分子遗传学第一章
分子遗传学

浙江大学
遗传学第一章
24
(3).贝特生(Bateson W., 1906): ①. 从香豌豆中发现性状连锁; ②. 创造“genetics”。
⑷. 詹森斯(Janssens F. A., 1909): 观察到染色体在减数分裂时呈交叉现象, 为解释基因连锁现象提供了基础。
浙江大学
遗传学第一章
在不同国家用多种植物进行与孟德尔早期研究相似的 杂交试验 Î 获得与孟德尔相似的解释Î 证实孟德尔遗传 规律 Î 确认重大意义。 1900年孟德尔遗传规律的重新发现 Î 标志着遗传学的 建立和开始发展 Î 孟德尔被公认为现代遗传学的创始人。 1910年起将孟德尔遗传规律 Î 孟德尔定律。
浙江大学
遗传学第一章
21
当时细胞学和胚胎学已有很大发展,对于细胞结构、 有丝分裂、减数分裂、受精及细胞分裂过程中染色体动态 都已比较了解。
细胞学研究和孟德尔遗传规律结合。
研究工作的主要特征是从 个体水平Î 细胞水平 Î 建立 染色体遗传学说。
浙江大学
遗传学第一章
22
(1). 约翰生(Johannsen W., 1859~1927):
遗传学第一章
35
⑷. 艾弗里(Avery O. T., 1944)等用纯化因子研究肺炎 双球菌的转化实验,证明了遗传物质是DNA而不是 蛋白质。
⑸. 赫尔希(Hershey A. D., 1952)等用同位素示踪法在 研究噬菌体感染细菌的实验中,再次确认了DNA是 遗传物质。
至此,已为遗传物质的 化学本质和基因功能奠定了 初步的理论基础。
浙江大学
遗传学第一章
28
(6).诱变:
♣ 穆勒(Muller H.T.): 1927年对果蝇用X 射线诱发突变。
分子遗传学:第一章--引论

但是,从中心法则到性状的形成,仍然是一个复 杂的、语焉不详的生物学过程,它不是中心法则所 能解释清楚的。
1.1.2分子遗传学不是核酸及其产物(蛋白质)的生 物化学 分子遗传学研究的对象是分子水平上的生物学
过程——遗传及变异的过程。分子遗传学研究的是 动态的生命过程,而不是在试管里或电泳仪上孤立 地研究生物大分子的结构与功能的简单的因果关 系。
(alcaptonuria)是一种隐性遗传病。 这种纯合隐性基因存在不能产生尿黑酸酶,不 能将正常代谢产物尿黑酸分解,从而使尿黑酸 积累在血液中。 基因通过对酶合成的控制而影响遗传性状的发 育。
1.2.4从生化遗传学到分子遗传学 20世纪40年代:遗传物质是DNA; 20世纪50年代:1953年沃森(J.Watson)和克 里克(F.Crick)提出DNA分子的双螺旋模型; 20世纪60年代:1967年遗传密码表问世。
第一章 引论
1.1分子遗传学的涵义P1
分子遗传学是研究遗传信息大分子的结构与功能 的一门科学。它依据物谢过程的调控。
分子遗传学是分子生物学的一个重要分支。
分子遗传学不同于一般的遗传学。传统的遗传学 “主要研究遗传单元(性状)在各世代的分布情 况”,而分子遗传学则着重研究遗传信息大分子在 生命系统中的储存、复制、表达及调控过程。
1.3.5遗传工程 基因工程 转基因 蛋白质工程
1.3.6朊病毒与蛋白质遗传 疯牛病,羊搔痒病; PrPSc病原体,可以作为模板,把细胞中具有 正常功能的PrPC转变为PrPSc; PrPC和PrPSc的一级结构相同,被同一基因编 码,但它们的立体构象不同, PrPSc比PrPC具 有高得多的β折叠结构。
分子遗传学的内容

7/7/2021
13
mRNA基因转录激活及其调节
• mRNA基因是蛋白质基因,在基因组中占据 绝大多数,由RNA聚合酶II转录,真核RNA 聚合酶II与十几种基本转录因子结合成转录 起始复合物,对蛋白质基因进行转录。基本 转录因子中只有TFII D可以和TATA盒结合. TFII D由TBP(TATA结合蛋白)和十几种 TBP相关因子(TAF)构成。真核基因调节 的三大要素是顺式作用元件 反式作用因子 和RNA聚合酶,它们通过DNA和蛋白质及 蛋白质和蛋白质的相互作用调节的转录。
• (1) DNase I超敏位点: 由于转录激活区组 蛋白部分脱落,产生DNase I超敏位点 。
7/7/2021
8
