高三数学限时训练以及参考答案
高三数学之双基限时训练:指数与指数函数

学必求其心得,业必贵于专精错误!巩固双基,提升能力一、选择题1.若点(a,9)在函数y=3x的图像上,则tan错误!的值为()A.0 B。
错误!C.1 D.错误!解析:由题意有3a=9,则a=2,所以tan错误!=tan错误!=错误!,故选D.答案:D2.设a=错误!错误!,b=错误!错误!,c=错误!错误!,则a,b,c的大小关系是()A.a>c>b B.a>b>cC.c>a>b D.b>c>a解析:构造指数函数y=错误!x(x∈R),由该函数在定义域内单调递减可得b<c;又y=错误!x(x∈R)与y=错误!x(x∈R)之间有如下结论:当x>0时,有错误!x>错误!x,故错误!错误!>错误!错误!,∴a>c,故a>c>b。
答案:A3.已知实数a,b满足等式错误!a=错误!b,下列五个关系式:①0<b <a;②a<b<0;③0<a<b;④b<a<0;⑤a=b。
其中不可能成立的关系式有()A.1个B.2个C.3个D.4个解析:画出函数y1=错误!x和y2=错误!x的图像,如图所示.由错误!a=错误!b结合图像,可得a<b<0,或a>b>0,或a=b=0。
答案:B4.(2013·济南质检)定义运算a⊗b=错误!则函数f(x)=1⊗2x 的图像大致为( )A.B.C.D。
解析:由a⊗b=错误!得f(x)=1⊗2x=错误!答案:A5.(2013·长春质检)若x∈[-1,1]时,22x-1<a x+1恒成立,则实数a的取值范围为()A.(错误!,+∞)B.(错误!,+∞)C.(2,+∞)D.(错误!,+∞)解析:由22x-1<a x+1⇒(2x-1)lg2<(x+1)lg a⇒x·lg错误!-lg(2a)<0.设f(x)=x·lg错误!-lg(2a),由x∈[-1,1]时,f(x)<0恒成立,得错误!⇒错误!⇒a>错误!为所求的范围。
答案: A6.设f(x)=|3x-1|,c<b<a,且f(c)>f(a)>f(b),则下列关系式中一定成立的是()A.3c≥3b B.3c>3bC.3c+3a>2 D.3c+3a<2解析:画出f(x)=|3x-1|的图像(如图),要使c<b<a,且f(c)>f(a)>f(b)成立,则有c<0,且a>0。
高三数学限时强化训练2及答案

高三数学限时强化训练一、 选择题:本大题共8小题,每小题5分,共40分. 在每小题给出的四个选项中,只有一项是符合题目要求的.1.设i 是虚数单位,复数z 满足(i)(12i)|34i |z +-=+,则在复平面内,z 的共轭复数z 所对应的点的坐标为( ).A .(11),B .(11)-,C .(11)-,D .(11)--,2.设集合2{|20}A x x x =+->,集合2{|log [14]}B y y x x ==∈,,,则()A B =R I ð( ).A .[01],B .(01],C .[12],D .(12],3.函数y =的定义域为( ).A .[11]-,B .(11]-,C .(10)(01]-U ,,D . [10)(01]-U ,,4.在平面直角坐标系xOy 中,已知定点(12)N -,,区域Ω:02y x y x x a -⎧⎪+⎨⎪⎩………的面积为4,且动点M ∈Ω,则u u u u r u u u rOM ON ⋅的最小值为( ).A .1B .0C .1-D .7-5. 将5件不同奖品全部奖给3个学生,每人至少一件奖品,则不同的获奖情况种数是( ).A .150B .210C .240D .300 6.已知函数2()cos cos f x x x x =+,若将其图像先向右平移(0)ϕϕ>个单位,再向下平移12个单位后得到函数()g x 的图像,且()()0g x g x +-=,则ϕ的最小值为( ).A . 2πB . 3πC .6πD .12π 7. 一个四面体的三视图如图所示,则该四面体的四个面中最大的面积是( ). ABCD .12侧视图俯视图正视图8. 已知方程|1||3|3x x kx ---=-恰有三个不相等的实数根,则实数k 的取值范围是( ).A .503⎛⎫ ⎪⎝⎭,B .513⎛⎫ ⎪⎝⎭, C .312⎛⎤ ⎥⎝⎦, D .3523⎡⎫⎪⎢⎣⎭, 二、 填空题(本大题共6小题,每小题5分,共30分) 9. 执行如图所示的程序框图,输出的S 值为 .10. 已知△ABC 的面积为2,3cos 5B =,则u u u r u u u r AB BC ⋅的值为 .11. 某地区教育主管部门为了对该地区模拟考试成绩进行分析,随机抽取了200分到450 分之间的2000名学生的成绩,并根据这2000名学生的成绩画出样本的频率分布直方图(如图),则成绩在[)250,350内的学生共有 人.12. 若直线y kx =与曲线2y x =在第二象限内围成的封闭图形的面积为43,则实数k 的值是 .13.已知抛物线22(0)y px p =>上一点(1)(0)M m m >,到其焦点F 的距离为5,点F 到双曲线22212x y b -=的一条渐近线的距离为,则该双曲线的离心率为 .14. 设()f x 与()g x 是定义在同一区间[]a b ,上的两个函数,若函数()()()h x f x g x =-在[]a b ,上有两个不同的零点,则称()f x 与()g x 在[]a b ,上是“关联函数”.若31()3f x x m =+与21()22g x x x =+在[03],上是“关联函数”,则实数m 的取值范围 是 .参考答案一、选择题二、填空题9. 133 10. 3- 11. 1000 12. 2-14. 31023⎡⎫⎪⎢⎣⎭,解析部分1. 解析 由()()i 12i |34i |z +-=+,|34i |=5+,得()()()()3i 12i 3i==1+i 12i 12i 12i -+-=--+z . 所以z 的共轭复数1i z =-,则在复平面内,z 对应的点的坐标为(11)-,. 故选B.2. 解析 易得{|21}A x x x =<->或,{|02}B y y =剟, 则{|21}A x x =-R ð剟,所以()[01]A B =R I ,ð. 故选A.3. 解析 由题意,得2101011x x x ⎧-⎪+>⎨⎪+≠⎩…,解得1110x x x -⎧⎪>-⎨⎪≠⎩剟,由此可得函数()ln 1y x =+的 定义域为()(]1001-U ,,. 故选C.4. 解析 作出不等式所表示的平面区域Ω的示意图,可求得()11A ,,()2B a a -,,()C a a ,,由题意知1a <,此时区域Ω的面积即△ABC的面积,所以()()22142a a --=,解得1a =-,设点()M x y ,,则2z OM ON x y ==-u u u u r u u u rg ,平移直线2z x y =-,由图知,当其过点()13B -,时z 最小,此时min 7z =-. 故选D.5. 解析 由题意,需要将5件奖品分成3组,有“113++”和“221++”两类分法.若按“113++”分组,有3353C A 60⋅=种分法;若按“221++”分组,有22353322C C A 90A ⋅⋅=种分法.所以不同的获奖情况共有6090150+=种.故选A.6. 解析 由题意,()1cos 212sin 222x f x x x +π⎛⎫=+=++ ⎪6⎝⎭,将其图像先向右平移()0ϕϕ>个单位,再向下平移12个单位后的解析式为()sin 2()6g x x ϕπ⎡⎤=-+=⎢⎥⎣⎦sin 226x ϕ⎡π⎤⎛⎫-- ⎪⎢⎥⎝⎭⎣⎦.因为()()0g x g x +-=,所以()g x 为奇函数,则26k ϕπ-=π,即212k ϕππ=+()k ∈N ,由0ϕ>知ϕ的最小值为12π. 故选D.7. 解析 将该几何体放入棱长为1的正方体中,如图所示,由三视图可知该四面体为11C ABA -,由直观图可知,最大的面为面11C A B ,在等边三角形11C A B中,1A B =,所以面积2S ==故选A .A 18. 解析 令函数()13f x x x =---,()3g x kx =-,方程133x x kx ---=-恰有三个不相等的实数根等价于函数()f x 和()g x 的图像恰有三个不同的交点,在同一坐标系内作出其图像如图所示,当直线()3g x kx =-介于直线:3BC y x =-和5:33AC y x =-之间时符合题意,故实数k 的取值范围是513⎛⎫⎪⎝⎭,.故选B .9. 解析 根据框图,依次运行.第一次:0S =,1n =,120(2)1140S =+-+=-…; 第二次:1S =-,2n =,221(2)2740S =-+-+=…; 第三次:7S =,3n =,327(2)3840S =+-+=…; 第四次:8S =,4n =,428(2)440S =+-+…; 第五次:40S =,5n =,5240(2)53340S =+-+=…;第六次:33S =,6n =,6233(2)613340S =+-+=>,此时程序结束. 故输出的S 值为133.10. 解析 在△ABC 中,因为3cos 5B =,所以4sin 5B =,而△ABC 的面积12sin 225S AB BC B AB BC ===u u u r u u u r u u ur u u u r ,所以5AB BC =u u u r u u u r , 所以()3cos 535AB BC AB BC B ⎛⎫=π-=⨯-=- ⎪⎝⎭u u u r u u u r u u u r u u u r g .11. 解析 根据题意,可知(0.0020.00420.002)501a +++⨯=,解得0.006a =,则成绩在[250350],内的频率为(0.0040.006)500.5+⨯=, 则成绩在[250350],内的学生共有20000.51000⨯=(人).12. 解析由题意,0k <. 可以解得直线y kx =与曲线2y x =的交点坐标为()2k k ,和()00,,所以封闭图形的面积()0233024d 02363k k kx x k S kx x x ⎛⎫=-=-=-= ⎪⎝⎭⎰, 解得2k =-. 故答案为2-.13. 解析 因为()1,M m ,5MF =,所以152p+=,解得8p =,所以()4,0F .双曲线22212x y b-=的渐近线方程为y =.即20y ±=.因为点()4,0F到其中一条渐进线的距离为=解得22b =,所以24c =,故ce a===14. 解析 设()()()()321120332h x f x g x x x x m x =-=--+剟, 则()22h x x x '=--,容易求得函数()h x 在[]02,上单调递减,在[]23,上单调递增,因此只要m 同时满足()()()200030h h h <⎧⎪⎨⎪⎩≥≥即可,解得31023m <≤,所以m 的取值范围是31023⎡⎫⎪⎢⎣⎭,.。
2021年高三数学上学期限时训练(5)

2021年高三数学上学期限时训练(5)一、填空题(本大题共14小题,每小题5分,共70分) 1.已知集合,则 ▲ .2.在复平面内,复数对应的点在第 ▲ 象限.3.为了解某校教师使用多媒体进行教学的情况,采用简单随机抽样的方法,从该校200名教师中抽取20名教师,调查他们上学期使用多媒体进行教学的次数,结果用茎叶图表示如右图.据此估计该校上学期200名教师中,使用多媒体进行教学次数在内的人数为 ▲ .4.已知等比数列的各项均为正数则 ▲ . 5.已知函数为奇函数则实数的值为 ▲6.在一个袋子中装有分别标注数字1,2,3,4,5的五个小球,这些小球除标注的数字外完全相同.现从中随机取出两个小球,则取出的小球上标注的数字之和为5或7的概率是▲ . 7.已知与均为单位向量,它们的夹角为,那么等于 ▲ . 8.已知,,则= ▲ .9.已知圆与直线相交于两点则当的面积最大时此时实数的值为 ▲ . 10.将的图像向右平移单位(),使得平移后的图像过点则的最小值为 ▲ .11.若圆柱的底面直径和高都与球的直径相等圆柱、球的表面积分别记为、则有 ▲ . 12.如图是半径为3的圆的直径是圆上异于的一点是线段上靠近的三等分点且则的值为 ▲ 13、在三角形ABC 中,已知AB=3,A=,的面积为,则的值= ▲ . 14. 已知点P 是函数的图像上一点,在点P 处的切线为,交x 轴于点M ,过点P 作的垂线,交x 轴于点N ,MN 的中点为Q ,则点Q 的横坐标的最大值为 ▲ .二、解答题:本大题共6小题,共90分.请在答题卡指定区域内作答,解答时应写出文字说明、证明过程或演算步骤. 15.(本题满分14分)已知ΔABC 的面积为S ,且。
