向量的坐标及其运算

合集下载

向量的坐标运算公式

向量的坐标运算公式

向量的坐标运算公式向量是数学中重要的概念之一,广泛应用于各个领域,如物理学、工程学、计算机科学等。

在进行向量运算时,我们经常需要进行向量的坐标运算。

向量的坐标运算包括向量的加法、减法、数量乘法和点乘运算。

在本文中,我们将详细介绍向量的坐标运算公式及其应用。

1. 向量的加法向量的加法是将两个向量的对应分量相加得到一个新的向量。

设有两个向量A和B,其坐标分别为(A<sub>1</sub>,A<sub>2</sub>, A<sub>3</sub>)和(B<sub>1</sub>,B<sub>2</sub>, B<sub>3</sub>),则它们的加法结果为:A +B = (A<sub>1</sub> + B<sub>1</sub>,A<sub>2</sub> + B<sub>2</sub>, A<sub>3</sub> +B<sub>3</sub>)向量的加法满足交换律和结合律,即A + B = B + A 和 A + (B + C) = (A + B) + C。

向量的加法在几何上表示两个向量的相对位移,例如在物理学中,可以用来计算物体在不同力的作用下的位移。

2. 向量的减法向量的减法是将一个向量的对应分量减去另一个向量的对应分量得到一个新的向量。

设有两个向量A和B,其坐标分别为(A<sub>1</sub>, A<sub>2</sub>, A<sub>3</sub>)和(B<sub>1</sub>, B<sub>2</sub>, B<sub>3</sub>),则它们的减法结果为:A -B = (A<sub>1</sub> - B<sub>1</sub>, A<sub>2</sub> - B<sub>2</sub>, A<sub>3</sub> - B<sub>3</sub>)向量的减法也满足交换律和结合律,即A - B ≠ B - A 和 A - (B - C) ≠ (A - B) - C。

向量的坐标表示及其运算教案

向量的坐标表示及其运算教案

向量的坐标表示及其运算教案一、教学目标:1. 理解向量的概念,掌握向量的坐标表示方法。

2. 学会向量的线性运算,包括加法、减法、数乘和点乘。

3. 能够运用向量的坐标表示和运算解决实际问题。

二、教学内容:1. 向量的概念:向量是有大小和方向的量。

2. 向量的坐标表示:在二维和三维空间中,向量可以用坐标表示,如\(\vec{a} = (a_x, a_y)\) 和\(\vec{b} = (b_x, b_y, b_z)\)。

3. 向量的加法:两个向量\(\vec{a}\) 和\(\vec{b}\) 的和向量为\(\vec{a} + \vec{b} = (a_x + b_x, a_y + b_y)\) 和\(\vec{a} + \vec{b} = (a_x + b_x, a_y + b_y, a_z + b_z)\)。

4. 向量的减法:两个向量\(\vec{a}\) 和\(\vec{b}\) 的差向量为\(\vec{a} \vec{b} = (a_x b_x, a_y b_y)\) 和\(\vec{a} \vec{b} = (a_x b_x, a_y b_y, a_z b_z)\)。

5. 向量的数乘:一个标量\(k\) 乘以向量\(\vec{a}\) 得到\(k\vec{a} = (ka_x, ka_y)\) 和\(k\vec{a} = (ka_x, ka_y, ka_z)\)。

6. 向量的点乘:两个向量\(\vec{a}\) 和\(\vec{b}\) 的点乘为\(a_x b_x + a_y b_y\) 和\(a_x b_x + a_y b_y + a_z b_z\)。