• (2)DNA 拓扑构像发生变化,DNA转录 时,RNA 聚合酶的前面是正超螺旋,后面 是负螺旋。
• (3) DNA碱基修饰变化 转录激活的基因 处于低甲基化状态。
• (4)组蛋白的数量、结构和化学修饰发生 变化
7/7/2021
7
• 二、真核基因表达调节特点:
• (A) RNA聚合酶 原核生物只有一种RNA 聚合酶,真核生物有三种,分别转录不同的 RNA,RNA聚合酶II负责转录蛋白质的基 因 ,因此该酶最为重要 。
• (B) 活性染色质结构的变化 基因转录可 在染色质水平上调节,基因转录激活的染色 质在结构和性质上发生如下变化;
• 男性性别基因丢失九成 千万年后男人将消失! 澳大利亚国立大学的遗传学家詹妮?格雷夫斯教授 在近日的第15届国际染色体代表会议上发表讲话
7/7/2021
24
• 称,1000万年后目前现存的这种男人类型将 在地球上消失。3亿年前,当男性特有的Y 染色体产生之际曾含有1438个基因,但到目 前为止其中的1393个基因已经消失了,剩下 的45个基因也将在1000万年后消失。这就意 味着负责睾丸发育和男性荷尔蒙分泌的SRY
分子遗传学第1章引言

医学应用
开启了诊断、治疗和预防遗传性疾病的新途径, 如基因检测和基因编辑技术。
进化与生态学
揭示了物种间遗传变异和进化的模式,对生物 多样性和生态系统功能起到了重要的解释作用。
分子遗传学的方法Biblioteka 1蛋白质组学2
研究细胞和组织中的蛋白质数量、结构和
功能,深入理解基因表达的调控机制。
3
基因组测序
通过高通量测序技术,获得全基因组或特 定基因的DNA序列信息。
3
1860s
格雷戈尔·孟德尔提出遗传定律,奠定了 遗传学的基础。
1970s
基因工程技术的突破,如DNA重组和基因 克隆,推动了分子遗传学的发展。
分子遗传学的重要性
生物学研究
提供了深入了解生命基本单位的机会,由此解 析各个生物系统的功能和遗传特点。
农业改良
为作物育种提供了新的工具和方法,加速了农 作物品种的改良和农业生产的提升。
总结和展望
分子遗传学的发展使我们更深刻地理解了遗传现象和生命的奥秘,未来将继 续推动着生物科学的前沿。
基因编辑
利用CRISPR-Cas9等技术直接修改基因组, 实现基因功能的精确调控和基因治疗。
分子遗传学的应用
人类遗传疾病
诊断和研究遗传性疾病的发生 机制,为制定个性化治疗方案 提供依据。
农作物改良
优化农作物的产量、抗病性和 品质,提高农业的可持续性和 经济效益。
进化研究
探索物种形成和进化的分子机 制,揭示生命多样性和生态系 统的复杂性。
2 表达调控
研究基因的表达调控机制,包括转录、翻译 和修饰等过程。
3 突变与变异
探索基因突变和基因型变异在个体遗传和表 现上的影响。
4 遗传信息传递
分子遗传学第一章 遗传物质

意义:第一次证明基因是由DNA组成的,DNA
是遗传物质。转化已成为基因工程的重要手段
二、The HersheyChase实验
T2噬菌体的生活周期 Life cycle of a T-even bacteriophage
The Hershey-Chase实验要回答的 问题
• 噬菌体的感染过程涉及病毒复制的特异 信息转入到细菌中去的过程。要问转入
Meselson-stahl实验结果的解释
三、真核生 物染色体的 复制
1958年,Taylor用 蚕豆根尖细胞染
色体作实验,表
明在染色体水平 上 , DNA 复 制 也
是半保留式的。
四、复制叉
The Replication
Fork
Watson-Crick模型预言,
在复制过程中DNA分子
会 形 成 一 个 分 叉 。 1963 年,Cairns用实验证实了
第三节 DNA的复制
由Watson-Crick模型预言的DNA复制是半保留
式的。半保留复制(semiconservative Replication):每个子代DNA分子含有一条旧 链和一条新链。
半保留复制
Semiconservative Replication
每个子代DNA分子含有一
条旧链和一条新链。
分子遗传学
第一章 遗传物质