求B 的大小;若,且,试求ΔABC 最长边的长度。
2 93 3 5 6 71 2 3 416.(本题满分14分) 如图,在四棱锥P ABCD 中,四边形ABCD 是矩形,平面PCD ⊥平面ABCD ,M 为PC 中点.求证:(1)PA ∥平面MDB ; (2)PD ⊥BC .17.(本小题满分14分)已知等差数列{an}前三项的和为-3,前三项的积为8. (1)求等差数列{an}的通项公式;(2)若a2,a3,a1成等比数列,求数列{|an|}的前n 项和. 18.(本小题满分16分)如图,某市新体育公园的中心广场平面图如图所示,在y 轴左侧的观光道曲线段是函数sin()(0,0,0)y A x A ωϕωϕπ=+>><<,时的图象且最高点B (-1,4),在y 轴右侧的曲线段是以CO 为直径的半圆弧. ⑴试确定A ,和的值;⑵现要在右侧的半圆中修建一条步行道CDO (单位:米),在点C 与半圆弧上的一点D 之间设计为直线段(造价为2万元/米),从D 到点O 之间设计为沿半圆弧的弧形(造价为1万元/米).设(弧度),试用来表示修建步行道的造价预算,并求造价预算的最大值?(注:只考虑步行道的长度,不考虑步行道的宽度)PM D CB A19.(本小题满分16分)已知函数.(1)若函数在上是增函数,求实数的取值范围;(2)若函数在上的最小值为3,求实数的值.20.(本题满分16分)设首项为1的正项数列的前n项和为,数列的前n项和为,且,其中为常数. (1)求的值;(2)求证:数列为等比数列;(3)证明:“数列,,成等差数列,其中x、y均为整数”的充要条件是“,且”.淮海中学xx届高三Ⅲ级部第一学期数学限时训练(5)参考答案一、填空题1.;2.三; 3, 100; 4. ; 5.1; 6.; 7. ; 8. ; 9. ; 10. ;11. 3:2; 12. 24 13. 14.二、解答题16.证明:(1)连结交于点O,连结OM,则因为四边形ABCD是矩形所以O为AC的中点,又M为PC的中点.所以.……3分又因为平面MDB,而平面MDB所以PA∥平面MDB.……7分(2)因为平面PCD⊥平面ABCD,且平面PCD平面ABCD,所以平面PCD.……12分又平面PCD,所以PD⊥BC.……14分17、解:(1)设等差数列{an}的公差为d,则a2=a1+d,a3=a1+2d.由题意得⎩⎪⎨⎪⎧3a1+3d=-3,a1a1+d a1+2d=8,……2分解得⎩⎪⎨⎪⎧a1=2,d=-3,或⎩⎪⎨⎪⎧a1=-4,d=3.……5分所以由等差数列通项公式可得an=2-3(n-1)=-3n+5,或an=-4+3(n-1)=3n-7.故an=-3n+5,或an=3n-7. ……7分(2)当an=-3n+5时,a2,a3,a1分别为-1,-4,2,不成等比数列;当an=3n-7时,a2,a3,a1分别为-1,2,-4,成等比数列,满足条件.PMD CBA故|an|=|3n -7|=⎩⎪⎨⎪⎧-3n +7,n =1,2,3n -7,n≥3. … …9分记数列{|an|}的前n 项和为Sn.当n =1时,S1=|a1|=4;当n =2时,S2=|a1|+|a2|=5;……10分 当n≥3时,Sn =S2+|a3|+|a4|+…+|an| =5+(3×3-7)+(3×4-7)+…+(3n -7) =5+n -2[2+3n -7]2=32n2-112n +10. ……12分当n =1时,不满足此式,当n =2时,满足此式. 综上,Sn =⎩⎪⎨⎪⎧4,n =1,32n2-112n +10,n>1. ……14分18.⑴因为最高点B (-1,4),所以A=4; ,因为 ……3分 代入点B (-1,4), ,又; ……6分 ⑵由⑴可知: ,得点C 即,取CO 中点F ,连结DF ,因为弧CD 为半圆弧,所以, 即 ,则圆弧段造价预算为万元, 中,,则直线段CD 造价预算为万元 所以步行道造价预算,. ……10分由'()43(sin )2323(12sin )g x θθ=-+=-得当时,,当时,,即在上单调递增; 当时,,即在上单调递减所以在时取极大值,也即造价预算最大值为()万元.…14分 19【答案】(1);(2). 【解析】 试题分析:(1)这是一个由函数在某区间上是增函数,求参数取值范围的问题,可转化为其-1E 24DF(2)由(1)得,.①若,则,即在上恒成立,此时在上是增函数.所以,解得(舍去).②若,令,得.当时,,所以在上是减函数,当时,,所以在上是增函数.所以,解得(舍去).③若,则,即在上恒成立,此时在上是减函数.所以,所以.考点:函数与导数、函数的单调性.20、解:(1)n 1时,由得p 0或2,…………………………2分若p 0时,,当时,,解得或,…………4分而,所以p 0不符合题意,故p 2;…………………………5分(2)当p 2时,①,则②,②①并化简得③,则④,④③得(),又易得,所以数列{an}是等比数列,且;………………………………10分(3)充分性:若x 1,y 2,由知,,依次为,,,满足,即an,2xan1,2yan2成等差数列;………………………12分[来源: 必要性:假设,,成等差数列,其中x、y均为整数,又,所以,化简得………………………………13分显然,设,……………………………………………………14分因为x、y均为整数,所以当时,或,故当,且当,且时上式成立,即证.………………………………16分_%27353 6AD9 櫙 36114 8D12 贒25036 61CC 懌E20571 505B 偛20656 50B0 傰A T32627 7F73 罳35752 8BA8 讨。
高三数学限时训练(解三角形、数列)(含答案)

高三数学限时训练(解三角形、数列)考试时间:60分钟 1-10每题6分 11-12每题20分1.已知锐角△ABC 的面积为33,BC =4,CA =3,则角C 的大小为A .75°B .60°C .45°D .30°2.在200m 高的山顶上,测得山下一塔顶与塔底的俯角分别为30o和60o,则塔高为A .3m B .3m C .4003m D .2003m 3.在△ABC 中,内角A 、B 、C 的对边分别是a 、b 、c .若a =5,b =3,sin B =22,则符合条件的三角形有A .1个B .2个C .3个D .0个4.在△ABC 中,内角A 、B 、C 的对边分别是a 、b 、c .若a 2-b 2=3bc ,sin C =23sin B ,则A 等于A .30°B .60°C .120°D .150°5.在△ABC 中,cos 2B 2=a +c 2c(a 、b 、c 分别为角A 、B 、C 的对边),则△ABC 的形状为A .等边三角形B .直角三角形C .等腰三角形或直角三角形D .等腰直角三角形6. 已知c b a ,,为△ABC 的三个内角A ,B ,C 的对边,向量(),1,3-=m(),sin ,cos A A n=若,n m⊥且,sin cos cos C c A b B a =+则角A ,B 的大小分别是 A .3,6ππ B .6,32ππ C .6,3ππ D . 3,3ππ7.设△ABC 的内角A ,B ,C 所对边的长分别是a , b , c , 且b =3,c =1,A=2B ,则a= .8.在△ABC 中,AB =3,AC =1,∠B =30°,则△ABC 的面积等于 . 9. 如图,海岸线上有相距5海里的两座灯塔A ,B ,灯塔B 位于灯塔A 的正南方向.海上停泊着两艘轮船,甲船位于灯塔A 的北偏西75°,与A 相距32海里的D 处;乙船位于灯塔B 的北偏西60°方向,与B 相距5海里的C 处.则两艘轮船之间的距离为 海里.10. 已知,,a b c 分别为ABC ∆的三个内角,,A B C 的对边,a =2,且(2)(sin sin )()sin b A B c b C +-=-,则ABC ∆面积的最大值为 .班级:_______________________ 姓名:________________11. 在△ABC 中,内角A ,B ,C 对边的边长分别是c b a ,,,已知3,2==C c .(1)若△ABC的面积等于3,求a ,b ;(2)若A A B C 2sin 2)sin(sin =-+,求△ABC 的面积.12.已知数列{a n }满足a 1=a , a n+1=1+na 1我们知道当a 取不同的值时,得到不同的数列,如当a =1时,得到无穷数列:.0,1,21:,21;,35,23,2,1---=得到有穷数列时当a (1)求当a 为何值时a 4=0;(2)设数列{b n }满足b 1=-1, b n+1=)(11*N n b n ∈-,若a 取数列{b n }中的任一个数,都得到一个有穷数列{a n }吗?请说明理由(3)若)4(23≥<<n a n ,求a 的取值范围.高三数学限时训练(解三角形、数列)参考答案1-6 BCB ABC 7.32 8. 32;349. 1310.11.解:(1)由余弦定理及已知条件,得422=-+ab b a . 又因为△ABC 的面积等于3,所以3sin 21=C ab ,得4=ab . 联立方程组⎩⎨⎧==-+,4,422ab ab b a 解得⎩⎨⎧==.2,2b a故2a ==b(2)由题意,得A A A B A B cos sin 4)sin()sin(=-++,得A A A B cos sin 2cos sin =.因为),0π(,∈B A ①当0cos =A ,即2π=A 时,6π=B ,334=a ,332=b , 此时△ABC的面积12S bc ==. ②当0cos ≠A 时,得A B sin 2sin =,由正弦定理,得a b 2=.联系方程组⎩⎨⎧==-+,2,422a b ab b a 解得342=a此时△ABC 的面积33223221sin 212=⋅⋅==a C ab S . 综上,△ABC 的面积332sin 21==C ab S . 12. (1)解法1:14321111121,,0,1,,;123n n n n a a a a a a a a a ++=+∴==∴=-=-==-- 解法2:1123441121322,1,.,,0,113n n a a a a a a a a a a a a a a a ++++==+∴====∴=-++(2)都是得到一个有穷数列{a n },理由如下:1111,1,{},1n n n n n n n b b a b b a b b b ++=∴=+=- 若取数列的一个数即, 132121111111,11,,n n n n b a b a b a b ---=+=+==+=+= 2则a 0111,111=-+=-==+n n a b a 所以数列{}n a 只能是有穷数列. (3)因为)4(223≥<<n a n ,所以)5(2a 11231≥<+<-n n , 解得2a 11<<-n ,又()2,1()2,23(⊆, 故必需只须2234<<a 时,都有)4(223≥<<n a n a a a a +=+=1112,aa a a a a ++=++=+=121111143 aaa a a a 213221111134++=+++=+= 由2122323<++<a a ,得0>a 所以a 的取值范围0>a .。
