉原理知识点总结 抽屉原理复习知识点

合集下载

小升初数学奥数知识点 抽屉原理素材

小升初数学奥数知识点 抽屉原理素材

本文由一线教师精心整理,word可编辑抽屉原理
抽屉原则一:如果把(n+1)个物体放在n个抽屉里,那么必有一个抽屉中至少放有2个物体。

例:把4个物体放在3个抽屉里,也就是把4分解成三个整数的和,那么就有以下四种情况:
①4=4+0+0 ②4=3+1+0 ③4=2+2+0 ④4=2+1+1
观察上面四种放物体的方式,我们会发现一个共同特点:总有那么一个抽屉里有2个或多于2个物体,也就是
说必有一个抽屉中至少放有2个物体。

抽屉原则二:如果把n个物体放在m个抽屉里,其中n>m,那么必有一个抽屉至少有:
①k=[n/m ]+1个物体:当n不能被m整除时。

②k=n/m个物体:当n能被m整除时。

理解知识点:[X]表示不超过X的最大整数。

例[4.351]=4;[0.321]=0;[2.9999]=2;
关键问题:构造物体和抽屉。

也就是找到代表物体和抽屉的量,而后依据抽屉原则进行运算。

1 / 1。

(完整版)抽屉原理初步复习要点

(完整版)抽屉原理初步复习要点

抽屉原理初步复习要点一、抽屉原理(1)抽屉原理包括两项内容,用较通俗的语言表述如下:1.把5个苹果放入4个抽屉,能找到有一个抽屉中至少有2个苹果;2.把9个苹果放入4个抽屉,能找到有一个抽屉中至少有3个苹果。

这类问题,相当于问我们分割苹果的不同方式中,放苹果最多的那个抽屉最少放几个,那么最好的方式就是平均放。

所以我们用苹果数÷抽屉数。

有余数,商加一,无余数,即为商。

例:有25个人,请问他们中至少有几人属相同?分析:此时把25个人看作25个苹果,12种属相看作12个抽屉,25÷12=2(人)……1(人),2+1=3(人),所以至少有3个人属相相同。

(2)已知抽屉求苹果例:若干个苹果放入4个抽屉,要求保证能找到一个抽屉中至少有3个苹果,问至少需要多少个苹果?分析:要保证一个抽屉中至少有3个苹果,那么其他抽屉中必须放满2个,所以苹果数=抽屉数×(保证数-1)+1,即4×(3-1)+1=9(个)。

(3)已知苹果数求抽屉数例:有21个苹果放入若干个抽屉,要求保证能找到一个抽屉中至少有5个苹果,问至多需要多少个抽屉?分析:要保证一个抽屉中至少有5个苹果,那么其他抽屉中必须放满4个,从苹果数中拿出一个备用(用做平均后改4个为5个),则(苹果数-1)÷(保证数-1),所得商为抽屉数(无论是否有余数),即(21-1)÷(5-1)=5(个)抽屉。

二、最不利原则(“气死你大法”)这里要注意理解两个词的含义,保证:确定,肯定,万无一失!最不利:最倒霉,最繁琐,最糟糕!最不利原则要求我们从最极端的角度去考虑事件。

我们分两类去讨论:1.例:口袋里共有5个红球,4个黄球,3个绿球;问:(1)至少取几个球才能保证取到一个红球?(2)至少取几个球才能保证取到三种颜色的球各一个?分析:(1)要取到一个红球,从最倒霉的角度去思考,需要先取到4个黄球,3个绿球,再取一个红球,所以共计4+3+1=8(个)(2)要取到三种颜色的球各一个,从最倒霉的角度去思考,需先取到5个红球,4个黄球,再取一个绿球即可,所以共计5+4+1=10(个)(这里要注意下顺序,从最多数量的颜色开始取)2.例:有1根红筷子,5根绿筷子,7根黄筷子,8根蓝筷子;问:(1)至少取几根筷子才能保证取到颜色相同的一双筷子?(2)至少取几根筷子才能保证取到颜色相同的两双筷子?(3)至少取几根筷子才能保证取到颜色不同的两双筷子?分析:(1)要取到颜色相同的一双筷子,即是要取到两根颜色相同的筷子,从最倒霉的角度去思考,需要每种颜色各取一根,再任取1根即可。