1953年,由Watson Crick阐明的DNA结构是遗传学 历史上最重大的发现之一。当时对基因和DNA的认 识有以下几点: (1)基因:是由孟德尔提出的遗传因子。它与特定 的性状相连系,但其物质基础不清。 (2)“一个基因一种酶”的学说推测基因控制蛋白 质的结构。 (3)基因位于染色体上。染色体由DNA和蛋白组成 (4)早先由Griffith后由Avery指出DNA是遗传物质
最新动物分子遗传育种学第1章PPT课件全篇

有、无( 1对呈显性完全的 等位基因控制)
冠型
鸡体态遗传标记
单冠、豆形冠、玫瑰冠、 胡桃冠
羽形
丝毛、卷羽、常羽
总
形 态
遗
结
传 标
记
反映了物种内不同品种的 鲜明特征。
与品种所处的生态环境有 紧密的关系。
标记数量少,多数为质量 性状,一般与生产性能无 关。 主要用于动物品种的起源、 演化和分类研究中。
表现、不表现(2对基 因控制,2对均为隐性 纯合时表现出来 )
绵羊体态遗传标记
角
有、无(1对呈从性遗传的等
位基因控制)
耳型
耳长
垂耳、竖耳( 1对呈不完全 显性的等位基因控制)
短耳、长耳( 1对呈不完全 显性的等位基因控制)
山羊体态遗传标记
角
有、无(1对显性完全等
位基因控制)
耳型
毛髯 肉疣
垂耳、竖耳( 1对呈不完全 显性的等位基因控制)
第五节 动物分子标记辅助育种
概念:分子标记辅助育种指利用动物 分子标记技术结合常规育种对 动物的数量性状位点进行选择、 保种、杂种优势分析和利用等, 以达到更有效的育种目的。
评价:目前分子标记辅助育种仍在处 于发展阶段,尚有很多问题需 要研究,但在动物育种中已有 成功的例子(如猪、鸡)。
范围 分 子 标 记 辅 助 育 种
原理:酶切、转膜、探针。
优点:1.共显性。 2.无年龄、组织特异性。 3.稳定、可靠。 4.基因组普遍存在。
缺点:1.操作烦琐、周期长、 工作量大。
2.用到放射性同位素。 3.需DNA量大。 4.多态信息含量低。
原理:随机引物、PCR扩增。
优点:1.简单易行。
分子遗传学-第1章-遗传物质
一、DNA 作为遗传物质
已知几乎所有的生物都是以 DNA 作为遗传物质
• DNA 作为遗传物质有以下优点:
信息量大,集成度高 1个基因 1kb 碱基序列种类达41000 = 10602 比较:直径10亿光年的宇宙体积为10108Å3
人类基因组DNA长 2m;细胞平均直径 10m
福建农林大学 2012
超螺旋形成的酶学基础
体内 DNA 超螺旋的产生依赖于 DNA 拓扑异构酶
拓扑异构酶 I:作用于单链,无需 ATP,可解除 负超螺旋
拓扑异构酶 II:作用于双链,需要 ATP
I DNA旋转酶(gyrase):引入负超螺旋 II 解旋酶:超螺旋 没有超螺旋的松弛形式
拓扑异构酶 I 和拓扑异构酶 II 相互竞争,调节细 胞内 DNA 的超螺旋状态
熔解温度(Tm):指一半双链 发生变性时的温度,这时
福建农林大学 2012
A260 = ( 1 + 1.37 ) / 2 = 1.185
福建农林大学 2012
福建农林大学 2012
• 复性
消除变性因素后,DNA单 链通过碱基配对重新恢复 成双链的过程 若双链为部分变性,则复 性可很快完成
福建农林大学 2012
福建农林大学 2012
• 已发现在宿主中存在编码 Prion 先驱蛋白(prion precursor protein, PrP)的基因,功能未知
人类的 PrP 基因位于第 20 号染色体短臂
小鼠的 PrP 基因位于第 2 号染色体
• 正常 PrP 与 Prion 蛋白的比较:
福建农林大学 2012
福建农林大学 2012
• RNA 作为遗传物质的主要缺点:
遗传学--第一章-绪论-PPT课件
第一章 绪论
第一节 什么是遗传学 (genetics): 遗传学就是研究生物的遗传与变异的科学
世代间相似的现象就是“遗传” (heredity, inheritance) “ 种瓜得瓜,种豆得豆。”
生物个体间的差异叫做“变异”(variation) “一母生九子,九子各不同。”
2、微生物和生化遗传学时期遗传学 (1940-对 象从真核转到了原核,更为深入地研究了 基因的精细结构和生化功能。 重大成果有“一基因一酶”(Beadle and Tatum,1941)的建立.