高三数学:2024届新结构“8+3+3”选填限时训练1_10(解析版)

2024届高三二轮复习“8+3+3”小题强化训练(1)一、选择题:本题共8小题,每小题5分,共40分.在每小题给出的四个选项中,只有一项是符合题目要求的.1对两个具有线性相关关系的变量x 和y 进行统计时,得到一组数据1,0.3 ,2,4.7 ,3,m ,4,8 ,通过这组数据求得回归直线方程为y=2.4x -2,则m 的值为()A.3B.5C.5.2D.6【答案】A【解析】易知x =1+2+3+44=52,y =13+m4,代入y =2.4x -2得13+m 4=2.4×52-2⇒m =3.故选:A2已知m ,n 表示两条不同直线,α表示平面,下列说法正确的是()A.若m ⎳α,n ⎳α,则m ⎳nB.若m ⊥α,n ⊂α,则m ⊥nC.若m ⊥α,m ⊥n ,则n ⎳αD.若m ⎳α,m ⊥n ,则n ⊥α【答案】B【解析】线面垂直,则有该直线和平面内所有的直线都垂直,故B 正确.故选:B3已知向量a ,b 满足a =3,b =23,且a ⊥a +b,则b 在a 方向上的投影向量为()A.3B.-3C.-3aD.-a【答案】D【解析】a ⊥a +b ,则a ⋅a +b =a 2+a ⋅b =9+a ⋅b =0,故a ⋅b=-9,b 在a 方向上的投影向量a ⋅b a 2⋅a =-99⋅a =-a.故选:D .4若n 为一组从小到大排列的数1,2,4,8,9,10的第六十百分位数,则二项式3x +12xn的展开式的常数项是()A.7B.8C.9D.10【答案】A【解析】因为n 为一组从小到大排列的数1,2,4,8,9,10的第六十百分位数,6×60%=3.6,所以n =8,二项式3x +12x8的通项公式为T r +1=C r 8⋅3x 8-r ⋅12x r =C r 8⋅12 r⋅x8-r 3-r,令8-r 3-r =0⇒r =2,所以常数项为C 28×12 2=8×72×14=7,故选:A5折扇是我国古老文化的延续,在我国已有四千年左右的历史,“扇”与“善”谐音,折扇也寓意“善良”“善行”.它常以字画的形式体现我国的传统文化,也是运筹帷幄、决胜千里、大智大勇的象征(如图1).图2是一个圆台的侧面展开图(扇形的一部分),若两个圆弧DE ,AC 所在圆的半径分别是3和6,且∠ABC =120°,则该圆台的体积为()A.5023π B.9π C.7π D.1423π【答案】D【解析】设圆台上下底面的半径分别为r 1,r 2,由题意可知13×2π×3=2πr 1,解得r 1=1,13×2π×6=2πr 2,解得:r 2=2,作出圆台的轴截面,如图所示:图中OD =r 1=1,O A =r 2=2,AD =6-3=3,过点D 向AP 作垂线,垂足为T ,则AT =r 2-r 1=1,所以圆台的高h =AD 2-AT 2=32-1=22,则上底面面积S 1=π×12=π,S 2=π×22=4π,由圆台的体积计算公式可得:V =13×(S 1+S 2+S 1⋅S 2)×h =13×7π×22=142π3,故选:D .6已知函数f x =x 2-bx +c (b >0,c >0)的两个零点分别为x 1,x 2,若x 1,x 2,-1三个数适当调整顺序后可为等差数列,也可为等比数列,则不等式x -bx -c≤0的解集为()A.1,52B.1,52C.-∞,1 ∪52,+∞D.-∞,1 ∪52,+∞ 【答案】A【解析】由函数f x =x 2-bx +c (b >0,c >0)的两个零点分别为x 1,x 2,即x 1,x 2是x 2-bx +c =0的两个实数根据,则x 1+x 2=b ,x 1x 2=c 因为b >0,c >0,可得x 1>0,x 2>0,又因为x 1,x 2,-1适当调整可以是等差数列和等比数列,不妨设x 1<x 2,可得x 1x 2=-1 2=1-1+x 2=2x 1 ,解得x 1=12,x 2=2,所以x 1+x 2=52,x 1x 2=1,所以b =52,c =1,则不等式x -b x -c ≤0,即为x -52x -1≤0,解得1<x ≤52,所以不等式的解集为1,52.故选:A .7已知双曲线C :x 2a 2-y 2b2=1a >0,b >0 的左、右焦点分别为F 1,F 2,M ,N 为双曲线一条渐近线上的两点,A 为双曲线的右顶点,若四边形MF 1NF 2为矩形,且∠MAN =2π3,则双曲线C 的离心率为()A.3B.7C.213D.13【答案】C【解析】如图,因为四边形MF 1NF 2为矩形,所以MN =F 1F 2 =2c (矩形的对角线相等),所以以MN 为直径的圆的方程为x 2+y 2=c 2.直线MN 为双曲线的一条渐近线,不妨设其方程为y =bax ,由y =b a x ,x 2+y 2=c 2,解得x =a y =b ,或x =-a ,y =-b , 所以N a ,b ,M -a ,-b 或N -a ,-b ,M a ,b .不妨设N a ,b ,M -a , -b ,又A a ,0 ,所以AM =a +a 2+b 2=4a 2+b 2,AN =a -a 2+b 2=b .在△AMN 中,∠MAN =2π3,由余弦定理得MN 2=AM 2+AN 2-2AM AN ⋅cos 2π3,即4c 2=4a 2+b 2+b 2+4a 2+b 2×b ,则2b =4a 2+b 2,所以4b 2=4a 2+b 2,则b 2=43a 2,所以e =1+b 2a2=213.故选:C .8已知a =ln 1.2e ,b =e 0.2,c =1.2e 0.2,则有()A.a <b <cB.a <c <bC.c <a <bD.c <b <a【答案】C【解析】令f x =e x -ln x +1 -1,x >0,则f x =e x -1x +1.当x >0时,有e x >1,1x +1<1,所以1x +1<1,所以,f (x )>0在0,+∞ 上恒成立,所以,f (x )在0,+∞ 上单调递增,所以,f (x )>f (0)=1-1=0,所以,f (0.2)>0,即e 0.2-ln1.2-1>0,所以a <b令g x =e x -x +1 ,x >0,则g x =e x -1在x >0时恒大于零,故g x 为增函数,所以x +1ex <1,x >0,而a =ln 1.2e =1+ln1.2>1,所以c <a ,所以c <a <b ,故选:C二、选择题:本题共3小题,每小题6分,共18分.在每小题给出的选项中,有多项符合题目要求.全部选对的得6分,部分选对的得部分分,有选错的得0分.9已知函数f x =sin 2x +3π4 +cos 2x +3π4,则()A.函数f x -π4 为偶函数 B.曲线y =f x 对称轴为x =k π,k ∈ZC.f x 在区间π3,π2单调递增D.f x 的最小值为-2【答案】AC【解析】f x =sin 2x +3π4 +cos 2x +3π4=sin2x cos 3π4+sin 3π4cos2x +cos2x cos 3π4-sin2x sin3π4=-22sin2x +22cos2x -22cos2x -22sin2x =-2sin2x ,即f x =-2sin2x ,对于A ,f x -π4 =-2sin 2x -π2=2cos2x ,易知为偶函数,所以A 正确;对于B ,f x =-2sin2x 对称轴为2x =π2+k π,k ∈Z ⇒x =π4+k π2,k ∈Z ,故B 错误;对于C ,x ∈π3,π2 ,2x ∈2π3,π ,y =sin2x 单调递减,则f x =-2sin2x 单调递增,故C 正确;对于D ,f x =-2sin2x ,则sin2x ∈-1,1 ,所以f x ∈-2,2 ,故D 错误;故选:AC10设z 为复数,则下列命题中正确的是()A.z 2=zz B.若z =(1-2i )2,则复平面内z对应的点位于第二象限C.z 2=z 2D.若z =1,则z +i 的最大值为2【答案】ABD【解析】对于A ,设z =a +bi ,故z =a -bi ,则z 2=a 2+b 2,zz =(a +bi )(a -bi )=a 2+b 2,故z 2=zz成立,故A 正确,对于B ,z =(1-2i )2=-4i -3,z =4i -3,显然复平面内z对应的点位于第二象限,故B 正确,对于C ,易知z 2=a 2+b 2,z 2=a 2+b 2+2abi ,当ab ≠0时,z 2≠z 2,故C 错误,对于D ,若z =1,则a 2+b 2=1,而z +i =a 2+(b +1)2=2b +2,易得当b =1时,z +i 最大,此时z +i =2,故D 正确.故选:ABD11已知菱形ABCD 的边长为2,∠ABC =π3.将△DAC 沿着对角线AC 折起至△D AC ,连结BD .设二面角D -AC -B 的大小为θ,则下列说法正确的是()A.若四面体D ABC 为正四面体,则θ=π3B.四面体D ABC 的体积最大值为1C.四面体D ABC 的表面积最大值为23+2D.当θ=2π3时,四面体D ABC 的外接球的半径为213【答案】BCD【解析】如图,取AC 中点O ,连接OB ,OD ,则OB =OD ,OB ⊥AC ,OD ⊥AC ,∠BOC 为二面角D AC -B 的平面角,即∠BOC =θ.若D ABC 是正四面体,则BD =BC ≠BO ,△OBD 不是正三角形,θ≠π3,A 错;四面体D ABC 的体积最大时,BO ⊥平面ACD ,此时B 到平面ACD 的距离最大为BO =3,而S △ACD=34×22=3,所以V =13×3×3=1,B 正确;S △ABC =S △DAC =3,易得△BAD ≅△BCD ,S △BAD=S △BCD=12×22sin ∠BCD =2sin ∠BCD ,未折叠时BD =BD =23,折叠到B ,D 重合时,BD =0,中间存在一个位置,使得BD =22,则BC 2+D C 2=BD 2,∠BCD =π2,此时S △BAD=S △BCD=2sin ∠BCD 取得最大值2,所以四面体D ABC 的表面积最大值为23+2 ,C 正确;当θ=2π3时,如图,设M ,N 分别是△ACD 和△BAC 的外心,在平面AOD 内作PM ⊥OD ,作PN ⊥OB ,PM ∩PN =P ,则P 是三棱锥外接球的球心,由上面证明过程知平面OBD 与平面ABC 、平面D AC 垂直,即P ,N ,O ,M 四点共面,θ=2π3,则∠PON =π3,ON =13×32×2=33,PN =ON tan π3=33×3=1,PB =PN 2+BN 2=12+233 2=213为球半径,D 正确.故选:BCD .三、填空题:本题共3小题,每小题5分,共15分.12设集合M =x log 2x <1 ,N =x 2x -1<0 ,则M ∩N =.【答案】x 0<x <12【解析】因为log 2x <1=log 22,所以0<x <2,即M =x log 2x <1 =x 0<x <2 ,因为2x -1<0,解得x <12,所以N =x 2x -1<0 =x x <12,所以,M ∩N =x 0<x <12 .故答案为:x 0<x <12 13已知正项等比数列a n 的前n 项和为S n ,且S 8-2S 4=6,则a 9+a 10+a 11+a 12的最小值为.