抽屉原理

抽屉原理

抽屉原理【知识点与基本方法】抽屉原理1:将多于n件物品任意放到n个抽屉中,那么至少有一个抽屉中的物品不少于2件。

抽屉原理2:将多于m×n件物品任意放到到n个抽屉中,那么至少有一个抽屉中的物品不少于(m+1)件。

理解抽屉原理要注意几点:(1)抽屉原理是讨论物品与抽屉的关系,要求物品数比抽屉数或抽屉数的倍数多,至于多多少,这倒无妨。

(2)“任意放”的意思是不限制把物品放进抽屉里的方法,不规定每个抽屉中都要放物品,即有些抽屉可以是空的,也不限制每个抽屉放物品的个数。

(3)抽屉原理只能用来解决存在性问题,“至少有一个”的意思就是存在,满足要求的抽屉可能有多个,但这里只需保证存在一个达到要求的抽屉就够了。

(4)将a件物品放入n个抽屉中,如果a÷n= m……b,其中b是自然数,那么由抽屉原理2就可得到,至少有一个抽屉中的物品数不少于(m+1)件。

1.五年级有47名学生参加一次数学竞赛,成绩都是整数,满分是100分。

已知3名学生的成绩在60分以下,其余学生的成绩均在75~95分之间。

问:至少有几名学生的成绩相同?2.夏令营组织2000名营员活动,其中有爬山、参观博物馆和到海滩游玩三个项目。

规定每人必须参加一项或两项活动。

那么至少有几名营员参加的活动项目完全相同?3.把125本书分给五(2)班学生,如果其中至少有1人分到至少4本书,那么,这个班最多有多少人?4.张老师在一次数学课上出了两道题,规定每道题做对得2分,没做得1分,做错得0分。

张老师说:可以肯定全班同学中至少有6名学生各题的得分都相同。

那么,这个班最少有多少人?5.任意将若干个小朋友分为五组。

证明:一定有这样的两组,两组中的男孩总数与女孩总数都是偶数。

6.把一个长方形画成3行9列共27个小方格,然后用红、蓝铅笔任意将每个小方格涂上红色或蓝色。

是否一定有两列小方格涂色的方式相同?7.在任意的四个自然数中,是否总能找到两个数,它们的差是3的倍数?8.从1,3,5,7,…,47,49这25个奇数中至少任意取出多少个数,才能保证有两个数的和是52。

备战小升初数学抽屉原理知识点

备战小升初数学抽屉原理知识点

备战2019小升初数学抽屉原理知识点小升初数学是小升初综合素质评价考试的重头戏,在试卷中所占分值比重最大。

为了帮助学生们顺利备考,下面为大家分享小升初数学抽屉原理知识点,希望对大家有帮助!抽屉原理抽屉原则一:如果把(n+1)个物体放在n个抽屉里,那么必有一个抽屉中至少放有2个物体。

例:把4个物体放在3个抽屉里,也就是把4分解成三个整数的和,那么就有以下四种情况:①4=4+0+0 ②4=3+1+0 ③4=2+2+0 ④4=2+1+1观察上面四种放物体的方式,我们会发现一个共同特点:总有那么一个抽屉里有2个或多于2个物体,也就是说必有一个抽屉中至少放有2个物体。

抽屉原则二:如果把n个物体放在m个抽屉里,其中n>m,那么必有一个抽屉至少有:①k=[n/m ]+1个物体:当n不能被m整除时。

“师”之概念,大体是从先秦时期的“师长、师傅、先生”而来。

其中“师傅”更早则意指春秋时国君的老师。

《说文解字》中有注曰:“师教人以道者之称也”。

“师”之含义,现在泛指从事教育工作或是传授知识技术也或是某方面有特长值得学习者。

“老师”的原意并非由“老”而形容“师”。

“老”在旧语义中也是一种尊称,隐喻年长且学识渊博者。

“老”“师”连用最初见于《史记》,有“荀卿最为老师”之说法。

慢慢“老师”之说也不再有年龄的限制,老少皆可适用。

只是司马迁笔下的“老师”当然不是今日意义上的“教师”,其只是“老”和“师”的复合构词,所表达的含义多指对知识渊博者的一种尊称,虽能从其身上学以“道”,但其不一定是知识的传播者。

今天看来,“教师”的必要条件不光是拥有知识,更重于传播知识。

语文课本中的文章都是精选的比较优秀的文章,还有不少名家名篇。

如果有选择循序渐进地让学生背诵一些优秀篇目、精彩段落,对提高学生的水平会大有裨益。

现在,不少语文教师在分析课文时,把文章解体的支离破碎,总在文章的技巧方面下功夫。

结果教师费劲,学生头疼。

分析完之后,学生收效甚微,没过几天便忘的一干二净。

抽屉原理精华及习题附含答案

抽屉原理精华及习题附含答案

第九讲抽屉原理一、知识点:1.把27个苹果放进4个抽屉中,能否使每个抽屉中苹果数均小于等于6?那么至少有一个抽屉中的苹果数大于等于几?2.把25个苹果放进5个抽屉中,能否使每个抽屉中苹果数均小于等于4?那么至少有一个抽屉中的苹果数大于等于几?上述两个结论你是如何计算出来的?★规律:用苹果数除以抽屉数,假设余数不为零,那么“答案〞为商加1,假设余数为零,那么“答案〞为商。

