中考数学一次函数试题分类汇编
专题11一次函数与几何压轴问题(优选真题44道)三年(20212023)中考数学真题分项汇编【全国通

三年(2021-2023)中考数学真题分项汇编【全国通用】专题11一次函数与几何压轴问题(优选真题44道)一.选择题(共10小题)1.(2013•百色)如图,在平面直角坐标系中,直线l:y=√33x+1交x轴于点A,交y轴于点B,点A1、A2、A3,…在x轴上,点B1、B2、B3,…在直线l上.若△OB1A1,△A1B2A2,△A2B3A3,…均为等边三角形,则△A5B6A6的周长是()A.24√3B.48√3C.96√3D.192√32.(2021•扬州)如图,一次函数y=x+√2的图象与x轴、y轴分别交于点A,B,把直线AB绕点B顺时针旋转30°交x轴于点C,则线段AC长为()A.√6+√2B.3√2C.2+√3D.√3+√23.(2023•荆州)如图,直线y=−32x+3分别与x轴,y轴交于点A,B,将△OAB绕着点A顺时针旋转90°得到△CAD,则点B的对应点D的坐标是()A .(2,5)B .(3,5)C .(5,2)D .(√13,2)4.(2022•聊城)如图,一次函数y =x +4的图象与x 轴,y 轴分别交于点A ,B ,点C (﹣2,0)是x 轴上一点,点E ,F 分别为直线y =x +4和y 轴上的两个动点,当△CEF 周长最小时,点E ,F 的坐标分别为( )A .E (−52,32),F (0,2)B .E (﹣2,2),F (0,2)C .E (−52,32),F (0,23)D .E (﹣2,2),F (0,23) 5.(2022•巴中)在平面直角坐标系中,直线y =−√3x +√3与x 轴交于点A ,与y 轴交于点B ,将△AOB 绕O 点逆时针旋转到如图△A ′OB ′的位置,A 的对应点A ′恰好落在直线AB 上,连接BB ′,则BB ′的长度为( )A .√32B .√3C .2D .3√326.(2022•阜新)如图,平面直角坐标系中,在直线y =x +1和x 轴之间由小到大依次画出若干个等腰直角三角形(图中所示的阴影部分),其中一条直角边在x 轴上,另一条直角边与x 轴垂直,则第100个等腰直角三角形的面积是( )A .298B .299C .2197D .21987.(2021•安顺)小星在“趣味数学”社团活动中探究了直线交点个数的问题.现有7条不同的直线y=k n x+b n (n=1,2,3,4,5,6,7),其中k1=k2,b3=b4=b5,则他探究这7条直线的交点个数最多是()A.17个B.18个C.19个D.21个8.(2022•鄂州)数形结合是解决数学问题常用的思想方法.如图,一次函数y=kx+b(k、b为常数,且k<0)的图象与直线y=13x都经过点A(3,1),当kx+b<13x时,根据图象可知,x的取值范围是()A.x>3B.x<3C.x<1D.x>19.(2022•柳州)如图,直线y1=x+3分别与x轴、y轴交于点A和点C,直线y2=﹣x+3分别与x轴、y轴交于点B和点C,点P(m,2)是△ABC内部(包括边上)的一点,则m的最大值与最小值之差为()A.1B.2C.4D.610.(2021•呼和浩特)在平面直角坐标系中,点A(3,0),B(0,4).以AB为一边在第一象限作正方形ABCD,则对角线BD所在直线的解析式为()A.y=−17x+4B.y=−14x+4C.y=−12x+4D.y=4二.填空题(共16小题)11.(2023•黑龙江)如图,在平面直角坐标系中,△ABC的顶点A在直线l1:y=√33x上,顶点B在x轴上,AB垂直x轴,且OB=2√2,顶点C在直线l2:y=√3x上,BC⊥l2;过点A作直线l2的垂线,垂足为C1,交x轴于B1,过点B1作A1B1垂直x轴,交l1于点A1,连接A1C1,得到第一个△A1B1C1;过点A1作直线l2的垂线,垂足为C2,交x轴于B2,过点B2作A2B2垂直x轴,交l1于点A2,连接A2C2,得到第二个△A2B2C2;如此下去,…,则△A2023B2023C2023的面积是.12.(2023•杭州)在“探索一次函数y=kx+b的系数k,b与图象的关系”活动中,老师给出了直角坐标系中的三个点:A(0,2),B(2,3),C(3,1).同学们画出了经过这三个点中每两个点的一次函数的图象,并得到对应的函数表达式y1=k1x+b1,y2=k2x+b2,y3=k3x+b3.分别计算k1+b1,k2+b2,k3+b3的值,其中最大的值等于.13.(2023•眉山)如图,在平面直角坐标系xOy中,点B的坐标为(﹣8,6),过点B分别作x轴,y轴的垂线,垂足分别为点C,点A,直线y=﹣2x﹣6与AB交于点D,与y轴交于点E,动点M在线段BC 上,动点N在直线y=﹣2x﹣6上,若△AMN是以点N为直角顶点的等腰直角三角形,则点M的坐标为.14.(2023•广安)在平面直角坐标系中,点A1、A2、A3、A4…在x轴的正半轴上,点B1、B2、B3…在直线y=√33x(x≥0)上,若点A1的坐标为(2,0),且△A1B1A2、△A2B2A3、△A3B3A4…均为等边三角形,则点B2023的纵坐标为.15.(2023•南充)如图,直线y=kx﹣2k+3(k为常数,k<0)与x,y轴分别交于点A,B,则2OA +3 OB的值是.16.(2022•遵义)如图,在等腰直角三角形ABC中,∠BAC=90°,点M,N分别为BC,AC上的动点,且AN=CM,AB=√2.当AM+BN的值最小时,CM的长为.17.(2022•菏泽)如图,在第一象限内的直线l:y=√3x上取点A1,使OA1=1,以OA1为边作等边△OA1B1,交x轴于点B1;过点B1作x轴的垂线交直线l于点A2,以OA2为边作等边△OA2B2,交x轴于点B2;过点B2作x轴的垂线交直线l于点A3,以OA3为边作等边△OA3B3,交x轴于点B3;……,依次类推,则点A2022的横坐标为.18.(2022•东营)如图,△AB1A1,△A1B2A2,△A2B3A3,…是等边三角形,直线y=√33x+2经过它们的顶点A,A1,A2,A3,…,点B1,B2,B3,…在x轴上,则点A2022的横坐标是.19.(2022•盐城)《庄子•天下篇》记载“一尺之棰,日取其半,万世不竭”.