【答案】24【解析】设正项等比数列a n 的公比为q ,则q >0,所以,S 8=a 1+a 2+a 3+a 4+a 5+a 6+a 7+a 8=a 1+a 2+a 3+a 4+q 4a 1+a 2+a 3+a 4 =S 41+q 4 ,则S 8-2S 4=S 4q 4-1 =6,则q 4>1,可得q >1,则S 4=6q 4-1,所以,a 9+a 10+a 11+a 12=q 8a 1+a 2+a 3+a 4 =S 4q 8=6q 8q 4-1=6q 4-1+1 2q 4-1=6q 4-1 2+1+2q 4-1 q 4+1=6q 4-1 +1q 4-1+2 ≥62q 4-1 ⋅1q 4-1+2 =24,当且仅当q 4-1=1q 4-1q >1 时,即当q =42时,等号成立,故a 9+a 10+a 11+a 12的最小值为24.故答案为:2414已知F 为拋物线C :y =14x 2的焦点,过点F 的直线l 与拋物线C 交于不同的两点A ,B ,拋物线在点A ,B 处的切线分别为l 1和l 2,若l 1和l 2交于点P ,则|PF |2+25AB的最小值为.【答案】10【解析】C :x 2=4y 的焦点为0,1 ,设直线AB 方程为y =kx +1,A x 1,y 1 ,B x 2,y 2 .联立直线与抛物线方程有x 2-4kx -4=0,则AB =y 1+y 2+2=k x 1+x 2 +4=4k 2+4.又y =14x 2求导可得y =12x ,故直线AP 方程为y -y 1=12x 1x -x 1 .又y 1=14x 21,故AP :y =12x 1x -14x 21,同理BP :y =12x 2x -14x 22.联立y =12x 1x -14x 21y =12x 2x -14x 22可得12x 1-x 2 x =14x 21-x 22 ,解得x =x 1+x 22,代入可得P x 1+x 22,x 1x 24 ,代入韦达定理可得P 2k ,-1 ,故PF =4k 2+4.故|PF |2+25AB=4k 2+4+254k 2+4≥24k 2+4 ×254k 2+4=10,当且仅当4k 2+4=254k 2+4,即k =±12时取等号.故答案为:102024届高三二轮复习“8+3+3”小题强化训练(2)一、选择题:本题共8小题,每小题5分,共40分.在每小题给出的四个选项中,只有一项是符合题目要求的.1抛物线y =12x 2的焦点坐标为()A.18,0B.12,0 C.0,18D.0,12【答案】D 【解析】由y =12x 2可得抛物线标准方程为:x 2=2y ,∴其焦点坐标为0,12 .故选:D .2二项式3x 2-1x 47的展开式中常数项为()A.-7B.-21C.7D.21【答案】A 【解析】二项式3x 2-1x47的通项公式为Tr +1=C r 7⋅3x 27-r⋅-1x4r=Cr 7⋅-1 r⋅x14-14r 3,令14-14r 3=0⇒r =1,所以常数项为C 17⋅-1 =-7,故选:A3已知集合A =x log 2x ≤1 ,B =y y =2x ,x ≤2 ,则()A.A ∪B =BB.A ∪B =AC.A ∩B =BD.A ∪(C R B )=R【答案】A【解析】由log 2x ≤1,则log 2x ≤log 22,所以0<x ≤2,所以A =x log 2x ≤1 =x 0<x ≤2 ,又B =y y =2x ,x ≤2 =y 0<y ≤4 ,所以A ⊆B ,则A ∪B =B ,A ∩B =A .故选:A .4若古典概型的样本空间Ω=1,2,3,4 ,事件A =1,2 ,甲:事件B =Ω,乙:事件A ,B 相互独立,则甲是乙的()A.充分不必要条件B.必要不充分条件C.充分必要条件D.既不充分也不必要条件【答案】A【解析】若B =Ω,A ∩B =1,2 ,则P A ∩B =24=12,而P A =24=12,P B =1,所以P A P B =P A ∩B ,所以事件A ,B 相互独立,反过来,当B =1,3 ,A ∩B =1 ,此时P A ∩B =14,P A =P B =12,满足P A P B =P A ∩B ,事件A ,B 相互独立,所以不一定B =Ω,所以甲是乙的充分不必要条件.故选:A5若函数f x =ln e x -1 -mx 为偶函数,则实数m =()A.1B.-1C.12D.-12【答案】C【解析】由函数f x =ln e x -1 -mx 为偶函数,可得f -1 =f 1 ,即ln e -1-1 +m =ln e -1 -m ,解之得m =12,则f x =ln e x -1 -12x (x ≠0),f -x =ln e -x -1 +12x =ln e x -1 -x +12x =ln e x -1 -12x =f x故f x =ln e x -1 -12x 为偶函数,符合题意.故选:C6已知函数y =f (x )的图象恰为椭圆C :x 2a 2+y 2b2=1(a >b >0)x 轴上方的部分,若f (s -t ),f (s ),f (s +t )成等比数列,则平面上点(s ,t )的轨迹是()A.线段(不包含端点) B.椭圆一部分C.双曲线一部分D.线段(不包含端点)和双曲线一部分【答案】A【解析】因为函数y =f (x )的图象恰为椭圆C :x 2a 2+y 2b2=1(a >b >0)x 轴上方的部分,所以y =f (x )=b ⋅1-x 2a2(-a <x <a ),因为f (s -t ),f (s ),f (s +t )成等比数列,所以有f 2(s )=f (s -t )⋅f (s +t ),且有-a <s <a ,-a <s -t <a ,-a <s +t <a 成立,即-a <s <a ,-a <t <a 成立,由f 2(s )=f (s -t )⋅f (s +t )⇒b ⋅1-s 2a 22=b ⋅1-(s -t )2a 2⋅b ⋅1-(s +t )2a 2,化简得:t 4=2a 2t 2+2s 2t 2⇒t 2(t 2-2a 2-2s 2)=0⇒t 2=0,或t 2-2a 2-2s 2=0,当t 2=0时,即t =0,因为-a <s <a ,所以平面上点(s ,t )的轨迹是线段(不包含端点);当t 2-2a 2-2s 2=0时,即t 2=2a 2+2s 2,因为-a <t <a ,所以t 2<a 2,而2a 2+2s 2>a 2,所以t 2=2a 2+2s 2不成立,故选:A7若tan α+π4=-2,则sin α1-sin2α cos α-sin α=()A.65B.35C.-35D.-65【答案】C【解析】因为tan α+π4 =tan α+tan π41-tan αtan π4=tan α+11-tan α=-2,解得tan α=3,所以,sin α1-sin2αcos α-sin α=sin αsin 2α+cos 2α-2sin αcos α cos α-sin α=sin αcos α-sin α 2cos α-sin α=sin αcos α-sin 2α=sin αcos α-sin 2αcos 2α+sin 2α=tan α-tan 2α1+tan 2α=3-91+9=-35.故选:C .8函数f x =2ln xx,x >0sin ωx +π6,-π≤x ≤0,若2f 2(x )-3f (x )+1=0恰有6个不同实数解,正实数ω的范围为()A.103,4B.103,4 C.2,103D.2,103【答案】D【解析】由题知,2f 2x -3f x +1=0的实数解可转化为f (x )=12或f (x )=1的实数解,即y =f (x )与y =1或y =12的交点,当x >0时,f x =2ln xx ⇒f (x )=21-ln x x 2所以x ∈0,e 时,f (x )>0,f x 单调递增,x ∈e ,+∞ 时,f (x )<0,f x 单调递减,如图所示:所以x =e 时f x 有最大值:12<f (x )max =2e<1所以x >0时,由图可知y =f (x )与y =1无交点,即方程f (x )=1无解,y =f (x )与y =12有两个不同交点,即方程f (x )=12有2解当x <0时,因为ω>0,-π≤x ≤0,所以-ωπ+π6≤ωx +π6≤π6,令t =ωx +π6,则t ∈-ωπ+π6,π6则有y =sin t 且t ∈-ωπ+π6,π6,如图所示:因为x >0时,已有两个交点,所以只需保证y =sin t 与y =12及与y =1有四个交点即可,所以只需-19π6<-ωπ+π6≤-11π6,解得2≤ω<103.故选:D二、选择题:本题共3小题,每小题6分,共18分.在每小题给出的选项中,有多项符合题目要求.全部选对的得6分,部分选对的得部分分,有选错的得0分.9已知复数z 1,z 2是关于x 的方程x 2+bx +1=0(-2<b <2,b ∈R )的两根,则下列说法中正确的是()A.z 1=z 2B.z 1z 2∈R C.z 1 =z 2 =1D.若b =1,则z 31=z 32=1【答案】ACD【解析】Δ=b 2-4<0,∴x =-b ±4-b 2i 2,不妨设z 1=-b 2+4-b 22i ,z 2=-b2-4-b 22i ,z 1=z 2,A 正确;z 1 =z 2 =-b 22+4-b 222=1,C 正确;z 1z 2=1,∴z 1z 2=z 21z 1z 2=z 21=b 2-22-b 4-b 22i ,b ≠0时,z 1z 2∉R ,B 错;b =1时,z 1=-12+32i ,z 2=-12-32i ,计算得z 21=-12-32i =z 2=z 1 ,z 22=z 1=z 2 ,z 31=z 1z 2=1,同理z 32=1,D 正确.故选:ACD .10四棱锥P -ABCD 的底面为正方形,P A 与底面垂直,P A =2,AB =1,动点M 在线段PC 上,则()A.不存在点M ,使得AC ⊥BMB.MB +MD 的最小值为303C.四棱锥P -ABCD 的外接球表面积为5πD.点M 到直线AB 的距离的最小值为255【答案】BD【解析】对于A :连接BD ,且AC ∩BD =O ,如图所示,当M 在PC 中点时,因为点O 为AC 的中点,所以OM ⎳P A ,因为P A ⊥平面ABCD ,所以OM ⊥平面ABCD ,又因为AC ⊂平面ABCD ,所以OM ⊥AC ,因为ABCD 为正方形,所以AC ⊥BD .又因为BD ∩OM =O ,且BD ,OM ⊂平面BDM ,所以AC ⊥平面BDM ,因为BM ⊂平面BDM ,所以AC ⊥BM ,所以A 错误;对于B :将△PBC 和△PCD 所在的平面沿着PC 展开在一个平面上,如图所示,则MB +MD 的最小值为BD ,直角△PBC 斜边PC 上高为1×56,即306,直角△PCD 斜边PC 上高也为1×56,所以MB +MD 的最小值为303,所以B 正确;对于C :易知四棱锥P -ABCD 的外接球直径为PC ,半径R =12PC =1222+12+12=62,表面积S =4πR 2=6π,所以C 错误;对于D :点M 到直线AB 距离的最小值即为异面直线PC 与AB 的距离,因为AB ⎳CD ,且AB ⊄平面PCD ,CD ⊂平面PCD ,所以AB ⎳平面PCD ,所以直线AB 到平面PCD 的距离等于点A 到平面PCD 的距离,过点A 作AF ⊥PD ,因为P A ⊥平面ABCD ,所以P A ⊥CD ,又AD ⊥CD ,且P A ∩AD =A ,故CD ⊥平面P AD ,AF ⊂平面P AD ,所以AF ⊥CD ,因为PD ∩CD =D ,且PD ,CD ⊂平面PCD ,所以AF ⊥平面PCD ,所以点A 到平面PCD 的距离,即为AF 的长,如图所示,在Rt △P AD 中,P A =2,AD =1,可得PD =5,所以由等面积得AF =255,即直线AB 到平面PCD 的距离等于255,所以D 正确,故选:BCD .11今年是共建“一带一路”倡议提出十周年.某校进行“一带一路”知识了解情况的问卷调查,为调动学生参与的积极性,凡参与者均有机会获得奖品.设置3个不同颜色的抽奖箱,每个箱子中的小球大小相同质地均匀,其中红色箱子中放有红球3个,黄球2个,绿球2个;黄色箱子中放有红球4个,绿球2个;绿色箱子中放有红球3个,黄球2个,要求参与者先从红色箱子中随机抽取一个小球,将其放入与小球颜色相同的箱子中,再从放入小球的箱子中随机抽取一个小球,抽奖结束.