遗传物质确定为DNA,而不是蛋白(Avery, 1944);
双螺旋模型的建立(Watson和Crick 1953)以及中心法 则的提出(Crick,1958)。
Frankling and wilkins
分子遗传学时期。(1953-现在)
此期是遗传学发展的第三次高潮,可以说成果累累, 月新年异,而且趋向于应用,大大缩短了转化为生 产力的周期。
乳糖操纵子模型的建立(Jacob and Monod,1961)
青山衬托之下,是一片金灿灿 的中国水稻梯田。2002年4月5 日以中国梯田为封面的« Science»杂志以14页篇幅率先 发表了一个重大成果—中国人 独立完成的论文《水稻(籼稻) 基因组的工作框架序列》,显 示对中国科学家成就充分肯定。
第三节遗传学在国民经济中的作用 一、 遗传学与农牧业的关系 无论是农林还是畜牧水产业都是和国计民生
遗传学:研究遗传物质(基因)结构、 功能、 传递和表达规律。
遗传与变异的关系
遗传与变异现象在生物界普遍存在,是生命活 动的基本特征之一。
没有变异生物界就失去进化的素材,遗传只的 是简单的重复
第一章分子遗传学基础-动物遗传学习题
第一章分子遗传学基础-动物遗传学习题第一章分子遗传学基础(一) 名词解释:1.基因:可转录一条完整的RNA分子,或编码一条多肽链;功能上被顺反测验或互补测验所规定。
2.复制子(replicon):在每条染色体上两个相邻复制终点之间的一段DNA叫做复制子。
3.简并(degeneracy):一个氨基酸由一个以上的三联体密码所决定的现象。
4.转录:以DNA为模板形成mRNA的过程。
5.转译:以mRNA为模板合成蛋白质的过程。
6.回文环(palindromic loop):DNA或RNA分子中的回文顺序部分,由于同一单链的互补碱基对的配对而呈现的环状结构。
7.端粒(telomere):染色体两端的染色粒。
端粒的存在使正常的染色体端部不发生愈合,保持正常形态结构。
8.启动子(promoter):DNA分子上结合RNA聚合酶并形成转录起始复合物的区域。
在许多情况下还包括促进这一过程的调节蛋白结合位点。
9.增强子(enhancer):远距离调节启动子以增加转录速率的DNA序列,其增强作用与序列的方向无关,与它在基因的上下游位置无关,并且有强烈的细胞类型依赖性。
10.终止子(terminator):促进转录终止的DNA序列,在RNA 水平上通过转录出的终止子序列形成柄-loop结构而起作用。
又可分为依赖于ρ的终止子和不依赖于ρ的终止子两类。
11.遗传密码:决定蛋白质中氨基酸顺序的核苷酸顺序,特定的氨基酸是由1个或一个以上的三联体密码所决定的。
12.中心法则(centraldogma):遗传信息从DNA→mRNA→蛋白质的转录和翻译的过程,以及遗传信息从DNA→DNA的复制过程。
(二) 是非题:1.由于每个氨基酸都是只由一个三联体密码决定的,因而保证了遗传的稳定。
(-)2.真核生物和原核生物具有很大的差别而无法杂交,但原核生物却能和真核进行DNA重组。
(+)3.已知生物的tRNA的种类在40种以上,而氨基酸只有20种,由一种以上的tRNA转运一种氨基酸的现象称为简并。
分子遗传学
第一章基因的概念及发展一名词解释组成型突变constitutive mutation:与酶的合成有关的调节基因的一种突变。
即原来酶的合成量受调节基因调节的诱导酶或阻遏酶,由于调节基因发生变异,酶的合成变为组成型(不管生长条件如何,酶的合成量总是恒定的)的一种现象。
结构基因:负责编码细胞代谢途径中组成型蛋白质的基因。
其所编码的蛋白质一般不作为调节因子。
调节基因:位于操纵子外,可产生阻遏蛋白或激活蛋白,对操纵子起调节作用。