如图,直线l1:y=12x+1与y轴交于点A,过点A作x轴的平行线交直线l2:y=x于点O1,过点O1作y轴的平行线交直线l1于点A1,以此类推,令OA=a1,O1A1=a2,…,O n﹣1A n﹣1=a n,若a1+a2+…+a n≤S对任意大于1的整数n恒成立,则S的最小值为.20.(2022•辽宁)如图,直线y=2x+4与x轴交于点A,与y轴交于点B,点D为OB的中点,▱OCDE的顶点C在x轴上,顶点E在直线AB上,则▱OCDE的面积为.21.(2021•泰安)如图,点B1在直线l:y=12x上,点B1的横坐标为2,过点B1作B1A1⊥l,交x轴于点A1,以A1B1为边,向右作正方形A1B1B2C1,延长B2C1交x轴于点A2;以A2B2为边,向右作正方形A2B2B3C2,延长B3C2交x轴于点A3;以A3B3为边,向右作正方形A3B3B4C3,延长B4C3交x轴于点A4;…;照这个规律进行下去,则第n个正方形A n B n B n+1∁n的边长为(结果用含正整数n的代数式表示).22.(2021•贺州)如图,一次函数y=x+4与坐标轴分别交于A,B两点,点P,C分别是线段AB,OB上的点,且∠OPC=45°,PC=PO,则点P的坐标为.23.(2021•兴安盟)如图,点B1在直线l:y=12x上,点B1的横坐标为1,过点B1作B1A1⊥x轴,垂足为A1,以A1B1为边向右作正方形A1B1C1A2,延长A2C1交直线l于点B2;以A2B2为边向右作正方形A2B2C2A3,延长A3C2交直线l于点B3;…;按照这个规律进行下去,点B2021的坐标为.24.(2021•梧州)如图,直线l的函数表达式为y=x﹣1,在直线l上顺次取点A1(2,1),A2(3,2),A3(4,3),A4(5,4),…,A n(n+1,n),构成形如“”的图形的阴影部分面积分别表示为S1,S2,S3,…,S n,则S2021=.25.(2021•毕节市)如图,在平面直角坐标系中,点N1(1,1)在直线l:y=x上,过点N1作N1M1⊥l,交x轴于点M1;过点M1作M1N2⊥x轴,交直线于N2;过点N2作N2M2⊥l,交x轴于点M2;过点M2作M2N3⊥x轴,交直线l于点N3;…,按此作法进行下去,则点M2021的坐标为.26.(2021•广安)如图,在平面直角坐标系中,AB⊥y轴,垂足为B,将△ABO绕点A逆时针旋转到△AB1O1的位置,使点B的对应点B1落在直线y=−34x上,再将△AB1O1绕点B1逆时针旋转到△A1B1O2的位置,使点O1的对应点O2也落在直线y=−34x上,以此进行下去…若点B的坐标为(0,3),则点B21的纵坐标为.三.解答题(共18小题)27.(2023•黑龙江)如图,在平面直角坐标系中,菱形AOCB的边OC在x轴上,∠AOC=60°,OC的长是一元二次方程x2﹣4x﹣12=0的根,过点C作x轴的垂线,交对角线OB于点D,直线AD分别交x轴和y轴于点F和点E,动点M从点O以每秒1个单位长度的速度沿OD向终点D运动,动点N从点F 以每秒2个单位长度的速度沿FE向终点E运动.两点同时出发,设运动时间为t秒.(1)求直线AD的解析式;(2)连接MN,求△MDN的面积S与运动时间t的函数关系式;(3)点N在运动的过程中,在坐标平面内是否存在一点Q,使得以A,C,N,Q为顶点的四边形是矩形.若存在,直接写出点Q的坐标,若不存在,说明理由.28.(2023•鄂州)如图1,在平面直角坐标系中,直线l⊥y轴,交y轴的正半轴于点A,且OA=2,点B 是y轴右侧直线l上的一动点,连接OB.(1)请直接写出点A的坐标;(2)如图2,若动点B满足∠ABO=30°,点C为AB的中点,D点为线段OB上一动点,连接CD.在平面内,将△BCD沿CD翻折,点B的对应点为点P,CP与OB相交于点Q,当CP⊥AB时,求线段DQ的长;(3)如图3,若动点B满足ABOA=2,EF为△OAB的中位线,将△BEF绕点B在平面内逆时针旋转,当点O、E、F三点共线时,求直线EB与x轴交点的坐标;(4)如图4,OC平分∠AOB交AB于点C,AD⊥OB于点D,交OC于点E,AF为△AEC的一条中线.设△ACF ,△ODE ,△OAC 的周长分别为C 1,C 2,C 3.试探究:在B 点的运动过程中,当2c 1+c 2c 3=118时,请直接写出点B 的坐标.29.(2023•广东)综合运用 如图1,在平面直角坐标系中,正方形OABC 的顶点A 在x 轴的正半轴上.如图2,将正方形OABC 绕点O 逆时针旋转,旋转角为α(0°<α<45°),AB 交直线y =x 于点E ,BC 交y 轴于点F .(1)当旋转角∠COF 为多少度时,OE =OF ;(直接写出结果,不要求写解答过程)(2)若点A (4,3),求FC 的长;(3)如图3,对角线AC 交y 轴于点M ,交直线y =x 于点N ,连接FN .将△OFN 与△OCF 的面积分别记为S 1与S 2.设S =S 1﹣S 2,AN =n ,求S 关于n 的函数表达式.30.(2023•河北)在平面直角坐标系中,设计了点的两种移动方式:从点(x ,y )移动到点 (x +2,y +1)称为一次甲方式;从点(x ,y )移动到点(x +1,y +2)称为一次乙方式.例点P 从原点O 出发连续移动2次:若都按甲方式,最终移动到点M (4,2);若都按乙方式,最终移动到点N (2,4);若按1次甲方式和1次乙方式,最终移动到点E (3,3).(1)设直线l 1经过上例中的点M 、N ,求l 1的解析式,并直接写出将l 1向上平移9个单位长度得到的直线l 2的解析式;(2)点P 从原点O 出发连续移动10次,每次移动按甲方式或乙方式,最终移动到点Q (x ,y ).其中,按甲方式移动了m 次.①用含m 的式子分别表示x ,y ;②请说明:无论m 怎样变化,点Q 都在一条确定的直线上.设这条直线为l 3,在图中直接画出l 3的图象;(3)在(1)和(2)中的直线l 1,l 2,l 3上分别有一个动点A ,B ,C ,横坐标依次为a ,b ,c ,若A ,B ,C 三点始终在一条直线上,直接写出此时a ,b ,c 之间的关系式.31.(2022•黑龙江)如图,直线MN与x轴,y轴分别相交于A,C两点,分别过A,C两点作x轴,y轴的垂线相交于B点,且OA,OC(OA>OC)的长分别是一元二次方程x2﹣14x+48=0的两个实数根.