若第二次抽取的是红色小球,则获得奖品,否则不能获得奖品,已知甲同学参与了问卷调查,则()A.在甲先抽取的是黄球的条件下,甲获得奖品的概率为47B.在甲先抽取的不是红球的条件下,甲没有获得奖品的概率为1314C.甲获得奖品的概率为2449D.若甲获得奖品,则甲先抽取绿球的机会最小【答案】ACD【解析】设A 红,A 黄,A 绿,分别表示先抽到的小球的颜色分别是红、黄、绿的事件,设B 红表示再抽到的小球的颜色是红的事件,在甲先抽取的是黄球的条件下,甲获得奖品的概率为:P B 红∣A 黄 =P B 红A 黄 P A 黄=27×4727=47,故A 正确;在甲先抽取的不是红球的条件下,甲没有获得奖品的概率为:P B 红 ∣A 红 =P A 红 B 红 P A 红 =P A 黄B 红 +P A 绿B 红 P A 红 =27×37+27×1247=1328,故B 错误;由题意可知,P A 红 =37,P A 黄 =27,P A 绿 =27,P B 红∣A 红 =37,P B 红∣A 黄 =47,P B 红∣A 绿 =12,由全概率公式可知,甲获得奖品的概率为:P =P A 红 P B 红∣A 红 +P A 黄 ⋅P B 红∣A 黄 +P A 绿 ⋅P B 红∣A 绿 =37×37+27×47+27×12=2449,故C 正确;因为甲获奖时红球取自哪个箱子的颜色与先抽取小球的颜色相同,则P A 红∣B 红 =P A 红 ⋅P B 红∣A 红 P B 红=37×37×4924=38,P A 黄∣B 红 =P A 黄 ⋅P B 红∣A 黄P B 红=27×47×4924=13,P A 绿∣B 红 =P A 绿 ⋅P B 红∣A 绿 P B 红 =27×12×4924=724,所以甲获得奖品时,甲先抽取绿球机会最小,故D 正确.故选:ACD .三、填空题:本题共3小题,每小题5分,共15分.12已知△ABC 的边BC 的中点为D ,点E 在△ABC 所在平面内,且CD =3CE -2CA ,若AC =xAB +yBE,则x +y =.【答案】11【解析】因为CD =3CE -2CA ,边BC 的中点为D ,所以12CB=3BE -BC +2AC ,因为12CB =3BE -3BC +2AC ,所以52BC =3BE +2AC ,所以52BC =52AC -AB =3BE +2AC ,所以5AC -5AB =6BE +4AC ,即5AB +6BE =AC ,因为AC =xAB +yBE ,所以x =5,y =6,故x +y =11.故答案为:1113已知圆锥母线长为2,则当圆锥的母线与底面所成的角的余弦值为时,圆锥的体积最大,最大值为.【答案】①.63②.16327π【解析】设圆锥的底面半径为r ,圆锥的母线与底面所成的角为θ,θ∈0,π2 ,易知cos θ=r 2.圆锥的体积为V =13πr 2⋅4-r 2=43πcos 2θ⋅2sin θ=8π3cos 2θ⋅sin θ=8π31-sin 2θ sin θ令x =sin θ,x ∈0,1 ,则y =1-sin 2θ sin θ=-x 3+x ,y =-3x 2+1当y >0时,x ∈0,33,当y<0时,x ∈33,1 ,即函数y =-x 3+x 在0,33 上单调递增,在33,1上单调递减,即V max =8π333-33 3 =163π27,此时cos θ=1-323 =62.故答案为:62;163π2714已知双曲线C :x 2-y 23=1的左、右焦点分别为F 1,F 2,右顶点为E ,过F 2的直线交双曲线C 的右支于A ,B 两点(其中点A 在第一象限内),设M ,N 分别为△AF 1F 2,△BF 1F 2的内心,则当F 1A ⊥AB 时,AF 1=;△ABF 1内切圆的半径为.【答案】①.7+1##1+7②.7-1##-1+7【解析】由双曲线方程知a =1,b =3,c =2,如下图所示:由F 1A ⊥AB ,则AF 1 2+AF 2 2=F 1F 2 2=16,故AF 1 -AF 2 2+2AF 1 AF 2 =16,而AF 1 -AF 2 =2a =2,所以AF 1 AF 2 =6,故AF 2 2+2AF 2 -6=0,解得AF 2 =7-1,所以AF 1 =7+1,若G 为△ABF 1内切圆圆心且F 1A ⊥AB 可知,以直角边切点和G ,A 为顶点的四边形为正方形,结合双曲线定义内切圆半径r =12AF 1 +AB -BF 1 =12AF 1 +AF 2 +BF 2 -BF 1所以r =1227+BF 2 -BF 1 =1227-2 =7-1;故答案为:7+1,7-1;2024届高三二轮复习“8+3+3”小题强化训练(3)一、选择题:本题共8小题,每小题5分,共40分.在每小题给出的四个选项中,只有一项是符合题目要求的.1有一组按从小到大顺序排列数据:3,5,x ,8,9,10,若其极差与平均数相等,则这组数据的中位数为()A.7B.7.5C.8D.6.5【答案】B【解析】依题意可得极差为10-3=7,平均数为163+5+x +8+9+10 =1635+x ,所以1635+x =7,解得x =7,所以中位线为7+82=7.5.故选:B .2已知集合A =x x -1 >2 ,B =x log 4x <1 ,则A ∩B =()A.3,4B.-∞,-1 ∪3,4C.1,4D.-∞,4【答案】A【解析】由x -1 >2,得x <-1或x >3,所以A =x x <-1或x >3 ,由log 4x <1,得0<x <4,所以B =x 0<x <4 ,所以A ∩B =x 3<x <4 .故选:A .3已知向量a =(2,0),b =sin α,32,若向量b 在向量a 上的投影向量c =12,0 ,则|a +b |=()A.3B.7C.3D.7【答案】B【解析】由已知可得,b 在a 上的投影向量为a ⋅b |a |⋅a |a |=2sin α2×2(2,0)=(sin α,0),又b 在a 上的投影向量c =12,0 ,所以sin α=12,所以b =12,32,所以a +b =52,32 ,所以|a +b |=52 2+322=7.故选:B .4如图是两个底面半径都为1的圆锥底面重合在一起构成的几何体,上面圆锥的侧面积是下面圆锥侧面积的2倍,AP ⊥AQ ,则PQ =()A.74B.262C.52D.3【答案】C【解析】设两圆锥的高OP =x ,OQ =y ,则AP =x 2+1,AQ =y 2+1,由AP ⊥AQ ,有AP 2+AQ 2=PQ 2,可得x 2+1+y 2+1=x +y 2,可得xy =1,又由上下圆锥侧面积之比为2:1,即π×1×P A =2×π×1×QA ,可得P A =2QA ,则有x 2+1=2y 2+1,即x 2=4y 2+3,代入y =1x整理为x 4-3x 2-4=0,解得x =2(负值舍),可得y =12,OP =x +y =2+12=52.故选:C .5已知Q 为直线l :x +2y +1=0上的动点,点P 满足QP=1,-3 ,记P 的轨迹为E ,则()A.E 是一个半径为5的圆B.E 是一条与l 相交的直线C.E 上的点到l 的距离均为5D.E 是两条平行直线【答案】C【解析】设P x ,y ,由QP=1,-3 ,则Q x -1,y +3 ,由Q 在直线l :x +2y +1=0上,故x -1+2y +3 +1=0,化简得x +2y +6=0,即P 轨迹为E 为直线且与直线l 平行,E 上的点到l 的距离d =6-112+22=5,故A 、B 、D 错误,C 正确.故选:C .6已知x +1 x -1 5=a 0+a 1x +a 2x 2+a 3x 3+a 4x 4+a 5x 5+a 6x 6,则a 1+a 3的值为()A.-1B.1C.4D.-2【答案】C【解析】在x +1 x -1 5=a 0+a 1x +a 2x 2+a 3x 3+a 4x 4+a 5x 5+a 6x 6中,而x +1 x -1 5=x x -1 5+x -1 5,由二项式定理知x -1 5展开式的通项为T r +1=C r 5x 5-r (-1)r ,令5-r =2,解得r =3,令5-r =3,r =2,故a 3=C 35(-1)3+C 25(-1)2=0,同理令5-r =1,解得r =4,令5-r =0,解得r =5,故a 1=C 45(-1)4+C 55(-1)5=4,故a 1+a 3=4.故选:C7已知P 为抛物线x 2=4y 上一点,过P 作圆x 2+(y -3)2=1的两条切线,切点分别为A ,B ,则cos ∠APB 的最小值为()A.12B.23C.34D.78【答案】C【解析】如图所示:因为∠APB =2∠APC ,sin ∠APC =AC PC=1PC,设P t ,t 24,则PC 2=t 2+t 24-3 2=t 416-t 22+9=116t 2-4 2+8,当t 2=4时,PC 取得最小值22,此时∠APB 最大,cos ∠APB 最小,且cos ∠APB min =1-2sin 2∠APC =1-21222=34,故C 正确.故选:C8已知函数f x ,g x 的定义域为R ,g x 为g x 的导函数且f x +g x =3,f x -g 4-x =3,若g x 为偶函数,则下列结论一定成立的是()A.f -1 =f -3B.f 1 +f 3 =65C.g 2 =3D.f 4 =3【答案】D【解析】对于D ,∵g x 为偶函数,则g x =g -x ,两边求导可得g x =-g -x ,则g x 为奇函数,则g 0 =0,令x =4,则f 4 -g 0 =3,f 4 =3,D 对;对于C ,令x =2,可得f 2 +g 2 =3f 2 -g 2 =3 ,则f 2 =3g 2 =0 ,C 错;对于B ,∵f x +g x =3,可得f 2+x +g 2+x =3,f x -g 4-x =3可得f 2-x -g 2+x =3,两式相加可得f 2+x +f 2-x =6,令x =1,即可得f 1 +f 3 =6,B 错;又∵f x +g x =3,则f x -4 +g x -4 =f x -4 -g 4-x =3,f x -g 4-x =3,可得f x =f x -4 ,所以f x 是以4为周期的函数,所以根据以上性质不能推出f -1 =f -3 ,A 不一定成立.故选:D二、选择题:本题共3小题,每小题6分,共18分.在每小题给出的选项中,有多项符合题目要求.全部选对的得6分,部分选对的得部分分,有选错的得0分.9下列结论正确的是()A.若a <b <0,则a 2>ab >b 2B.若x ∈R ,则x 2+2+1x 2+2的最小值为2C.若a +b =2,则a 2+b 2的最大值为2D.若x ∈(0,2),则1x +12-x ≥2【答案】AD【解析】因为a 2-ab =a (a -b )>0,所以a 2>ab ,因为ab -b 2=b (a -b )>0,所以ab >b 2,所以a 2>ab >b 2,故A 正确;因为x 2+2+1x 2+2≥2的等号成立条件x 2+2=1x 2+2不成立,所以B 错误;因为a 2+b 22≥a +b 2 2=1,所以a 2+b 2≥2,故C 错误;因为1x +12-x =12(x +2-x )1x +12-x =122+2-x x +x 2-x ≥12(2+2)=2,当且仅当1x =12-x,即x =1时,等号成立,所以D 正确.故选:AD10若函数f x =2sin 2x ⋅log 2sin x +2cos 2x ⋅log 2cos x ,则()A.f x 的最小正周期为πB.f x 的图像关于直线x =π4对称C.f x 的最小值为-1D.f x 的单调递减区间为2k π,π4+2k π ,k ∈Z【答案】BCD【解析】由sin x >0,cos x >0得f x 的定义域为2k π,π2+2k π ,k ∈Z .