三、教学方法:1. 采用讲授法,讲解向量的概念、坐标表示和运算方法。

2. 利用多媒体演示向量的加法、减法、数乘和点乘运算。

3. 引导学生通过小组讨论和实例分析,掌握向量的坐标表示和运算。

4. 利用练习题巩固所学知识,提高学生的实际运用能力。

空间向量的坐标表示与计算

空间向量的坐标表示与计算

空间向量的坐标表示与计算空间向量是三维空间中的一个重要概念,可以用来表示空间中的一个点或者空间中的两个点之间的位移向量。

为了方便计算和表示,我们可以使用坐标表示来描述和计算空间向量。

一、空间向量的坐标表示在三维坐标系中,可以使用三个坐标轴(通常是x轴、y轴、z轴)来表示一个空间向量的坐标。

这三个坐标轴是相互垂直的,构成一个直角坐标系。

对于一个空间向量v,可以使用v的起点在坐标原点的坐标表示来表示该向量。

假设v的坐标表示为(x, y, z),其中x、y、z分别表示v在x轴、y轴、z轴上的坐标值。

例如,对于一个空间向量v,如果它的起点在坐标原点,终点的坐标分别为(3, 4, 5),那么可以表示为v = (3, 4, 5)。

二、空间向量的计算1. 向量的加法空间向量的加法是指将两个向量相加得到一个新的向量。

假设有两个向量a和b,它们的坐标表示分别为(a1, a2, a3)和(b1, b2, b3)。

那么它们的和向量c的坐标表示为(c1, c2, c3),其中c1 = a1 + b1,c2 = a2 + b2,c3 = a3 + b3。

+ b的坐标表示为(c1, c2, c3) = (1 + 4, 2 + 5, 3 + 6) = (5, 7, 9)。

2. 向量的减法空间向量的减法是指将一个向量减去另一个向量得到一个新的向量。

假设有两个向量a和b,它们的坐标表示分别为(a1, a2, a3)和(b1, b2, b3)。

那么它们的差向量c的坐标表示为(c1, c2, c3),其中c1 = a1 - b1,c2 =a2 - b2,c3 = a3 - b3。

例如,对于向量a = (1, 2, 3)和向量b = (4, 5, 6),它们的差向量c = a - b的坐标表示为(c1, c2, c3) = (1 - 4, 2 - 5, 3 - 6) = (-3, -3, -3)。

3. 向量的数量积空间向量的数量积是指将两个向量相乘得到一个标量(即一个数)。

向量的坐标表示及运算

向量的坐标表示及运算

向量的坐标表示及运算知识回顾:一、概念:a 是平面内任意一个向量,i 、j 分别是与x 轴,y 轴同向的两个单位向量,a =x i +y j ,()y x ,叫做a 的坐标,记作a =()y x ,。

二、向量的坐标的运算: 设a =()11,y x ,b =()22,y x⑴ 加法运算: ⑵ 减法运算:⑶ 实数与向量的积: ⑷ 向量的数量积:⑸ 已知两点A ()11,y x ,B ()22,y x ,则的坐标可以表示为:⑹ a 的模 |a |=三、三种关系:设a =()11,y x ,b =()22,y x⑴ 相等:a =b ⇔ ⑵ 共线:a //b ⇔ ⑶垂直:a ⊥b ⇔知识的运用:例1:设向量a =()2,1-,b =()1,2-,求(a • b )(a +b )。

例2:平面向量a ,b 中,已知()3,4-=a ,1=b ,且a ·b 0=,求b 。

例3:已知a =()2,1,b =()2,3-,当k 为何值时,⑴ k a +b 与a –3b 垂直? ⑵ k a +b 与a –3b 平行?平行时它们是同向还是反向?例4:已知ABC ∆是等腰直角三角形, 90=∠ABC ,()1,2A ,()2,3-B ,求C 点坐标。

课后练习1.已知点()5,1--A 和向量()3,2=a ,若a AB 3=,则点B 的坐标为 。

2.若平面向量b 与向量()2,1-=a 的夹角是90°53=,则=b 。

3.若平面向量b 与向量()2,1-=的夹角是180°53=,则=b 。

4.已知e 为单位向量,()13,13+-=且e 与a 夹角为45°,则=e 。

5.已知向量()2,2-=a ,()k ,5=b 。

若b a +不超过5,则k 的取值范围是A 、[]6,4-B 、[]4,6-C 、[]2,6-D 、[]6,2-6.已知向量()2,1=a ,()4,2--=b ,5=c ,若()b a +·25=c ,则a 与c 的夹角为A 、30°B 、60°C 、120°D 、150°。