(1)求C点坐标;(2)求直线MN的解析式;(3)在直线MN上存在点P,使以点P,B,C三点为顶点的三角形是等腰三角形,请直接写出P点的坐标.32.(2022•泰州)定义:对于一次函数y1=ax+b、y2=cx+d,我们称函数y=m(ax+b)+n(cx+d)(ma+nc ≠0)为函数y1、y2的“组合函数”.(1)若m=3,n=1,试判断函数y=5x+2是否为函数y1=x+1、y2=2x﹣1的“组合函数”,并说明理由;(2)设函数y1=x﹣p﹣2与y2=﹣x+3p的图象相交于点P.①若m+n>1,点P在函数y1、y2的“组合函数”图象的上方,求p的取值范围;②若p≠1,函数y1、y2的“组合函数”图象经过点P.是否存在大小确定的m值,对于不等于1的任意实数p,都有“组合函数”图象与x轴交点Q的位置不变?若存在,请求出m的值及此时点Q的坐标;若不存在,请说明理由.33.(2022•攀枝花)如图,直线y=34x+6分别与x轴、y轴交于点A、B,点C为线段AB上一动点(不与A、B重合),以C为顶点作∠OCD=∠OAB,射线CD交线段OB于点D,将射线OC绕点O顺时针旋转90°交射线CD于点E,连结BE.(1)证明:CDDB =ODDE;(用图1)(2)当△BDE为直角三角形时,求DE的长度;(用图2)(3)点A关于射线OC的对称点为F,求BF的最小值.(用图3)34.(2022•沈阳)如图,在平面直角坐标系中,一次函数y=kx+b的图象与x轴交于点A,与y轴交于点B (0,9),与直线OC交于点C(8,3).(1)求直线AB的函数表达式;(2)过点C作CD⊥x轴于点D,将△ACD沿射线CB平移得到的三角形记为△A′C′D′,点A,C,D的对应点分别为A′,C′,D′,若△A′C′D′与△BOC重叠部分的面积为S,平移的距离CC′=m,当点A′与点B重合时停止运动.①若直线C′D′交直线OC于点E,则线段C′E的长为(用含有m的代数式表示);②当0<m<103时,S与m的关系式为;③当S=245时,m的值为.35.(2022•兰州)在平面直角坐标系中,P(a,b)是第一象限内一点,给出如下定义:k1=ab和k2=ba两个值中的最大值叫做点P的“倾斜系数”k.(1)求点P(6,2)的“倾斜系数”k的值;(2)①若点P(a,b)的“倾斜系数”k=2,请写出a和b的数量关系,并说明理由;②若点P(a,b)的“倾斜系数”k=2,且a+b=3,求OP的长;(3)如图,边长为2的正方形ABCD沿直线AC:y=x运动,P(a,b)是正方形ABCD上任意一点,且点P的“倾斜系数”k<√3,请直接写出a的取值范围.36.(2022•河北)如图,平面直角坐标系中,线段AB的端点为A(﹣8,19),B(6,5).(1)求AB所在直线的解析式;(2)某同学设计了一个动画:在函数y=mx+n(m≠0,y≥0)中,分别输入m和n的值,使得到射线CD,其中C(c,0).当c=2时,会从C处弹出一个光点P,并沿CD飞行;当c≠2时,只发出射线而无光点弹出.①若有光点P弹出,试推算m,n应满足的数量关系;②当有光点P弹出,并击中线段AB上的整点(横、纵坐标都是整数)时,线段AB就会发光.求此时整数m的个数.37.(2021•遂宁)已知平面直角坐标系中,点P(x0,y0)和直线Ax+By+C=0(其中A,B不全为0),则点P到直线Ax+By+C=0的距离d可用公式d=00√A+B来计算.例如:求点P(1,2)到直线y=2x+1的距离,因为直线y=2x+1可化为2x﹣y+1=0,其中A=2,B=﹣1,C=1,所以点P(1,2)到直线y=2x+1的距离为:d=00√A+B =√22+(−1)2=√5=√55.根据以上材料,解答下列问题:(1)求点M(0,3)到直线y=√3x+9的距离;(2)在(1)的条件下,⊙M的半径r=4,判断⊙M与直线y=√3x+9的位置关系,若相交,设其弦长为n,求n的值;若不相交,说明理由.38.(2021•衡阳)如图,△OAB的顶点坐标分别为O(0,0),A(3,4),B(6,0),动点P、Q同时从点O出发,分别沿x轴正方向和y轴正方向运动,速度分别为每秒3个单位和每秒2个单位,点P到达点B时点P、Q同时停止运动.过点Q作MN∥OB分别交AO、AB于点M、N,连接PM、PN.设运动时间为t(秒).(1)求点M的坐标(用含t的式子表示);(2)求四边形MNBP面积的最大值或最小值;(3)是否存在这样的直线l,总能平分四边形MNBP的面积?如果存在,请求出直线l的解析式;如果不存在,请说明理由;(4)连接AP,当∠OAP=∠BPN时,求点N到OA的距离.39.(2021•黑龙江)如图,矩形ABOC在平面直角坐标系中,点A在第二象限内,点B在x轴负半轴上,点C在y轴正半轴上,OA,OB的长是关于x的一元二次方程x2﹣9x+20=0的两个根.解答下列问题:(1)求点A的坐标;(2)若直线MN分别与x轴,AB,AO,AC,y轴交于点D,M,F,N,E,S△AMN=2,tan∠AMN=1,求直线MN的解析式;(3)在(2)的条件下,点P在第二象限内,在平面内是否存在点Q,使以E,F,P,Q为顶点的四边形是正方形?若存在,请直接写出点Q的坐标;若不存在,请说明理由.40.(2021•金华)在平面直角坐标系中,点A的坐标为(−√73,0),点B在直线l:y=38x上,过点B作AB的垂线,过原点O作直线l的垂线,两垂线相交于点C.(1)如图,点B,C分别在第三、二象限内,BC与AO相交于点D.①若BA=BO,求证:CD=CO.②若∠CBO=45°,求四边形ABOC的面积.(2)是否存在点B,使得以A,B,C为顶点的三角形与△BCO相似?若存在,求OB的长;若不存在,请说明理由.41.(2021•宁夏)如图,已知直线y=kx+3与x轴的正半轴交于点A,与y轴交于点B,sin∠OAB=3 5.(1)求k的值;(2)D、E两点同时从坐标原点O出发,其中点D以每秒1个单位长度的速度,沿O→A→B的路线运动,点E以每秒2个单位长度的速度,沿O→B→A的路线运动.当D,E两点相遇时,它们都停止运动,设运动时间为t秒.①在D、E两点运动过程中,是否存在DE∥OB?若存在,求出t的值,若不存在,请说明理由;②若设△OED的面积为S,求S关于t的函数关系式,并求出t为多少时,S的值最大?42.(2021•沈阳)如图,平面直角坐标系中,O是坐标原点,直线y=kx+15(k≠0)经过点C(3,6),与x轴交于点A,与y轴交于点B.