★抽屉原那么一:n个以上的苹果放到n个抽屉中,无论怎样放,一定能找到一个抽屉,它里面至少有两个苹果。

★抽屉原那么二:把多于m×n个苹果放到n个抽屉中,无论怎样放,一定能找到一个抽屉,它里面至少有(m+1)个苹果。

二、根底知识训练〔再蓝皮书〕1、把98个苹果放到10个抽屉中,无论怎么放,我们一定能找到一个含苹果最多的抽屉,它里面至少含有个苹果。

2、1000只鸽子飞进50个巢,无论怎么飞,我们一定能找到一个含鸽子最多的巢,它里面至少含有只鸽子。

3、从8个抽屉中拿出17个苹果,无论怎么拿。

我们一定能找到一个拿苹果最多的抽屉,从它里面至少拿出了个苹果。

4、从个抽屉中〔填最大数〕拿出25个苹果,才能保证一定能找到一个抽屉,从它当中至少拿了7个苹果。

三、思路与方法:在抽屉原理问题,难在有些题目抽屉没有直接给出,要求我们自己根据题意去造抽屉,但我们也不要为此感到困难,往往在题目有一句关键的话,告诉我们抽屉的性质,我们可以根据此性质来构造抽屉即可。

精选汇博教育五年级Top奥数班训练题六〔1〕班有49名学生。

数学王老师了解到在期中考试中该班英文成绩除3人外均在86分以上后就说:“我可以断定,本班同学至少有人成绩相同。

〞请问王老师说的对吗?为什么?从1,2,3,,100这100个数中任意挑选出51个数来,证明在这51个数中,一定:〔1〕有2个数互质;〔2〕有两个数的差为50;圆周上有2000个点,在其上任意地标上0,1,2,,1999〔每一点只标一个数,不同的点标上不同的数〕。

奥数知识点解析之抽屉原理

奥数知识点解析之抽屉原理

奥数知识点解析之抽屉原理第一步:初步理解该知识点的定理及性质1、提出疑问:什么是抽屉原理?2、抽屉原理有哪些内容呢?【抽屉原理1】:将多于n件的物品任意放到n个抽屉中,那么至少有一个抽屉中的物品不少于2件;【逆抽屉原理】:从n个抽屉中拿出多于n件的物品,那么至少有2个物品来至于同一个抽屉。

【抽屉原理2】:将多于mn件的物品任意放到n个抽屉中,那么至少有一个抽屉中的物品不少于(m+1)件。

第二步:学习最具有代表性的题目【例1】证明:任取8个自然数,必有两个数的差是7的倍数。

【例2】对于任意的五个自然数,证明其中必有3个数的和能被3整除。

【总结】以上的例题都是在考察抽屉原理在整除与余数问题中的运用。

以上的题目我们都是运用抽屉原理一来解决的。

第三步:找出解决此类问题的关键【例3】从2、4、6、…、30这15个偶数中,任取9个数,证明其中一定有两个数之和是34。

【例4】从1、2、3、4、…、19、20这20个自然数中,至少任选几个数,就可以保证其中一定包括两个数,它们的差是12。

【例5】从1到20这20个数中,任取11个数,必有两个数,其中一个数是另一个数的倍数。

{1,2,4,8,16}{3,6,12},{5,10,20}{7,14},{9,18}{11},{13},{15},{17},{19}。

【总结】根据题目条件灵活构造“抽屉”是解决这类题目的关键。

第四步:重点解决该类型的拓展难题我们先来做一个简单的铺垫题:【铺垫】请说明,任意3个自然数,总有2个数的和是偶数。

【例6】请说明,对于任意的11个正整数,证明其中一定有6个数,它们的和能被6整除。

【总结】上面两道题目用到了抽屉原理中的“双重抽屉”与“合并抽屉”,都是在原有典型抽屉原理题目的基础上进行的拓展。

什么是抽屉原理?(1)举例桌上有十个苹果,要把这十个苹果放到九个抽屉里,无论怎样放,有的抽屉可以放一个,有的可以放两个,有的可以放五个,但最终我们会发现至少我们可以找到一个抽屉里面至少放两个苹果。

奥数三大原理之抽屉原理(一)

奥数三大原理之抽屉原理(一)