持家(管家)基因:在个体发育中,能保证发育的必要基因。
常常表达的基因。
奢侈基因:在个体发育不同阶段,有时表达,有时被关闭的基因。
断裂基因:真核生物中含有内含子的基因,成为断裂基因。
启动子:位于操纵子前端,是RNA聚合酶首先结合的地方,决定着结构基因能否被转录。
增强子:一段72bp重复两次序列,可促进其他基因的转录。
沉默子:可降低基因启动子转录活性的一段DNA顺式元件。
与增强子作用相反。
操纵基因:是结合阻遏蛋白的区域。
决定RNA聚合酶能否对结构基因进行转录。
假基因:结构基因的完整序列,不转录更不翻译的基因(无功能的基因)。
二简答1 三位一体学说的内容是什么?(1)基因是一个突变单位,可由野生型变为突变型。
(2)基因可以视为交换单位(重复单位),两基因间可发生交换。
(3)基因是各功能单位,可控制性状的发育。
(4)基因在染色体上按一定顺序、间隔呈线状排列。
2 乳糖操纵子有哪些突变型,各如何表示?(1)调节基因:i+→i-s永远处于开放状态i+→i s s永远处于关闭状态(2)操纵基因:o+→o-s永远处于开放状态(3)启动子:p+→p-s永远处于关闭状态3 在乳糖操纵子中,阻遏物与操纵基因存在什么相互作用?(1)操纵基因与阻遏蛋白的结合部位(2)阻遏蛋白与操纵基因的结合部位(3)诱导物与阻遏蛋白的关系(4)阻遏蛋白抢先占领操纵基因区(5)RNA聚合酶提前结合在启动子区域,抢先到达操纵子区4 在乳糖操纵子中,表达的方式有哪些?(1)本底水平表达(2)乳糖含量与基因表达(3)阻遏物活性和基因表达(4)葡萄糖对操纵子的影响(5)cAMP的控制作用(6)同一顺反子不同结构基因的表达量(7)融合基因——乳糖操纵子与目的基因的结合5 一个基因一个酶学说的内容是什么?有哪些缺陷?内容:任何代谢过程中,都是由多步骤衔接而成,每一步都有酶催化,酶是由基因控制合成的,每个基因控制一种酶的合成。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
大连水产学院 分子遗传学第一章
是遗传学
24
3.基因突变方面 3.基因突变方面
1927年穆勒和1928年斯塔德勒就用X 1927年穆勒和1928年斯塔德勒就用X射线等诱发了果蝇 年穆勒和1928年斯塔德勒就用 和玉米的基因突变, 和玉米的基因突变,但是在此后一段时间中对基因突 变机制的研究进展很慢, 变机制的研究进展很慢,直到以微生物为材料广泛开 突变机制研究和提出DNA DNA分子双螺旋模型以后才取 展,突变机制研究和提出DNA分子双螺旋模型以后才取 得显著成果。例如碱基置换理论便是在T4 碱基置换理论便是在T4噬菌体的诱 得显著成果。例如碱基置换理论便是在T4噬菌体的诱 变研究中提出的,它的根据便是DNA DNA复制中的碱基配对 变研究中提出的,它的根据便是DNA复制中的碱基配对 原理。 原理。
大连水产学院
分子遗传学第一章
9
2.遗传学研究的对象: 2.遗传学研究的对象: 遗传学研究的对象
以微生物(细菌、真菌、病毒)、 以微生物(细菌、真菌、病毒)、 植物和动物以及人类为对象,研究其 植物和动物以及人类为对象,研究其 遗传变异规律。 遗传变异规律
大连水产学院
分子遗传学第一章
10
3. 遗传和变异的概念: 遗传和变异的概念:
大连水产学院
分子遗传学第一章
5
• 按研究对象分类: 研究对象分类: 分类 人类遗传学 (Human genetics) 动物遗传学 (Animal genetics) 植物遗传学 (Plant genetics) 微生物遗传学 (Microbial genetics) • 按研究范畴分类: 研究范畴分类: 分类 发生遗传学 行为遗传学 免疫遗传学 药物遗传学