线段CD平行于x轴,交直线y=34x于点D,连接OC,AD.(1)填空:k=,点A的坐标是(,);(2)求证:四边形OADC是平行四边形;(3)动点P从点O出发,沿对角线OD以每秒1个单位长度的速度向点D运动,直到点D为止;动点Q同时从点D出发,沿对角线DO以每秒1个单位长度的速度向点O运动,直到点O为止.设两个点的运动时间均为t秒.①当t=1时,△CPQ的面积是.②当点P,Q运动至四边形CP AQ为矩形时,请直接写出此时t的值.43.(2023•大连)如图1,在平面直角坐标系xOy中,直线y=x与直线BC相交于点A.P(t,0)为线段OB上一动点(不与点B重合),过点P作PD⊥x轴交直线BC于点D,△OAB与△DPB的重叠面积为S,S关于t的函数图象如图2所示.(1)OB的长为;△OAB的面积为;(2)求S关于t的函数解析式,并直接写出自变量t的取值范围.44.(2023•北京)在平面直角坐标系xOy中,函数y=kx+b(k≠0)的图象经过点A(0,1)和B(1,2),与过点(0,4)且平行于x轴的直线交于点C.(1)求该函数的解析式及点C的坐标;(2)当x<3时,对于x的每一个值,函数y=23x+n的值大于函数y=kx+b(k≠0)的值且小于4,直接写出n的值.。
初中数学九年级专项训练中考数学试题分类汇编(一次函数的几何应用,一次函数的实际问题)

一次函数的几何应用,一次函数的实际问题一、选择5、(陕西省)如图,直线对应的函数表达式是()答案: A9、( 江苏常州 ) 甲、乙两同学骑自行车从 A 地沿同一条路到 B 地, 已知乙比甲先出发 , 他们离出发地的距离 s(km) 和骑行时间 t(h) 之间的函数关系如图所示 , 给出下列说法 : 【】(1)他们都骑行了 20km;(2)乙在途中停留了 0.5h;(3)甲、乙两人同时到达目的地 ;(4)相遇后 , 甲的速度小于乙的速度 .根据图象信息 , 以上说法正确的有A.1 个B.2 个C.3 个D.4 个答案: B10、 ( 湖北仙桃等 ) 如图,三个大小相同的正方形拼成六边形,一动点从点出发沿着→→→→ 方向匀速运动,最后到达点. 运动过程中的面积()随时间( t )变化的图象大致是()答案: B11、( 黑龙江哈尔滨 )9 .小亮每天从家去学校上学行走的路程为900 米,某天他从家去上学时以每分 30 米的速度行走了 450 米,为了不迟到他加快了速度,以每分 45 米的速度行走完剩下的路程,那么小亮行走过的路程 S(米)与他行走的时间 t (分)之间的函数关系用图象表示正确的是().答案: D12、(黑龙江)5月23日8时40分,哈尔滨铁路局一列满载着2400 吨“爱心”大米的专列向四川灾区进发,途中除 3 次因更换车头等原因必须停车外,一路快速行驶,经过 80 小时到达成都.描述上述过程的大致图象是()答案: D13、(湖北天门)均匀地向一个容器注水,最后把容器注满,在注水过程中,水面高度 h 随时间 t 的变化规律如图所示 ( 图中 OABC为一折线 ) ,这个容器的形状是图中().答案: A14、( 湖南怀化 ) 如图 1,是张老师晚上出门散步时离家的距离与时间之间的函数图象,若用黑点表示张老师家的位置,则张老师散步行走的路线可能是()答案:D15、(山东济南)济南市某储运部紧急调拨一批物资,调进物资共用 4 小时,调进物资 2 小时后开始调出物资(调进物资与调出物资的速度均保持不变). 储运部库存物资 S(吨)与时间 t (小时)之间的函数关系如图所示,这批物资从开始调进到全部调出需要的时间是()A.4 小时 B.4.4小时 C.4.8小时D.5 小时答案: B16、( 重庆 ) 如图,在直角梯形 ABCD中,DC∥AB,∠A=90°,AB=28cm,DC=24cm,AD=4cm,点 M从点 D 出发,以 1cm/s 的速度向点 C 运动,点 N 从点 B 同时出发,以 2cm/s 的速度向点 A 运动,当其中一个动点到达端点停止运动时,另一个动点2也随之停止运动 . 则四边形 AMND的面积 y(cm)与两动点运动的时间 t (s)的函数图象大致答案: D二、填空1、(江苏省南通市)将点A(, 0)绕着原点顺时针方向旋转45°角得到点B,则点 B 的坐标是 ________.答案:( 4,- 4)2、(江苏省无锡市)已知平面上四点,,,,直线将四边形分成面积相等的两部分,则的值为答案:.3、(江苏省苏州市) 6 月 1 日起,某超市开始有偿提供可重复使用的三种环保..购物袋,每只售价分别为 1 元、 2 元和 3 元,这三种环保购物袋每只最多分别能装大米 3 公斤、 5 公斤和 8 公斤. 6 月 7 日,小星和爸爸在该超市选购了 3 只环保购物袋用来装刚买的 20 公斤散装大米,他们选购的 3 只环保购物袋至少应付..给超市元.答案: 8、湖北荆门 ) 如图,l 1反映了某公司的销售收入与销量的关系, l 24 (反映了该公司产品的销售成本与销量的关系,当该公司赢利 ( 收入大于成本 )时,销售量必须 ____________.答案:大于 45、(山东烟台)如图是某工程队在“村村通”工程中,修筑的公路长度(米)与时间(天)之间的关系图象. 根据图象提供的信息,可知该公路的长度是______米.答案: 504三、解答题1、(湖北襄樊)我国是世界上严重缺水的国家之一. 为了增强居民的节水意识,某市自来水公司对居民用水采用以户为单位分段计费办法收费 . 即一月用水 10 吨以内 ( 包括 10 吨 ) 用户 , 每吨收水费 a 元 ; 一月用水超过 10 吨的用户 ,10 吨水仍按每吨 a 元水费 , 超过的部分每吨按 b 元(b>a) 收费 . 设一户居民月用水 y 元 ,y 与 x 之间的函数关系如图所示 .(1) 求 a 的值 , 若某户居民上月用水8 吨 , 应收水费多少元 ?(2)求 b 的值 , 并写出当 x 大于 10 时 ,y 与 x 之间的函数关系 ;(3)已知居民甲上月比居民乙多用水 4 吨, 两家共收水费 46元 , 求他们上月分别用水多少吨 ?解:( 1)当 x≤ 10 时,有 y=ax.将x=10,y=15代入,得a=1.5用水 8 吨应收水费 8×1.5=12 (元)(2)当 x>10 时,有(3)将 x=20,y=35 代入,得 35=10b+15. b=2(4)故当 x>10 时, y=2x- 5(5)因 1.5 ×10+1.5 ×10+2×4<46.