【重要知识点】抽屉原理一般有两种形式,通常称为原理Ⅰ和原理Ⅱ。

原理Ⅰ将n+1个苹果放入n个抽屉中,则必有一个抽屉中至少有2个苹果。

原理Ⅱ将mn+1个苹果放入n个抽屉中,则必有一个抽屉中至少有m+1个苹果。

在第二种形式中,如果m=1,就是第一种形式,也就是说(Ⅰ)包括在(Ⅱ)中。

有时我们也要反向使用这两个基本形式:现有n个抽屉,如果要保证必有一个抽屉中至少有m+1个苹果,那么我们至少要放入mn+1个苹果。

同样的,如果苹果换成鸽子,把抽屉换成笼子,也有同样类似的结论,所以人们有时也把抽屉原理叫成鸽笼原理。

这一讲着重介绍抽屉原理的基本用法。

【经典题例】例1五(1)班学雷锋小组有13人。

教数学的张老师说:“你们这个小组至少有2个人在同一月过生日”。

你知道张老师为什么这样说吗?例2五(2)班有43名同学,班上的“图书角”至少要准备多少本课外书,才能保证有的同学可以同时借两本书?例3幼儿园大班有25名小朋友,老师给他们分80颗糖,试说明至少有一名小朋友分到了不少于4颗糖。

例4小红家来了5位客人,她拿出糖果来招待他们。

要保证有的客人能吃到6颗糖,她至少要准备多少颗糖?例5一次任意取3个不同的整数,则其中必有两个数的和是偶数。

例 6 每个星期四是学校图书馆对五(2)班开放的日子。

这个星期四,五(2)班共有38人去图书馆办理了借书手续。

已知图书馆共有科技书、文艺书和连环画三类,且每名同学每次可从图书馆借任意的两本书。

问这38名同学中有多少名同学借的书的种类是一样的?例7光明小学每天共有560人在学校吃中餐。

某天中午,学校食堂共准备了4个荤菜、3个素菜和2种汤,每个同学都打了一个荤菜、一个素菜和一个汤。

问至少有多少个同学吃的菜是一样的?例8摸球游戏。

有外形相同的红、黄、绿三色球各l0个,混合后放人同一布袋中。

①一次至少摸几个球,才能保证有两个球、是同色的?②一次至少摸几个球,才能保证有两个球是不同颜色的?③一次至少摸几个球,才能保证有两种颜色的同色球各一对?【综合训练与课后作业】1.小明说:“我掷了7次骰子,其中.至少有两次的点数是一致的”,你说他说对了吗?2.五(2)班共有41人,在新学期排座位,把全班分成四大组。

抽屉原理知识点三年级

抽屉原理知识点三年级

抽屉原理知识点三年级抽屉原理,又称鸽巢原理,是数学中的一个基本概念,它描述了当多个物品被放入较少的容器中时,至少有一个容器会包含多于一个的物品。

这个原理在日常生活中非常常见,比如当我们把多于抽屉数量的袜子放入抽屉时,至少有一个抽屉里会有两只或更多的袜子。

# 抽屉原理的基本概念抽屉原理可以这样表述:如果有n个抽屉和n+1个或更多的物品,那么至少有一个抽屉里会包含至少两个物品。

这个原理不仅适用于具体的物品和容器,也可以推广到抽象的数学概念上。

# 抽屉原理的应用1. 数学问题解决:在解决一些数学问题时,抽屉原理可以帮助我们快速找到问题的答案。

例如,如果有5个苹果要分给3个孩子,根据抽屉原理,至少有一个孩子会得到2个或更多的苹果。

2. 游戏策略:在一些策略游戏中,利用抽屉原理可以帮助我们预测对手的行动,或者优化自己的策略。

3. 概率论:在概率论中,抽屉原理可以用来证明某些事件发生的必然性。

# 抽屉原理的证明抽屉原理的证明通常采用反证法。

假设我们有n个抽屉和n+1个物品,如果每个抽屉都只放一个物品,那么最多只能放n个物品。

但因为我们有n+1个物品,所以至少有一个抽屉里必须放两个或更多的物品。

# 练习题为了帮助三年级的学生们更好地理解抽屉原理,我们可以设计一些简单的练习题:1. 如果你有7支铅笔,要把它们放入6个铅笔盒中,至少有一个铅笔盒里会有多少支铅笔?2. 一个班级有40名学生和5个小组,如果每个小组的学生数相同,那么每个小组至少有多少名学生?# 结尾通过学习抽屉原理,三年级的学生们不仅能够锻炼逻辑思维能力,还能在解决实际问题时更加得心应手。