对于A :当x ∈0,π2时,x +π∈π,32π 不在定义域内,故f x +π =f x 不成立,易知f x 的最小正周期为2π,故选项A 错误;对于B :又f π2-x =2cos 2x ⋅log 2cos x +2sin 2x ⋅log 2sin x =f x ,所以f x 的图像关于直线x =π4对称,所以选项B 正确;对于C :因为f x =sin 2x ⋅log 2sin 2x +cos 2x ⋅log 2cos 2x ,设t =sin 2x ,所以函数转化为g t =t ⋅log 2t +1-t ⋅log 21-t ,t ∈0,1 ,g t =log 2t -log 21-t ,由g t >0得,12<t <1.g t <0得0<t <12.所以g t 在0,12 上单调递减,在12,1 上单调递增,故g (t )min =g 12=-1,即f (x )min =-1,故选项C 正确;对于D :因为g t 在0,12 上单调递减,在12,1 上单调递增,由t =sin 2x ,令0<sin 2x <12得0<sin x <22,又f x 的定义域为2k π,π2+2k π ,k ∈Z ,解得2k π<x <π4+2k π,k ∈Z ,因为t =sin 2x 在2k π,π4+2k π 上单调递增,所以f x 的单调递减区间为2k π,π4+2k π ,k ∈Z ,同理函数的递增区间为π4+2k π,π2+2k π ,k ∈Z ,所以选项D 正确.故选:BCD .11已知数列a n 的前n 项和为S n ,且2S n S n +1+S n +1=3,a 1=α0<α<1 ,则()A.当0<α<13-14时,a 2>a 1B.a 3>a 2C.数列S 2n -1 单调递增,S 2n 单调递减D.当α=34时,恒有nk =1S k -1 <54【答案】ACD【解析】由题意可得:S n +1=32S n +1,a 1=α,由S n +1=32S n +1可知:S n +1=1⇔S n =1,但S 1=α∈0,1 ,可知对任意的n ∈N *,都有S n ≠1,对于选项A :若0<α<13-14,则a 2-a 1=S 2-2a 1=32α+1-2α=3-2α-4α22α+1=4α+1+13 13-14-α2α+1>0,即a 2>a 1,故A 正确;对于选项B :a 3-a 2=S 3-2S 2+S 1=6α+32α+7-62α+1+α=α-1 4α2+32α+39 2α+1 2α+7<0,即a 3<a 2,故B 错误.对于选项C :因为S n +1-1=-2S n -1 2S n +1,S n +1+32=3S n +32 2S n +1,则S n +1-1S n +1+32=-23⋅S n -1S n +32,且S 1-1S 1+32=α-1α+32<0,可知S n -1S n+32是等比数列,则S n -1S n +32=α-1α+32⋅-23n -1,设A =α-1α+32<0,t =232n -2,可得S 2n =3-3At 3+2At =3253+2At -1 ,S 2n -1=1+32At 1-At =521-At-32,因为At =A 232n -2,可知A 23 2n -2 为递增数列,所以数列S 2n -1 单调递增,S 2n 单调递减,故C 正确;对于选项D :因为S n +1=32S n +1,S n +1-34=32S n +1-34=33-2S n 42S n +1,由S 1=α=34,可得S 2-34>0,即S 2>34,则S 2≤65,即34<S 2≤65;由34<S 2≤65,可得S 3-34>0,即S 3>34,则S 3<65,即34<S 3<65;以此类推,可得对任意的n ∈N *,都有S n ≥S 1=α=34,又因为S n +1-1S n -1=22S n +1,则S n +1-1 ≤22α+1S n -1 =45S n -1 ,所以∑nk =1S k -1 ≤541-45 n <54,故D 正确.故选:ACD .三、填空题:本题共3小题,每小题5分,共15分.12在(1+ax )n (其中n ∈N *,a ≠0)的展开式中,x 的系数为-10,各项系数之和为-1,则n =.【答案】5【解析】由题意得(1+ax )n 的展开式中x 的系数为aC 1n =-10,即an =-10,令x =1,得各项系数之和为(1+a )n =-1,则n 为奇数,且1+a =-1,即得a =-2,n =5,故答案为:513已知椭圆C :x 2a 2+y 2b2=1a >b >0 的左、右焦点分别F 1,F 2,椭圆的长轴长为22,短轴长为2,P 为直线x =2b 上的任意一点,则∠F 1PF 2的最大值为.【答案】π6【解析】由题意有a =2,b =1,c =1,设直线x =2与x 轴的交点为Q ,设PQ =t ,有tan ∠PF 1Q =PQ F 1Q=t3,tan ∠PF 2Q =PQ F 2Q=t ,可得tan ∠F 1PF 2=tan ∠PF 2Q -∠PF 1Q =t -t31+t23=2t t 2+3=2t +3t ≤2t 23t =33,当且仅当t =3时取等号,可得∠F 1PF 2的最大值为π6.故答案为:π614已知四棱锥P -ABCD 的底面为矩形,AB =23,BC =4,侧面P AB 为正三角形且垂直于底面ABCD ,M 为四棱锥P -ABCD 内切球表面上一点,则点M 到直线CD 距离的最小值为.【答案】10-1【解析】如图,设四棱锥的内切球的半径为r ,取AB 的中点为H ,CD 的中点为N ,连接PH ,PN ,HN ,球O为四棱锥P-ABCD的内切球,底面ABCD为矩形,侧面P AB为正三角形且垂直于底面ABCD,则平面PHN截四棱锥P-ABCD的内切球O所得的截面为大圆,此圆为△PHN的内切圆,半径为r,与HN,PH分别相切于点E,F,平面P AB⊥平面ABCD,交线为AB,PH⊂平面P AB,△P AB为正三角形,有PH⊥AB,∴PH⊥平面ABCD,HN⊂平面ABCD,∴PH⊥HN,AB=23,BC=4,则有PH=3,HN=4,PN=5,则△PHN中,S△PHN=12×3×4=12r3+4+5,解得r=1.所以,四棱锥P-ABCD内切球半径为1,连接ON.∵PH⊥平面ABCD,CD⊂平面ABCD,∴CD⊥PH,又CD⊥HN,PH,HN⊂平面PHN,PH∩HN=H,∴CD⊥平面PHN,∵ON⊂平面PHN,可得ON⊥CD,所以内切球表面上一点M到直线CD的距离的最小值即为线段ON的长减去球的半径,又ON=OE2+EN2=10.所以四棱锥P-ABCD内切球表面上的一点M到直线CD的距离的最小值为10-1.故答案为:10-12024届高三二轮复习“8+3+3”小题强化训练(4)一、选择题:本题共8小题,每小题5分,共40分.在每小题给出的四个选项中,只有一项是符合题目要求的.1已知双曲线的标准方程为x 2k -4+y 2k -5=1,则该双曲线的焦距是()A.1B.3C.2D.4【答案】C【解析】由双曲线方程可知a 2=k -4,b 2=5-k ,所以c 2=k -4+5-k =1,c =1,2c =2.故选:C2在等比数列a n 中,a 1+a x =82,a 3a x -2=81,前x 项和S x =121,则此数列的项数x 等于()A.4B.5C.6D.7【答案】B【解析】由已知条件可得a 1+a x =82a 3a x -2=a 1a x =81,解得a 1=1a x =81 或a 1=81a x =1 .设等比数列a n 的公比为q .①当a 1=1,a x =81时,由S x =a 1-a x q 1-q =1-81q1-q=121,解得q =3,∵a x =a 1q x -1=3x -1=81,解得x =5;②当a 1=81,a x =1时,由S x =a 1-a x q 1-q =81-q 1-q =121,解得q =13,∵a x =a 1q x -1=81×13x -1=35-x =1,解得x =5.综上所述,x =5.故选:B .3对任意实数a ,b ,c ,在下列命题中,真命题是()A.“ac 2>bc 2”是“a >b ”的必要条件B.“ac 2=bc 2”是“a =b ”的必要条件C.“ac 2=bc 2”是“a =b ”的充分条件D.“ac 2≥bc 2”是“a ≥b ”的充分条件【答案】B【解析】对于A ,若c =0,则由a >b ⇏ac 2>bc 2,∴“ac 2>bc 2”不是“a >b ”的必要条件,A 错.对于B ,a =b ⇒ac 2=bc 2,∴“ac 2=bc 2”是“a =b ”的必要条件,B 对,对于C ,若c =0,则由ac 2=bc 2,推不出a =b ,“ac 2=bc 2”不是“a =b ”的充分条件对于D ,当c =0时,ac 2=bc 2,即ac 2≥bc 2成立,此时不一定有a ≥b 成立,故“ac 2≥bc 2”不是“a ≥b ”的充分条件,D 错误,故选:B .4已知m 、n 是两条不同直线,α、β、γ是三个不同平面,则下列命题中正确的是()A.若m ∥α,n ∥α,则m ∥nB.若α⊥β,β⊥γ,则α∥βC.若m ∥α,m ∥β,则α∥βD.若m ⊥α,n ⊥α,则m ∥n【答案】D【解析】A选项:令平面ABCD为平面α,A1B1为直线m,B1C1为直线n,有:m∥α,n∥α,但m∩n=B1,A错误;B选项:令平面ABCD为平面β,令平面B1BCC1为平面α,令平面A1ABB1为平面γ,有:α⊥β,β⊥γ,而α⊥β,B错误;C选项:令平面ABCD为平面α,令平面A1ABB1为平面β,C1D1为直线m,有:m∥α,m∥β,则α∥β,而α⊥β,C错误;D选项:垂直与同一平面的两直线一定平行,D正确.故选:D5将甲、乙等8名同学分配到3个体育场馆进行冬奥会志愿服务,每个场馆不能少于2人,则不同的安排方法有()A.2720B.3160C.3000D.2940【答案】D【解析】共有两种分配方式,一种是4:2:2,一种是3:3:2,故不同的安排方法有C48C24C222!+C38C35C222!A33=2940.故选:D6若抛物线y2=4x与椭圆E:x2a2+y2a2-1=1的交点在x轴上的射影恰好是E的焦点,则E的离心率为()A.2-12 B.3-12 C.2-1 D.3-1【答案】C【解析】不妨设椭圆与抛物线在第一象限的交点为A,椭圆E右焦点为F,则根据题意得AF⊥x轴,c2=a2-a2-1=1,则c=1,则F1,0,当x=1时,y2=4×1,则y A=2,则A1,2,代入椭圆方程得12a2+22a2-1=1,结合a2-1>0,不妨令a>0;解得a=2+1,则其离心率e=ca=12+1=2-1,故选:C.7已知等边△ABC 的边长为3,P 为△ABC 所在平面内的动点,且|P A |=1,则PB ⋅PC 的取值范围是()A.-32,92B.-12,112C.[1,4]D.[1,7]【答案】B【解析】如下图构建平面直角坐标系,且A -32,0 ,B 32,0 ,C 0,32,所以P (x ,y )在以A 为圆心,1为半径的圆上,即轨迹方程为x +322+y 2=1,而PB =32-x ,-y ,PC =-x ,32-y ,故PB ⋅PC =x 2-32x +y 2-32y =x -34 2+y -34 2-34,综上,只需求出定点34,34 与圆x +322+y 2=1上点距离平方范围即可,而圆心A 与34,34 的距离d =34+32 2+34 2=32,故定点34,34与圆上点的距离范围为12,52,所以PB ⋅PC ∈-12,112.