(Developmental genetics) ( Behavioral genetics) (Immunogenetics) (Pharmacogenetics)
大连水产学院
分子遗传学第一章
6
毒理遗传学 (Toxicogenetics) 辐射遗传学 (Radiation genetics) 肿瘤遗传学 (Cancer genetics) 医学遗传学 (Medical genetics) 血型遗传学 (Blood group genetics) 生化遗传学 (Biochemical genetics) 应用学科: 应用学科: 生物工程学 (Biotechnology) 优生学(Eugenics) 优生学( 育种学(工业微生物、 牧和水产) 育种学(工业微生物、农、牧和水产)
大连水产学院 分子遗传学第一章 2
第一章
绪
论
分子遗传学研究的内容 分子遗传学的发展 分子遗传学的研究方法 遗传学的作用
大连水产学院
分子遗传学第一章
3
第一章 绪
论
大连水产学院
分子遗传学第一章
4
遗传学的分支
• 按研究的层次分类: 研究的层次分类: 分类 群体遗传学(Population 群体遗传学(Population genetics) 宏观 即进化遗传学或种群遗传学 数量遗传学(Quantitative 数量遗传学(Quantitative gentics) 细胞遗传学 (Cytogenetics) 核外遗传学 (Extranuclear G.) 即细胞质遗传学(Cytoplasmic 微观 即细胞质遗传学(Cytoplasmic G.) 染色体遗传学(Chromosomal 染色体遗传学(Chromosomal G.) 分子遗传学(Molecular 分子遗传学(Molecular genetics)
大连水产学院
分子遗传学第一章
11
• 遗传 ( Heredity,inheretance): 基因的结构 DNA的复制 (replication), 基因表达 (gene expression) 表达调控 (regulation) 基因纵向转递 转化 (transformation) 基因横向转递 转导 (transduction) 转染 (transfection) 无性繁殖 接合 (conjugation) 保持物种稳定 转基因(transgene)
大连水产学院 分子遗传学第一章 12
• 变异 变异(variation)
基因重组(Recombination) 染色体间- 减数分裂中染色体的自由组合 染色体内- 基因的重排(Rearrangements) 转基因-体外重组 突变(Mutation) 基因突变 染色体畸变(Aberration) 有性繁殖 物种进化
大连水产学院
分子遗传学第一章
25
诱变: 诱变:
穆勒( ♣ 穆勒(Muller H.T.): ): 诱发突变。 1927年对果蝇用 射线诱发突变。 年对果蝇用X 年对果蝇用 射线诱发突变 斯特德勒( ♣ 斯特德勒(Stadler L.T.): ): 穆勒 1927年在玉米用 射线诱发突变。 年在玉米用X 诱发突变。 年在玉米用 射线诱发突变 证实基因和染色体的突变不仅在自然情况下产生, 证实基因和染色体的突变不仅在自然情况下产生,用 X射线处理也会产生大量突变。 射线处理也会产生大量突变。 射线处理也会产生大量突变 布莱克斯生( ♣ 布莱克斯生(Blakeslee A. F.): ): 利用秋水仙素诱导多倍体。 秋水仙素诱导多倍体 利用秋水仙素诱导多倍体。 人工产生遗传变异的方法, 人工产生遗传变异的方法, 的方法 使遗传学发展到一个新的阶段。 使遗传学发展到一个新的阶段。