所以甲、乙两家上月用水均超过10 吨则解之,得故居民甲上月用水16 吨,居民乙上月用水12 吨2、(湖北孝感)某股份有限公司根据公司实际情况,对本公司职工实行内部医疗公积金制度,公司规定:(一)每位职工在年初需缴纳医疗公积金m元;(二)职工个人当年治病花费的医疗费年底按表 1 的办法分段处理:表 1分段方式处理办法不超过 150 元(含 150 元)全部由个人承担超过 150 元,不超过 10000 元(不含 150个人承担n%,剩余部分由公司承担元,含 10000 元)的部分超过 10000 元(不含 10000 元)的部分全部由公司承担设一职工当年治病花费的医疗费为x 元,他个人实际承担的费用(包括医疗费个人承担的部分和缴纳的医疗公积金m元)为 y 元( 1)由表 1 可知,当时,;那么,当时,y=;(用含 m、 n、x 的方式表示)(2)该公司职工小陈和大李 2007 年治病花费的医疗费和他们个人实际承担的费用如表 2:职工治病花费的医疗费 x(元)个人实际承担的费用 y(元)小陈300280大李500320请根据表 2 中的信息,求 m、n 的值,并求出当时, y 关于 x 函数解析式;(3)该公司职工个人一年因病实际承担费用最多只需要多少元?(直接写出结果)解: 1)(2)由表2 知,小陈和大李的医疗费超过150 元而小于10000 元,因此有:( 3)个人实际承担的费用最多只需2220 元。
2023年湖南省中考数学真题分类汇编:一次函数、二次函数(含答案)

;2023年湖南省中考数学真题分类汇编:一次函数、二次函数一、选择题1.(2023·长沙)下列一次函数中,y随x的增大而减小的函数是( )A.y=2x+1B.y=x―4C.y=2x D.y=―x+1 2.(2023·邵阳)已知P1(x1,y1),P2(x2,y2)是抛物线y=a x2+4ax+3(a是常数,a≠0)上的点,现有以下四个结论:①该抛物线的对称轴是直线x=―2;②点(0,3)在抛物线上;③若x1>x2>―2,则y1>y2;④若y1=y2,则x1+x2=―2其中,正确结论的个数为( )A.1个B.2个C.3个D.4个3.(2023·株洲)如图所示,直线l为二次函数y=a x2+bx+c(a≠0)的图像的对称轴,则下列说法正确的是( )A.b恒大于0B.a,b同号C.a,b异号D.以上说法都不对4.(2023·衡阳)已知m>n>0,若关于x的方程x2+2x―3―m=0的解为x1,x2(x1<x2).关于x的方程x2+2x―3―n=0的解为x3,x4(x3<x4).则下列结论正确的是( )A.x3<x1<x2<x4B.x1<x3<x4<x2C.x1<x2<x3<x4D.x3<x4<x1<x2二、填空题5.(2023·郴州)在一次函数y=(k―2)x+3中,y随x的增大而增大,则k的值可以是 (任写一个符合条件的数即可).6.(2023·郴州)抛物线y=x2―6x+c与x轴只有一个交点,则c= .三、综合题7.(2023·常德)如图,二次函数的图象与x轴交于A(―1,0),B(5,0)两点,与y轴交于点C,顶点为D.O为坐标原点,tan∠ACO=1.5(1)求二次函数的表达式;(2)求四边形ACDB的面积;(3)P是抛物线上的一点,且在第一象限内,若∠ACO=∠PBC,求P点的坐标.8.(2023·株洲)某花店每天购进16支某种花,然后出售.如果当天售不完,那么剩下的这种花进行作废处理、该花店记录了10天该种花的日需求量n(n为正整数,单位:支),统计如下表:日需求量n131415161718天数112411(1)求该花店在这10天中出现该种花作废处理情形的天数;(2)当n<16时,日利润y(单位:元)关于n的函数表达式为:y=10n―80;当n≥16时,日利润为80元.①当n=14时,间该花店这天的利润为多少元?②求该花店这10天中日利润为70元的日需求量的频率.9.(2023·张家界)如图,在平面直角坐标系中,已知二次函数y=a x2+bx+c的图象与x轴交于点A(―2,0)和点B(6,0)两点,与y轴交于点C(0,6).点D为线段BC上的一动点.(1)求二次函数的表达式;(2)如图1,求△AOD周长的最小值;(3)如图2,过动点D作DP∥AC交抛物线第一象限部分于点P,连接PA,PB,记△PAD与△PBD的面积和为S,当S取得最大值时,求点P的坐标,并求出此时S的最大值.10.(2023·郴州)已知抛物线y=a x2+bx+4与x轴相交于点A(1,0),B(4,0),与y轴相交于点C.(1)求抛物线的表达式;的值;(2)如图1,点P是抛物线的对称轴l上的一个动点,当△PAC的周长最小时,求PAPC?若存在,求出点Q的坐(3)如图2,取线段OC的中点D,在抛物线上是否存在点Q,使tan∠QDB=12标;若不存在,请说明理由.11.(2023·邵阳)如图,在平面直角坐标系中,抛物线y=a x2+x+c经过点A(―2,0)和点B(4,0),且与直线l:y=―x―1交于D、E两点(点D在点E的右侧),点M为直线l上的一动点,设点M的横坐标为t.(1)求抛物线的解析式.(2)过点M作x轴的垂线,与拋物线交于点N.若0<t<4,求△NED面积的最大值.(3)抛物线与y轴交于点C,点R为平面直角坐标系上一点,若以B、C、M、R为顶点的四边形是菱形,请求出所有满足条件的点R的坐标.12.(2023·株洲)已知二次函数y=a x2+bx+c(a>0).(1)若a=1,c=―1,且该二次函数的图象过点(2,0),求b的值;(2)如图所示,在平面直角坐标系Oxy中,该二次函数的图象与x轴交于点A(x1,0),B(x2,0),且x1<0<x 2,点D 在⊙O 上且在第二象限内,点E 在x 轴正半轴上,连接DE ,且线段DE 交y 轴正半轴于点F ,∠DOF =∠DEO ,OF =32DF .①求证:DO EO =23.②当点E 在线段OB 上,且BE =1.⊙O 的半径长为线段OA 的长度的2倍,若4ac =―a 2―b 2,求2a +b 的值.13.(2023·岳阳)已知抛物线Q 1:y =―x 2+bx +c 与x 轴交于A(―3,0),B 两点,交y 轴于点C(0,3).(1)请求出抛物线Q 1的表达式.(2)如图1,在y 轴上有一点D(0,―1),点E 在抛物线Q 1上,点F 为坐标平面内一点,是否存在点E ,F 使得四边形DAEF 为正方形?