8.1向量的坐标表示及其运算

8.1向量的坐标表示及其运算

a
位置向量.
j
O i1
1)平面内每一点都有对应的位置向量。
Ab
x
2)平面内任一向量都有唯一的与它相等的位置向量。
思考:与一个位置向量相等的向量有 ______ 个。
பைடு நூலகம்
-2
调用几何画板
4
怎样用i, j表示位置向量OP?
3
P(3,2)
N2
2j
1
j
Oi
2
M
4
3i
6
-1
OP OM ON 3i 2 j
例2:设ABC三个顶点坐标分别为A( x1, y1 ), B( x2 , y2 ), C( x3 , y3 ),G是ABC的重心,求G的坐标。
重心坐标公式
x
y
x1 y1
x2 3 y2 3
x3 y3
例3 : 线段AB的端点为A( x, 5), B(2, y), 直线AB上的点C(1,1),使 AC 2 BC , 求x, y的值.
存在唯一实数 ,使 b a ,则
(x2 , y2 ) (x1, y1) ( x1, y1)
因此 x1 y2 x2 y1 x1( y1) ( x1) y1 0
平面向量平行条件的坐标表示
定理:已知任意向量 a (x1, y1),b (x2, y2),
a//b 的充要条件是 x1 y2 x2 y1 0
②求点A关于点B的对称点H的坐标
③若点C分有向线段 AB 的比 =2,求点C的坐标 ④求点D(0.5,y)分有向线段 AB 的比 及y值。
⑤若 AE 5 AB ,求点E的坐标 22
3, 若P是分 P1 P2定比为2的分点, 则P是分P2P1定比为 ___的分点, 则P1是分PP2定比为 ___的分点, 则P2是分PP1定比为 ___的分点。

向量的坐标表示与运算公式

向量的坐标表示与运算公式

向量的坐标表示与运算公式向量的坐标表示:1. 在二维平面中,一个向量可以用有序实数对 (x, y) 表示,其中 x 和 y 分别表示向量的横坐标和纵坐标。

2. 在三维空间中,一个向量可以用有序实数三元组 (x, y, z) 表示,其中 x、y 和 z 分别表示向量的三个坐标分量。

向量的运算公式:1. 向量的加法:- 定义:如果向量 A = (x₁, y₁) 和向量 B = (x₂, y₂),则 A + B = (x₁ + x₂, y₁ + y₂)。

- 几何意义:向量加法就是把两个向量的起点放在一起,然后把两个向量终点连起来的向量。

2. 向量的数乘:- 定义:对于任意实数 k,如果向量 A = (x, y),则 kA = (kx, ky)。

- 几何意义:数乘就是把向量按比例放大或缩小。

3. 向量的减法:- 定义:如果向量 A = (x₁, y₁) 和向量 B = (x₂, y₂),则 A - B = (x₁ - x₂, y₁- y₂)。

- 几何意义:向量减法就是从第一个向量的终点指向第二个向量的终点的向量。

4. 向量的数量积(点乘):- 定义:如果向量 A = (x, y) 和向量 B = (x', y'),则A · B = xx' + yy'。

- 几何意义:数量积等于两向量的长度之积和它们夹角的余弦值的乘积。

5. 向量的向量积(叉乘):- 定义:如果向量 A = (x, y) 和向量 B = (x', y'),则A × B 是一个垂直于A 和B 的向量,其大小等于A × B × sin(θ),其中θ 是 A 和 B 之间的夹角,方向按照右手定则确定。