希望孩子们能够在数学的世界里发现更多的乐趣和奥秘。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

抽屉原理知识点总结抽屉原理复习知识点
抽屉原理是组合数学中一个重要的原理,也是小学数学的一个重点知识。

以下是本人为你整理的抽屉原理知识点总结,希望你喜欢。

抽屉原理知识点总结
抽屉原理的一般含义为:“如果每个抽屉代表一个集合,每一个苹果就可以代表一个元素,假如有n+1或多于n+1个元素放到n个集合中去,其中必定至少有一个集合里至少有两个元素。


抽屉原理有时也被称为鸽巢原理(“如果有五个鸽子笼,养鸽人养了6只鸽子,那么当鸽子飞回笼中后,至少有一个笼子中装有2只鸽子”)。

它是德国数学家狄利克雷首先明确的提出来并用以证明一些数论中的问题,因此,也称为狄利克雷原理。

它是组合数学中一个重要的原理。

抽屉原理知识点总结:抽屉原则一
如果把(n+1)个物体放在n个抽屉里,那么必有一个抽屉中至少放有2个物体。

例:把4个物体放在3个抽屉里,也就是把4分解成三个整数的和,那么就有以下四种情况:
①4=4+0+0 ②4=3+1+0 ③4=2+2+0 ④4=2+1+1
观察上面四种放物体的方式,我们会发现一个共同特点:总有那么一个抽屉里有2个或多于2个物体,也就是说必有一个抽屉中至少放有2个物体。

抽屉原理知识点总结:抽屉原则二
如果把n个物体放在m个抽屉里,其中n>m,那么必
有一个抽屉至少有:
①k=[n/m ]+1个物体:当n不能被m整除时。

②k=n/m个物体:当n能被m整除时。

理解知识点:[X]表示不超过X的最大整数。

例[4.351]=4;[0.321]=0;[2.9999]=2;
关键问题:构造物体和抽屉。

也就是找到代表物体和抽屉的量,而后依据抽屉原则进行运算。

抽屉原理知识点总结:抽屉原理练习
1.木箱里装有红色球3个、黄色球5个、蓝色球7个,若蒙眼去摸,为保证取出的球中有两个球的颜色相同,则最少要取出多少个球?
解:把3种颜色看作3个抽屉,要符合题意,则小球的数目必须大于3,故至少取出4个小球才能符合要求。

2.一幅扑克牌有54张,最少要抽取几张牌,方能保
证其中至少有2张牌有相同的点数?
解:点数为1(A)、2、3、4、5、6、7、8、9、10、
11(J)、12(Q)、13(K)的牌各取1张,再取大王、小王各1张,一共15张,这15张牌中,没有两张的点数相同。

这样,如果任意再取1张的话,它的点数必为1~13中的一个,于是有2
张点数相同。

3.11名学生到老师家借书,老师是书房中有A、B、C、D四类书,每名学生最多可借两本不同类的书,最少借一本。

试证明:必有两个学生所借的书的类型相同。

证明:若学生只借一本书,则不同的类型有A、B、C、D四种,若学生借两本不同类型的书,则不同的类型有AB、AC、AD、BC、BD、CD六种。

共有10种类型,把这10种类型看作
10个“抽屉”,把11个学生看作11个“苹果”。

如果谁借
哪种类型的书,就进入哪个抽屉,由抽屉原理,至少有两个学生,他们所借的书的类型相同。

4.有50名运动员进行某个项目的单循环赛,如果没
有平局,也没有全胜,试证明:一定有两个运动员积分相同。

证明:设每胜一局得一分,由于没有平局,也没有全胜,则得分情况只有0、1、2、3……48,只有49种可能,以
这49种可能得分的情况为49个抽屉,现有50名运动员得分,则一定有两名运动员得分相同。

5.体育用品仓库里有许多足球、排球和篮球,某班
50名同学来仓库拿球,规定每个人至少拿1个球,至多拿2
个球,问至少有几名同学所拿的球种类是一致的?
解:根据规定,多有同学拿球的配组方式共有以下9种:﹛足﹜﹛排﹜﹛蓝﹜﹛足足﹜﹛排排﹜﹛蓝蓝﹜﹛足排﹜﹛足蓝﹜﹛排蓝﹜。

以这9种配组方式制造9个抽屉,将这
50个同学看作苹果50÷9 =5 (5)
由抽屉原理2:k=[m/n ]+1可得,至少有6人,他们所拿的球类是完全一致的。

看了“抽屉原理知识点总结”的人还看了:
1.数学知识梳理手抄报
2.小学数学期末的复习技巧
3.小学生如何复习数学
4.数学知识点手抄报
5.数学小知识手抄报内容
;。

相关文档
最新文档