若存在,请求出点E ,F 的坐标;若不存在,请说明理由.(3)如图2,将抛物线Q 1向右平移2个单位,得到抛物线Q 2,抛物线Q 2的顶点为K ,与x 轴正半轴交于点H ,抛物线Q 1上是否存在点P ,使得∠CPK =∠CHK ?若存在,请求出点P 的坐标;若不存在,请说明理由.14.(2023·衡阳)如图,已知抛物线y =a x 2―2ax +3与x 轴交于点A(―1,0)和点B ,与y 轴交于点C ,连接AC ,过B 、C 两点作直线.(1)求a的值.(2)将直线BC向下平移m(m>0)个单位长度,交抛物线于B′、C′两点.在直线B′C′上方的抛物线上是否存在定点D,无论m取何值时,都是点D到直线B′C′的距离最大,若存在,请求出点D的坐标;若不存在,请说明理由.(3)抛物线上是否存在点P,使∠PBC+∠ACO=45°,若存在,请求出直线BP的解析式;若不存在,请说明理由.15.(2023·怀化)如图一所示,在平面直角坐标系中,抛物线y=a x2+bx―8与x轴交于A(―4,0)、B(2,0)两点,与y轴交于点C.(1)求抛物线的函数表达式及顶点坐标;(2)点P为第三象限内抛物线上一点,作直线AC,连接PA、PC,求△PAC面积的最大值及此时点P的坐标;交抛物线于点M、N,求证:无论k为何值,平行于x轴的直线l2:y=―(3)设直线l1:y=kx+k―35437上总存在一点E,使得∠MEN为直角.4答案解析部分1.【答案】D2.【答案】B3.【答案】C4.【答案】B5.【答案】3(答案不唯一)6.【答案】97.【答案】(1)解:∵二次函数的图象与x 轴交于A(―1,0),B(5,0)两点.∴设二次函数的表达式为y =a(x +1)(x ―5)∵AO =1,tan ∠ACO =15,∴OC =5,即C 的坐标为(0,5)则5=a(0+1)(0―5),得a =―1∴二次函数的表达式为y =―(x +1)(x ―5);(2)解:y =―(x +1)(x ―5)=―(x ―2)2+9∴顶点的坐标为(2,9)过D 作DN ⊥AB 于N ,作DM ⊥OC 于M ,四边形ACDB 的面积=S △AOC +S 矩形OMDN ―S △CDM +S △DNB=12×1×5+2×9―12×2×(9―5)+12×(5―2)×9=30;(3)解:如图,P 是抛物线上的一点,且在第一象限,当∠ACO =∠PBC 时,连接PB ,过C 作CE ⊥BC 交BP 于E ,过E 作EF ⊥OC 于F ,∵OC =OB =5,则△OCB 为等腰直角三角形,∠OCB =45°.由勾股定理得:CB =52,∵∠ACO =∠PBC ,∴tan ∠ACO =tan ∠PBC ,即15=CE CB =CE 52,∴CE =2由CH ⊥BC ,得∠BCE =90°,∴∠ECF =180°―∠BCE ―∠OCB =180°―90°―45°=45°.∴△EFC 是等腰直角三角形∴FC =FE =1∴E 的坐标为(1,6)所以过B 、E 的直线的解析式为y =―32x +152令y =―32x +152y =―(x +1)(x ―5)解得x =5y =0,或x =12y =274所以BE 直线与抛物线的两个交点为B(5,0),P(12,274)即所求P 的坐标为P(12,274)8.【答案】(1)解:当n <16时,该种花需要进行作废处理,则该种花作废处理情形的天数共有:1+1+2=4(天);(2)解:①当n <16时,日利润y 关于n 的函数表达式为y =10n ―80,当n =14时,y =10×14―80=60(元);②当n <16时,日利润y 关于n 的函数表达式为y =10n ―80;当n≥16时,日利润为80元,80>70,当y=70时,70=10n―80解得:n=15,由表可知n=15的天数为2天,则该花店这10天中日利润为70元的日需求量的频率为2.9.【答案】(1)解:由题意可知,设抛物线的表达式为y=a(x+2)(x―6),将(0,6)代入上式得:6=a(0+2)(0―6),a=―1 2所以抛物线的表达式为y=―12x2+2x+6;(2)解:作点O关于直线BC的对称点E,连接EC、EB,∵B(6,0),C(0,6),∠BOC=90°,∴OB=OC=6,∵O、E关于直线BC对称,∴四边形OBEC为正方形,∴E(6,6),连接AE,交BC于点D,由对称性|DE|=|DO|,此时|DO|+|DA|有最小值为AE的长,AE=AB2+BE2=82+62=10∵△AOD的周长为DA+DO+AO,AO=2,DA+DO的最小值为10,∴△AOD的周长的最小值为10+2=12;(3)解:由已知点A(―2,0),B(6,0),C(0,6),设直线BC的表达式为y=kx+b,将B(6,0),C(0,6)代入y=kx+b中,6k+b=0b=0,解得k=―1b=6,∴直线 BC 的表达式为 y =―x +6 ,同理可得:直线 AC 的表达式为 y =3x +6 ,∵PD ∥AC ,∴设直线 PD 表达式为 y =3x +a ,由(1)设 P(m ,―12m 2+2m +6) ,代入直线 PD 的表达式得: a =―12m 2―m +6 ,∴直线 PD 的表达式为: y =3x ―12m 2―m +6 ,由 y =―x +6y =3x ―12m 2―m +6 ,得 x =18m 2+14m y =―18m 2―14m +6 ,∴D(18m 2+14m ,―18m 2―14m +6) ,∵P ,D 都在第一象限,∴S =S △PAD +S △PBD =S △PAB ―S △DAB=12|AB|[(―12m 2+2m +6)―(―18m 2―14m +6)]=12×8(―38m 2+94m)=―32m 2+9m =―32(m 2―6m)=―32(m ―3)2+272,∴当 m =3 时,此时P 点为 (3,152) .S 最大值=272.10.