大连水产学院
黄色 134707 75.09 3.01 :
绿色 44692 24.91 1
15
分子遗传学第一章
孟德尔提出以下假说: 孟德尔提出以下假说: 假说
①.生殖细胞中存在着与相对性状对应的遗传因子 生殖细胞中存在着与相对性状对应的遗传因子 着性状发育; 着性状发育; 植株内存在一个控制 ②.遗传因子在体细胞内成对:如F1植株内存在一个控制 遗传因子在体细胞内成对: 成对 红花显性性状和一个控制白花隐性性状的遗传因子; 红花显性性状和一个控制白花隐性性状的遗传因子; 和一个控制白花隐性性状的遗传因子 ③.每对遗传因子在形成配子时可均等地分配到配子中 每对遗传因子在形成配子时可均等地分配到配子中 可均等地分配 每一配子(花粉或卵细胞)中只含其中一个; 每一配子(花粉或卵细胞)中只含其中一个; ④.遗传因子在受精过程中保持独立性 遗传因子在受精过程中保持独立性 表现为随机性。 表现为随机性。 随机性 控制
大连水产学院
分子遗传学第一章
20
艾弗里( 艾弗里(Avery O. T., 1944)等用纯化因子研究肺炎 )等用纯化因子研究肺炎 双球菌的转化实验,证明了遗传物质是 双球菌的转化实验,证明了遗传物质是DNA而不是 的转化实验 而不是 蛋白质。 蛋白质。 赫尔希( 赫尔希(Hershey A. D., 1952)等用同位素示踪法在 ) 研究噬菌体感染细菌的实验中,再次确认了DNA是 研究噬菌体感染细菌的实验中,再次确认了DNA是 噬菌体感染细菌的实验中 遗传物质。 遗传物质。 至此, 至此,已为遗传物质的 化学本质和基因功能奠定了 初步的理论基础。 初步的理论基础。
意义: 意义: 分子结构、 ①.为DNA分子结构、自我复制、相对稳定性和变性 分子结构 自我复制、 提出合理解释; 提出合理解释; 是贮存和传递遗传信息的物质; ②.DNA是贮存和传递遗传信息的物质; 是贮存和传递遗传信息的物质 ③.基因是DNA分子上的一个片段; 基因是 分子上的一个片段; 分子上的一个片段 分子生物学诞生 ④.分子生物学诞生 将生物学各分支学科及相关 的农学、 的农学、医学研究推进到分子水平 发展到分子遗传学的重要转折点。 的重要转折点 发展到分子遗传学的重要转折点。
大连水产学院 分子遗传学第一章 13
自然选择
人工选择
大连水产学院
分子遗传学第一章
14
4. 经典遗传学的研究特点 主要是基因在亲代和子代之间的传递问题 。 孟德尔的试验: 孟德尔的试验:
黄色子叶 豌豆 黄色子叶 r 绿色子叶 ↓ F1 黄色 ↓(自交) (自交) F2 粒数 百分率( ) 百分率(%)
大连水产学院 分子遗传学第一章 21
卡斯佩森(Caspersson T. O.): 卡斯佩森( ):
40年代初用定量细胞化学方法 年代初用定量细胞化学方法 存在于细胞核中。 存在于细胞核中。 以后研究证明: 以后研究证明: 是构成染色体的主要物质 ①. DNA是构成染色体的主要物质; 是构成染色体的主要物质; 同种生物不同细胞中DNA的质与量恒定; ②. 同种生物不同细胞中 的质与量恒定; 性细胞中DNA含量为体细胞的一半。 含量为体细胞的一半 ③. 性细胞中 含量为体细胞的一半。 证明DNA 证明
大连水产学院
分子遗传学第一章
23
沃森( 沃森(Watson J. D.)和克里克(Crick F. H. C.) )和克里克( )
物理学和化学的概念 物理学和化学的概念 生物学问题。 生物学问题。 根据对DNA化学分析和 射线晶体学结果 化学分析和X–射线晶体学结果 根据对 化学分析和 DNA分子结构模式(双螺旋结构,1953)。 分子结构模式 双螺旋结构,
分子遗传学
大连水产学院
分子遗传学第一章