- 几何意义:向量积表示一个向量相对于另一个向量的旋转。

以上是向量的基本坐标表示和运算公式,是解析几何和线性代数中的基础概念。

向量坐标表示及运算

向量坐标表示及运算

y
j
O
1 2
a
A(x, y)
a
(3)两个向量 a ( x1, y1 ), b ( x2 , y2 ) 相等的充要条件:a b x x
i
x
且y1 y2
(4)如图以原点O为起点作 OA a ,点A的位置 被 a 唯一确定. 此时点A的坐标即为 a 的坐标 (5)区别点的坐标和向量坐标 相等向量的坐标是相同的,但起点、终点的坐标可以不同
3.若 A(2,-1),B(4,2),C(1,5),则 AB +2 BC =________.
解析:∵A(2,-1),B(4,2),C(1,5), ∴ AB =(2,3), BC =(-3,3). ∴ AB +2 BC =(2,3)+2(-3,3)=(2,3)+(-6,6)=(-4,9).
答案:(-4,9)
(x2-x1,y2-y1)
例1:已知 a (2,1), b ( 3, 4), 求a b, a b, 3a 4b 的坐 .
解: a b (2,1) (3,4) (1,5)
a b (2,1) (3,4) (5, 3)
3 a 4 b 3(2,1) 4( 3, 4) (6, 3) ( 12,16) ( 6,19)
例2、 1已知A(2,3), B (3,5), 求BA的坐标.
解: BA
2已知AB (1, 2), A(2,1), 求B的坐标.
解:设B x,y ,
2,3 3,5 5, 2.
AB 1, 2 x, y 2,1 ,
j
-4 -3
-1 -2
i1
2
3
4
x
c 2i 3 j ( 2, 3)

向量的坐标表示及其运算教案

向量的坐标表示及其运算教案

向量的坐标表示及其运算教案第一章:向量的概念及其坐标表示1.1 向量的定义解释向量的概念,即有大小和方向的量。

强调向量与标量的区别。

1.2 向量的表示方法介绍用箭头表示向量,并标注大小和方向。

讲解用坐标表示向量,特别是二维和三维空间中的向量。

1.3 坐标系的引入介绍坐标系的概念,包括直角坐标系和柱面坐标系等。

解释坐标系在表示向量中的应用。

第二章:向量的运算2.1 向量的加法讲解向量加法的定义和几何意义。

给出向量加法的坐标表示公式。

2.2 向量的减法解释向量减法的定义和几何意义。

推导向量减法的坐标表示公式。

2.3 向量的数乘讲解向量数乘的定义和几何意义。

展示向量数乘的坐标表示方法。

第三章:向量的线性组合3.1 线性组合的定义解释向量的线性组合及其概念。

强调线性组合中系数的选择。

3.2 线性组合的坐标表示给出向量的线性组合的坐标表示方法。

讲解线性组合的坐标运算规则。

3.3 线性相关与线性无关介绍向量组线性相关的概念。

解释线性无关的概念及其判断方法。

第四章:向量的数量积(点积)4.1 数量积的定义讲解数量积的概念和几何意义。

强调数量积的计算公式。

4.2 数量积的性质介绍数量积的基本性质,包括交换律、结合律等。

讲解数量积与向量长度的关系。

4.3 数量积的应用展示数量积在解决向量垂直、夹角等问题中的应用。

讲解数量积在坐标系中的运算规则。

第五章:向量的向量积(叉积)5.1 向量积的定义解释向量积的概念和几何意义。

强调向量积的计算公式。

5.2 向量积的性质介绍向量积的基本性质,包括交换律、结合律等。

讲解向量积与向量长度和夹角的关系。

5.3 向量积的应用展示向量积在解决向量垂直、平行等问题中的应用。

讲解向量积在坐标系中的运算规则。

第六章:向量的长度和单位向量6.1 向量长度的概念解释向量长度的定义和几何意义。

强调向量长度是标量,表示向量的大小。

6.2 向量长度的计算讲解如何利用坐标计算向量的长度。

给出向量长度计算的坐标公式。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

【课题】向量的坐标及其运算
【课型】复习课
【备课时间】2018.1.15 【上课时间】2018.1.17
【教学目标】知识目标:1.理解向量的坐标表示方法.
2.掌握用向量的坐标进行向量的线性运算和求模运算.
3.掌握向量的平行,垂直条件的坐标形式.
能力目标:1.会用向量的坐标进行向量线性运算和求模运算.
2.会用向量的平行,垂直条件的坐标形式解决相关问题.
情感目标:让学生参与解决问题的全过程.享受成功的喜悦,感受数学的魅力,为学生参加高
考增强自信心.
【教学重点】向量的坐标运算及其应用. 【教学难点】向量的坐标运算的应用. 【教学方法】启发诱导式,讲练结合式教学 【教具】 多媒体
教师讲授,学生理解
O
i
j
a。

相关文档
最新文档