【答案】(1)解:∵抛物线y =a x 2+bx +4与x 轴相交于点A(1,0),B(4,0),∴a +b +4=016a +4b +4=0,解得:a =1b =―5,∴y =x 2―5x +4;(2)解:∵y =x 2―5x +4,当x =0时,y =4,∴C(0,4),抛物线的对称轴为直线x =52∵△PAC 的周长等于PA +PC +AC ,AC 为定长,∴当PA +PC 的值最小时,△PAC 的周长最小,∵A ,B 关于对称轴对称,∴PA +PC =PB +PC ≥BC ,当P ,B ,C 三点共线时,PA +PC 的值最小,为BC 的长,此时点P 为直线BC 与对称轴的交点,设直线BC 的解析式为:y =mx +n ,则:4m +n =0n =4,解得:m =―1n =4,∴y =―x +4,当x =52时,y =―52+4=32,∴P(52,32),∵A(1,0),C(0,4),∴PA =(52―1)2+(32)2=322,PC =(52)2+(4―32)2=522,∴PA PC =35;(3)解:存在,∵D 为OC 的中点,∴D(0,2),∴OD =2,∵B(4,0),∴OB =4,在Rt △BOD 中,tan ∠OBD =OD OB =12,∵tan ∠QDB =12=tan ∠OBD ,∴∠QDB =∠OBD ,①当Q 点在D 点上方时:过点D 作DQ ∥OB ,交抛物线与点Q ,则:∠QDB =∠OBD ,此时Q 点纵坐标为2,设Q 点横坐标为t ,则:t 2―5t +4=2,解得:t =5±172,∴Q(5+172,2)或Q(5―172,2);②当点Q 在D 点下方时:设DQ 与x 轴交于点E ,则:DE =BE ,设E(p ,0),则:D E 2=O E 2+O D 2=p 2+4,B E 2=(4―p)2,∴p 2+4=(4―p)2,解得:p =32,∴E(32,0),设DE 的解析式为:y =kx +q ,=2+q =0,解得:q =2k =―43,∴y =―43x +2,联立y =―43x +2y =x 2―5x +4,解得:x =3y =―2或x =23y =109,∴Q(3,―2)或Q(23,109);综上:Q(5+172,2)或Q(5―172,2)或Q(3,―2)或Q(23,109).11.【答案】(1)解:∵抛物线y =a x 2+x +c 经过点A(―2,0)和点B(4,0),∴4a ―2+c =016a +4+c =0,解得:a =―12c =4,∴抛物线解析式为:y =―12x 2+x +4;(2)解:∵抛物线y =―12x 2+x +4与直线l :y =―x ―1交于D 、E 两点,(点D 在点E 的右侧)联立y =―12x 2+x +4y =―x ―1,解得:x =2+14y =―3―14或x =2―14y =―3+14,∴D(2+14,―14―3),E(2―14,14―3),∴x D ―x E =(2+14)―(2―14)=214,∵点M 为直线l 上的一动点,设点M 的横坐标为t .则M(t ,―t ―1),N(t ,―12t 2+t +4),∴MN =―12t 2+t +4―(―t ―1)=―12t 2+2t +5=―12(t ―2)2+7,当t =2时,MN 取得最大值为7,∵S △END =12(x D ―x E )×MN ,∴当MN 取得最大值时,S △END 最大,∴S △END =12×214×7=714,∴△NED 面积的最大值714;(3)解:∵抛物线与y 轴交于点C ,∴y =―12x 2+x +4,当x =0时,y =4,即C(0,4),∵B(4,0),M(t ,―t ―1)∴BC =42+42=42,B M 2=(4―t)2+(―t ―1)2=2t 2―6t +17,C M 2=t 2+(t +5)2=2t 2+10t +25,①当BC 为对角线时,MB =CM ,∴2t 2―6t +17=2t 2+10t +25,解得:t =―12,∴M(―12,―12),∵BC ,MR 的中点重合,∴R x ―12=4R y ―12=4,解得:R x =92R y =92,∴R(92,92),②当BC 为边时,当四边形BMRC 为菱形,BM =BC∴2t 2―6t +17=(42)2,解得:t =3―392或t =3+392,∴―t ―1=―3―392―1=―5+392或―t ―1=―3+392―1=―5―392,∴M(3―392,―5+392)或M(3+392,―39―52),由CM ,BR 的中点重合,∴R x +4=3―392+0R y +0=―5+392+4或R x +4=3+392+0R y +0=―5―392+4,解得:R x =―5―392R y =3+392或R x =―5+392R y =3―392,∴R(―5―392,3+392)或R(―5+392,3―392),当BC =MC 时;如图所示,即四边形CMRB 是菱形,点R 的坐标即为四边形BMRC 为菱形时,M 的坐标,∴R 点为R(3―392,―5+392)或R(3+392,―39―52),综上所述,R 点为R(3―392,―5+392)或R(3+392,―39―52)或R(―5―392,3+392)或R(―5+392,3―392)或R(92,92).12.【答案】(1)解:∵a =1,c =―1,∴二次函数解析式为y =x 2+bx ―1,∵该二次函数的图象过点(2,0),∴4+4b―1=0解得:b=―32;(2)解:①∵∠DOF=∠DEO,∠ODF=∠EDO,∴△DOF∽△DEO∴DF DO =OF EO∴DO EO =OF DF∵OF=32DF∴DO EO =2 3;②∵该二次函数的图象与x轴交于点A(x1,0),B(x2,0),且x1<0<x2,∴OA=―x1,OB=x2,∵BE=1.∴OE=x2―1,∵⊙O的半径长为线段OA的长度的2倍∴OD=―2x1,∵DO EO =2 3,∴―2x1x2―1=23,∴3x1+x2―1=0,即x2=1―3x1①,∵该二次函数的图象与x轴交于点A(x1,0),B(x2,0),∴x1,x2是方程a x2+bx+c=0的两个根,∴x1+x2=―b a,∵4ac=―a2―b2,a≠0,∴4·ca+1+(ba)2=0,即4(x1x2)+1+(x1+x2)2=0②,①代入②,即4x1(1―3x1)+1+(x1+1―3x1)2=0,即4x1―12x21+1+1+4x21―4x1=0,整理得―8x21=―2,∴x21=14,解得:x 1=―12(正值舍去)∴x 2=1―(―32)=52,∴抛物线的对称轴为直线x =―b 2a =x 1+x 22=―12+522=1,∴b =―2a ,∴2a +b =0.13.