故选:B 8设a 、b 、c ∈0,1 满足a =sin b ,b =cos c ,c =tan a ,则()A.a +c <2b ,ac <b 2B.a +c <2b ,ac >b 2C.a +c >2b ,ac <b 2D.a +c >2b ,ac >b 2【答案】A【解析】∵a 、b 、c ∈0,1 且a =sin b ,b =cos c ,c =tan a ,则c =tan a =tan sin b ,先比较a +c =sin b +tan sin b 与2b 的大小关系,构造函数f x =sin x +tan sin x -2x ,其中0<x <1,则0<sin x <1,所以,cos1<cos sin x <1,则f x =cos x +cos xcos 2sin x -2=cos x -2 cos 2sin x +cos x cos 2sin x,令g x =cos x -1-12x 2 ,其中x ∈0,1 ,则g x =x -sin x ,令p x =x -sin x ,其中0<x <1,所以,p x =1-cos x >0,所以,函数g x 在0,1 上单调递增,故g x >g 0 =0,所以,函数g x 在0,1 上单调递增,则g x =cos x -1-12x 2 >0,即cos x >1-12x 2,因为x ∈0,1 ,则0<sin x <sin1,所以,cos sin x >1-12sin 2x =1-121-cos 2x =121+cos 2x ,所以,cos 2sin x >141+cos 2x 2,因为cos x -2<0,所以,cos x -2 cos 2sin x +cos x <14cos x -2 1+cos 2x 2+cos x=14cos 5x -2cos 4x +2cos 3x -4cos 2x +5cos x -2 =14cos x -1 3cos 2x +cos x +2 <0,所以,对任意的x ∈0,1 ,f x =cos x -2 cos 2sin x +cos xcos 2sin x <0,故函数f x 在0,1 上单调递减,因为b ∈0,1 ,则f b =sin b +tan sin b -2b <f 0 =0,故a +c <2b ,由基本不等式可得0<2ac ≤a +c <2b (a ≠c ,故取不了等号),所以,ac <b 2,故选:A .二、选择题:本题共3小题,每小题6分,共18分.在每小题给出的选项中,有多项符合题目要求.全部选对的得6分,部分选对的得部分分,有选错的得0分.9某大学生做社会实践调查,随机抽取6名市民对生活满意度进行评分,得到一组样本数据如下:88、89、90、90、91、92,则下列关于该样本数据的说法中正确的是()A.均值为90B.中位数为90C.方差为2D.第80百分位数为91【答案】ABD【解析】由题意可知,该组数据的均值为x =88+89+90+90+91+926=90,故A 正确;中位数为90+902=90,故B 正确;方差为s 2=1688-90 2+89-90 2+90-90 2×2+91-90 2+92-90 2 =53,故C 错误;因为6×80%=4.8,第80百分位数为91,故D 正确.故选:ABD .10设M ,N ,P 为函数f x =A sin ωx +φ 图象上三点,其中A >0,ω>0,ϕ <π2,已知M ,N 是函数f x 的图象与x 轴相邻的两个交点,P 是图象在M ,N 之间的最高点,若MP 2+2MN ⋅NP=0,△MNP 的面积是3,M 点的坐标是-12,0 ,则()A.A =2B.ω=π2C.φ=π4D.函数f x 在M ,N 间的图象上存在点Q ,使得QM ⋅QN <0【答案】BCD【解析】MP 2+2MN ⋅NP =MP 2-2NM ⋅NP =MP 2-2NM ⋅12NM =T 4 2+A 2 -T 22=A 2-3T 216=0,而S △MNP =AT 4=3,故A =3,T =4=2πω,ω=π2,A 错误、B 正确;-12⋅π2+φ=k π,φ=k π+π4(k ∈Z ),而ϕ <π2,故φ=π4,C 正确;显然,函数f x 的图象有一部分位于以MN 为直径的圆内,当Q 位于以MN 为直径的圆内时,QM⋅QN<0,D 正确,故选:BCD .11设a 为常数,f (0)=12,f (x +y )=f (x )f (a -y )+f (y )f (a -x ),则().A .f (a )=12B .f (x )=12成立C f (x +y )=2f (x )f (y )D .满足条件的f (x )不止一个【答案】ABC 【解析】f (0)=12,f (x +y )=f (x )f (a -y )+f (y )f (a -x )对A :对原式令x =y =0,则12=12f a +12f a =f a ,即f a =12,故A 正确;对B :对原式令y =0,则f x =f x f a +f 0 f a -x =12f x +12f a -x ,故f x =f a -x ,对原式令x =y ,则f 2x =f x f y +f y f x =2f x f y =2f 2x ≥0,故f x 非负;对原式令y =a -x ,则f a =f 2x +f 2a -x =2f 2x =12,解得f x =±12,又f x 非负,故可得f x =12,故B 正确;对C :由B 分析可得:f x +y =2f x f y ,故C 正确;对D :由B 分析可得:满足条件的f x 只有一个,故D 错误.故选:ABC .三、填空题:本题共3小题,每小题5分,共15分.12在复平面内,复数z =-12+32i 对应的向量为OA ,复数z +1对应的向量为OB ,那么向量AB 对应的复数是.。
高三数学题限时练习题

高三数学题限时练习题第一题:已知函数f(f)=ff^2+ff+f,其中f,f,f为常数,且f≠0。
已知当f=2时,f(f)=3;当f=1时,f(f)=1。
请回答以下问题:1. 根据已知条件,列出函数f(f)的方程式。
2. 求函数f(f)的导函数f′(f)。
3. 若函数f(f)的极值点为f=−1,求函数f(f)在f=−1处的极值。
解答:1. 假设函数f(f)的方程式为f(f)=ff^2+ff+f。
由已知条件可以得到如下方程组:3 = 4f+2f+f (1)1 = f+f+f (2)解方程组 (1) 和 (2),可以得到f=1,f=-1,f=3。
因此,函数f(f)的方程式为f(f)=f^2−f+3。
2. 函数f(f)的导函数f′(f)可以通过求函数f(f)的变化率来得到。
根据导数的定义,有:f′(f) = lim(f→0) (f(f+f)−f(f))/f对函数f(f)=f^2−f+3进行求导,得到:f′(f) = 2f−1所以,函数f(f)的导函数f′(f)为2f−1。
3. 函数f(f)的极值点为f=−1,可以通过求导数为0的点来求得。
令f′(f)=0,有:2f−1 = 0解方程得到f = 1/2。
即函数f(f)在f=−1处的极值为f=1/2。
第二题:已知函数f(f)=f^3+ff^2+ff+f,其中f,f,f为常数。
请回答以下问题:1. 当f=2时,f(f)=1;当f=1时,f′(f)=2。
根据已知条件,列出函数f(f)的方程式以及函数f(f)的导函数f′(f)的方程式。
2. 求函数f(f)的导函数f′(f)的导函数f′′(f)。
3. 若函数f(f)的极值点为f=−1,求函数f(f)在f=−1处的极值。
解答:1. 假设函数f(f)的方程式为f(f)=f^3+ff^2+ff+f。
根据已知条件可以得到如下方程组:1=8+4f+2f+f (1)2=3+2f+f (2)解方程组 (1) 和 (2),可以得到f=-2,f=3,f=-4。
2021-2022年高三12月份限时训练数学理含答案

2021-2022年高三12月份限时训练数学理含答案一、选择题:每小题5分,共60分.在给出的四个选项中,只有一项是符合要求的.1.若,则= A. B. C. D.2.已知集合,,则A. B. C. D.3.已知向量, ,如果向量与垂直,则的值为A. B. C. D.4.函数的图像为5.如果若干个函数的图象经过平移后能够重合,则称这些函数为“同簇函数”.给出下列函数:①; ②;③; ④.其中“同簇函数”的是 A.①② B.①④ C.②③ D.③④6.若数列的前项和,则数列的通项公式A. B. C. D.7.已知命题;命题,则下列命题中为真命题的是A. B. C. D.8.已知,满足约束条件13(3)x x y y a x ≥⎧⎪+≤⎨⎪≥-⎩,若的最小值为,则A. B.C. D. 9.在中,角的对边分别为,且22cos cos sin()sin 2A B B A B B --- .则 A . B . C . D .10.函数是上的奇函数,1212()[()()]0x x f x f x --<,则的解集是 A . B.C. D.11. 等比数列中,,,128()()()()f x x x a x a x a =--⋅⋅⋅-,为函数的导函数,则( )A .0B .C .D .12.空间中,、、是三条不同的直线,、、是三个不同的平面,则下列结论错误的是A.若则B.若则C.若,则D.若,,,,,m l n l m l n αββγγα===⊥⊥则二、填空题:本大题共4小题,每小题4分,共16分.把答案填在答题卡中相应题的横线上.13.= .14.已知圆锥的母线长为5cm ,侧面积为15πcm 2,则此圆锥的体积为 cm 3.15.在中,,,,则 .16.已知命题p :x 2+2x -3>0;命题q :,若“非q 且p ”为真,则x 的取值范围是____________________.三、解答题:本大题共6小题,共74分. 把解答写在答题卡中.解答应写出文字说明,证明过程或演算步骤.17.记函数的定义域为集合,函数的定义域为集合.(1)求和;(2)若A C p x x C ⊆<+=},04|{,求实数的取值范围.18.(本小题满分12分)已知(2cos ,2sin )(cos ,sin )a b ααββ==,,. (Ⅰ)若,求的值;(Ⅱ)设,若,求的值.19.(本小题满分12分)已知函数和的图象关于轴对称,且.(Ⅰ)求函数的解析式;(Ⅱ)解不等式20. (本小题满分12分)已知数列{a n }中,a 1=1,a n+1=a n +2n +1,且n ∈N *。
高三数学限时训练7 有答案

高三数学限时训练71.已知tan (α+β)=25,tan (β-π4)=14,则tan (α+π4)=( ).A .16B .1322C .322D .1318答案:C2.已知sin (30°+α)=35,60°<α<150°,则cos α的值是( ).A .B .C D 答案:D3.设函数211log (2),1,()2,1,x x x f x x -+-<⎧=⎨≥⎩,2(2)(log 12)f f -+= ( )A .3B .6C .9D .12答案:C3)22(log 1)2(2=++=-f ,又112log 2>,所以62)12(log 112log 22==-f ,故2(2)(log 12)f f -+=94.若e c b a 4ln ,5ln 2ln ,10ln =⋅==,则c b a ,,的大小关系是A. b a c <<B.c b a <<C. a b c <<D.c a b <<答案:D解:a c =>=210ln 24ln ,而22245ln 2ln 44)5ln 2(ln b a =>+=,且0,0>>b a , 故c a b <<5.若1sin()63πα-=,则2cos(2)3πα+=( ) A.79- B.13- C.79 D.13答案:A6. 函数()2sin cos f x x x x =⋅的最小正周期为( ) A. 4 B. 2C. 2πD. π【答案】D【解析】【分析】化简可得π()sin(2)3f x x =-,可求最小正周期.【详解】()22313sin cos 3cos sin 2(2cos 1)222f x x x x x x =⋅-+=--13πsin 2cos2sin(2)223x x x =-=-, 函数()f x 的最小正周期为2ππ2=. 故选:D.7.若340tan 140sin =- λ,则实数λ的值为A. 2-B. 2 C, 3 D.4 答案:D440cos 40sin 100sin 240cos 40sin 40cos 340sin 40sin 340tan ==+=+=λ8. 已知函数()()()44cos sin (0,0π)f x x x ωϕωϕωϕ=+-+><<的部分图象如图所示,则函数的解析式是( ) A. )64sin()(π-=x x f B. )654sin()(π+=x x f B. )654cos()(π+=x x f D.)64cos()(π-=x x f答案:C 解)(sin )(cos )(44ϕωϕω+-+=x x x f )](sin )([cos )](sin )([cos 2222ϕωϕωϕωϕω+-+⋅+++=x x x x )(2cos ϕω+=x又5πππ21264T =-=,所以2222=∴=ωπωπ,,则)24cos()(ϕ+=x x f , 点),(06π在递增曲线上得,6523232,0)264cos(πϕπϕπϕπ=⇒=+∴=+⨯所以)654cos()(π+=x x f ,答案C 9.德国著名数学家狄利克雷在数学领域成就显著,是解析数论的创始人之一,以其名命名的函数⎩⎨⎧=为无理数,为有理数x x x f 0,1)(称为狄利克雷函数,则关于)(x f ,下列说法正确的是( )A.1))((,=∈∀x f f R xB.函数)(x f 是偶函数C.任意一个非零有理数T ,)()(x f T x f =+ 对任意R x ∈恒成立D.存在三个点112233(,()),(,()),(,())A x f x B x f x C x f x ,使得ABC ∆为等腰直角三角形答案:ABC解:对于A ;当x 是有理数时,1)1())((,1)(===f x f f x f ;当x 是无理数时,1)0())((,0)(===f x f f x f ;故A 正确;对于B:当x 是有理数时,x -还是有理数,1)()(1)(,1)(==-∴=-=x f x f x f x f ,;当x 是无理数时,x -还是无理数,0)()(0)(,0)(==-∴=-=x f x f x f x f ,;故B 正确对于C :由于任意R x ∈,当x 是有理数时,任意一个非零有理数T ,T x +仍为有理数,则1)()(==+x f T x f ;当x 是无理数时,任意一个非零有理数T ,T x +为无理数,则0)()(==+x f T x f ;故C 正确对于D :ABC ∆为等腰直角三角形,若直角顶点C 在直线1=y 上,则A,B 两点分别为)1,(,1,21x x )(,且21,x x 都是有理数,那么)(0,221x x C +且221x x +为无理数,与21,x x 都是有理数矛盾,若直角顶点C 在直线x 轴上,同样产生矛盾,故D 错误10.(多选)已知函数()2sin cos f x x x x =,则下列说法正确的是( ). A .()πsin 23f x x ⎛⎫=- ⎪⎝⎭B .函数()f x 的最小正周期为πC .函数()f x 的图象可由sin 2y x =的图象向右平移π6个单位长度得到D .函数()f x 的对称轴方程为()5ππZ 12x k k =+∈ 【答案】ABC【分析】化简()f x 的解析式,根据三角函数的最小正周期、图象变换、对称轴等知识对选11.【2013年课标1,理15】设当x=θ时,函数f(x)=sin x-2cos x取得最大值,则cosθ=______【答案】12.若函数()6,2,3log,2,ax xf xx x-+≤⎧=⎨+>⎩(0a>且1a≠)的值域是[)4,+∞,则实数a的取值范围是.13.(10分)已知函数f(x)=4cos ωx·sin(ωx+π4)(ω>0)的最小正周期为π.(1)求ω的值;(2)求f (x )在区间[0,π2]上的单调性.17.(1)f (x )=4cos ωx ·sin (ωx +π4)=ωx ·cos ωx +2 ωx (1分)(sin 2ωx +cos 2ωx )2分)=2sin (2ωx +π4)4分) 因为f (x )的最小正周期为π,且ω>0,从而有2π2=π,故ω=1.(5分)(2)由(1)知f (x )=2sin (2x +π4)0≤x ≤π2,则π4≤2x +π4≤5π4.(6分) 当π4≤2x +π4≤π2,即0≤x ≤π8时,f (x )单调递增; (7分) 当π2<2x +π4≤5π4,即π8<x ≤π2时,f (x )单调递减.(8分) 综上可知,f (x )在区间[0,π8]上单调递增,在区间(π8,π2]上单调递减.(10分)14.(10分)已知函数f (x )=4tan x sin (π2-x )cos (x -π3) (1)求f (x )的定义域与最小正周期; (2)讨论f (x )在区间[-π4,π4]上的单调性. 19. (1)f (x )的定义域为{x ∣x ≠π2+π,Z }.(1分)f (x )=4tan x sin (π2-x )cos (x -π3)4sin x cos (x -π3)=4sin x (12cos x +sin x )2sin x cos x +2 x=sin 2x 2x =2sin (2x -π3).(4分)所以f (x )的最小正周期T =2π2=π. (5分) (2)令z =2x -π3,函数y =2sin z 的单调递增区间是[-π2+2π,π2+2π],Z . 由-π2+2π≤2x -π3≤π2+2π,(6分)得-π12+π≤ x ≤5π12+π,Z . (7分)设A =[-π4,π4],B ={x ∣-π12+π≤x ≤5π12+π,Z },易知A ∩B =[-π12,π4](8分)所以,当x[-π4,π4]时,f (x )在区间[-π12,π4]上单调递增,(9分)在区间[-π4,-π12]上单调递减.(10分)。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
高三数学限时训练(十九)
一.填空题(本大题共14小题,每题5分,满分70分)
1.已知集合2112
{|lg 0},{|222,}x M x x N x x Z -+===<<∈,则M N = .
2.已知等差数列{a n },其中,33,4,3
1
521==+=n a a a a 则n 的值为 _ .
3.已知函数log ()a y x
b 的图象如右图所示,则b a = _
4.设函数lg |2|,2
()1,2x x f x x -≠⎧=⎨=⎩,若关于x 的方程0)()(2=++c x bf x f 恰有5个
不同的实数解x 1、x 2、x 3、x 4、x 5则f(x 1+x 2+x 3+x 4+x 5)= . 5.直线Ax +By +C =0与圆x 2+y 2=4相交于两点M 、N ,若满足C 2=A 2+B 2,则OM ·ON (O 为坐标原点)= _ .
6.设椭圆的两个焦点分别为F 1、、F 2,过F 2作椭圆长轴的垂线交椭圆于点P ,若△F 1PF 2为等腰直角三角形,则椭圆的离心率是 .
7.已知α,β均为锐角,且2
1sin sin -=-βα,1
cos cos 3αβ-=,则cos()αβ-= _ .
8.已知变量x 、y 满足条件6200x y x y x y +≤⎧⎪-≤⎪
⎨≥⎪⎪≥⎩,若目标函数z ax y =+ (其中0a >),仅
在(4,2)处取得最大值,则a 的取值范围是 .
9.在△ABC 中,若a =7,b =8,13
cos 14
C =,则最大内角的余弦值为 .
10.一个几何体的三视图中,正视图和侧视图都是矩形,俯视图是等腰直角三角形(如图),根据图中标注的长度,可以计算出该几何体的表面积是 .
第10题
11.已知双曲线2
2
12
y x -=的焦点为F 1、F 2,点M 在双曲线上且120,MF MF ⋅=则点M 到x 轴的距离为 .
12.设()y f x =是定义在R 上的函数,给定下列三个条件:①()y f x =是偶函数;②()y f x =的图象关于直线1x =对称;③2T =为()y f x =的一个周期.如果将上面①、②、③中的任意两个作为条件,余下一个作为结论,那么构成的三个命题中真命题的个数有 个.
13.在△ABC 中,1=BC ,2=AB ,1
cos 4
B =,则sin(2)A B +的值为 .
14.对于函数⎩⎨⎧>≤=.cos sin ,cos ;
cos sin ,sin )(x x x x x x x f 给出下列四个命题:
①该函数是以π为最小正周期的周期函数;
②当且仅当x k ππ=+()k Z ∈时,该函数取得最小值-1; ③该函数的图象关于ππ
k x 24
5+=()k Z ∈对称; ④当且仅当ππ
πk x k 22
2+<
<()k Z ∈时,.2
2)(0≤
<x f 其中正确合题的序号是 (请将所有正确命题的序号都.填上).
二.解答题(本大题有2个题,每小题15分,共30分) 15.(本大题满分15分)
已知△ABC 的面积S 满足3≤S ≤33且BC AB BC AB 与,6=⋅的夹角为α. (Ⅰ)求α的取值范围;
(Ⅱ)求ααααα22cos 3cos sin 2sin )(++=f 的最小值.
16.(本大题满分15分)
如图,在平面直角坐标系xOy中,平行于x轴且过点A(33,2)的入射光线
l1被直线l:y=
3
3x反射.反射光线l2交y轴于B点,圆C过点A且与l1, l2都相
切.
(1)求l2所在直线的方程和圆C的方程;
(2)设P,Q分别是直线l和圆C上的动点,求PB+PQ的最小值及此时点P的坐标.
限时训练(十九)答案
一.填空题
1.{}1- 2.50 3.27 4.3lg2 5.-2 61 7.59
72
8.a>1
9.7
1
-
10.12+42 11 12.3 13.16153 14.③④
二.解答题
15.解:(Ⅰ)由题意知6cos ||||=⋅=⋅αBC AB BC AB
α
cos 6
||||=⋅BC AB ααα
ααπtan 3sin cos 621sin ||||21)sin(||||21=⨯⨯=⋅=-⋅=
BC AB BC AB S 333≤≤S
3tan 133tan 33≤≤≤≤∴αα即BC AB 与是α 的夹角 ],0[πα∈∴
]3
,4[π
πα∈∴. (Ⅱ)=++=++=ααααααα222cos 22sin 1cos 2cos sin 2sin )(f
)4
2(222cos 2sin 22π
ααα++=++
]3,4[ππα∈
)(3
12114
2απ
αππ
αf 时即当当==
+
∴有最小值为233+. 16.解:(1)直线1l :y=2,设1l 交l 于点D ,则D (23,2) ∵l 的倾斜角为30° ∴2l 倾斜角为60°
∴32=k ∴反射光线2l 所在的直线方程为y —2=)32(3-x 即043=--y x
已知圆C 与1l 切于点A ,设C (a ,b ) ∵圆心C 在过点D 且与l 垂直的直线上 ∴83+-=a b ……① 又圆心在过A 且与1l 垂直的直线上 ∴33=a ……② 由①②得 33=a 1-=b 圆C 的半径r=3
故所求圆的方程为9)1()33(22=++-y x . (2)设点B (0,—4)关于l 的对称点B '(00,y x ) 则
233240
0x y ⋅=-,且340
-=+x y ∴B '(—23,2)
固定点Q 可发现,当B '、P 、Q 共线时,PB+PQ 最小 故PB+PQ 的最小值为B 'C —3
∴PB+PQ 的最小值B 'C —3=221—3.。