【答案】(1)解:∵抛物线Q 1:y =―x 2+bx +c 与x 轴交于A(―3,0),两点,交y 轴于点C(0,3), ∴把A(―3,0),C(0,3)代入Q 1:y =―x 2+bx +c ,得,―9―3b +c =0c =3,解得,b =―2c =3,∴抛物线的解析式为:y =―x 2―2x +3;(2)解:假设存在这样的正方形DAEF ,如图,过点E 作ER ⊥x 于点R ,过点F 作FI ⊥y 轴于点I ,∴∠AER +∠EAR =90°,∵四边形DAEF 是正方形,∴AE =AD ,∠EAD =90°,∴∠EAR +∠DAR =90°,∴∠AER =∠DAO ,又∠ERA =∠AOD =90°,∴△AER≅△DAO ,∴AR =DO ,ER =AO ,∵A(―3,0),D(0,―1),∴OA =3,OD =1,∴AR =1,ER =3,∴OR =OA ―AR =3―1=2,∴E(―2,3);同理可证明:△FID≅△DOA,∴FI=DO=1,DI=AO=3,∴IO=DI―DO=3―1=2,∴F(1,2);(3)解:∵y=―x2―2x+3=―(x+1)2+4,∴抛物线的顶点坐标为(―1,4),对称轴为直线x=―1,令y=0,则―x2―2x+3=0,解得,x1=―3,x2=1,∴B(1,0),∴将抛物线的图象右平移2个单位后,则有:K(―1,4),对称轴为直线x=―1+2=1,H(1+2,0),即H(3,0),∴点B在平移后的抛物线的对称轴上,∴HB=HO―OB=3―1=2,KB=4,∴KH=KB2+HB2=42+22=25,CB=CO2+BO2=32+12=10;CH=CO2+HO2=32,设直线CH的解析式为y=kx+b,把(3,0),(0,3)代入得,3k+b=0b=3,解得,k=―1 b=3,∴直线CH的解析式为y=―x+3,当x=1时,y=―1+3=2,∴S(1,2),此时KS=4―2=2,∴CS=(0―1)2+(3―2)2=2,∴HS=CH―CS=32―2=22,又KH CH =2510=2;KSCS=22=2;HSBS=222=2,∴KH CH =KSCS=HSBS=2,∴△KSH∼△CSB,∴∠CBK=∠CHK,所以,当点P与点B重合时,即点P的坐标为(1,0),则有∠CPK=∠CHK.14.【答案】(1)解:抛物线y=a x2―2ax+3与x轴交于点A(―1,0),得a +2a +3=0,解得:a =―1;(2)解:存在D (―12,154),理由如下:设B ′C ′与y 轴交于点G ,由(1)中结论a =―1,得抛物线的解析式为y =―x 2+2x +3,当y =0时,x 1=―1,x 2=3,即A (―1,0),B (3,0),C (0,3),OB =OC ,∠BOC =90°,即△BOC 是等腰直角三角形,∴∠BCO =45°,∵B ′C ′∥BC ,∴∠BCO =∠B ′GO =45°,设D (t ,―t 2+2t +3),过点D 作DE ∥y 轴交B ′C ′于点E ,作DF ⊥B ′C ′于点F ,∴∠DEF =∠B ′GO =45°,即△DEF 是等腰直角三角形,设直线BC 的解析式为y =kx +b ,代入B (3,0),C (0,3),得3k +b =0b =3,解得k =―1b =3,故直线BC 的解析式为y =―x +3,将直线BC 向下平移m(m >0)个单位长度,得直线B ′C ′的解析式为y =―x +3―m ,∴E (t ,―t +3―m ),DE =―t 2+2t +3―(―t +3―m )=―t 2+3t +m =―(t ―32)2+94+m ,当t =32时,DE 有最大值94+m ,此时DF =22DE 也有最大值,D (32,154);(3)解:存在P (―23,119)或P (2,3),理由如下:当点P 在直线BC 下方时,在y 轴上取点H (0,1),作直线BH 交抛物线于(异于点B )点P ,由(2)中结论,得∠OBC=45°,∴OH=OA=1,OB=OC,∠BOH=∠COA=90°,∴△BOH≌△COA(SAS),∴∠OBH=∠AOC,∴∠PBC+∠ACO=∠PBC+∠OBH=∠OBC=45°,设直线BP的解析式为y=k1x+b1,代入点B(3,0),H(0,1),得3k1+b1=0b1=1,解得k1=―13b1=1,故设直线BP的解析式为y=―13x+1,联立y=―13x+1y=―x2+2x+3,解得x1=3y1=0(舍)x2=―23y2=119,故P(―23,119);当点P在直线BC上方时,如图,在x轴上取点I,连接CI,过点P作BP∥CI抛物线于点P,∠PBC=∠BCI,OI=OA=1,OC=OC,∠COI=∠COA=90°,∴△COI≌△COA(SAS),∴∠OCI=∠AOC,∴∠PBC+∠ACO=∠BCI+∠OCI=∠OCB=45°,设直线CI的解析式为y=k2x+b2,代入点I(1,0),C(0,3),得k2+b2=0b2=3,解得k2=―3b2=3,故设直线CI的解析式为y=―3x+3,BP∥CI,且过点B(3,0),故设直线BP的解析式为y=―3x+9,联立y=―3x+9y=―x2+2x+3,解得x1=2y1=3,x2=3y2=0(舍),故P(2,3),综上所述:P(―23,119)或P(2,3)15.【答案】(1)解:将A(―4,0)、B(2,0)代入y=a x2+bx―8,得16a―4b―8=04a+2b―8=0,解得:a=1 b=2,∴抛物线解析式为:y=x2+2x―8,∴对称轴为x=―b2a=―1∴当x=―1时,y=(―1)2+2×(―1)―8=―9∴顶点坐标为(-1,-9);(2)解:如图所示,过点P作PD⊥x轴于点D,交AC于点E,由y=x2+2x―8,令x=0,解得:y=―8,∴C(0,―8),设直线AC的解析式为y=kx―8,将点A(―4,0)代入得,―4k―8=0,解得:k=―2,∴直线AC的解析式为y=―2x―8,设P(m,m2+2m―8),则E(m,―2m―8),∴PE=―2m―8―(m2+2m―8)=―m 2―4m=―(m +2)2+4,当m =―2时,PE 的最大值为4∵S △PAC =12PE ×OA =12×4×PE =2PE ∴当PE 取得最大值时,△PAC 面积取得最大值∴△PAC 面积的最大值为2×4=8,此时m =―2,m 2+2m ―8=4―4―8=―8∴P(―2,―8)(3)解:设M(x 1,y 1)、N(x 2,y 2),MN 的中点坐标为Q(x 1+x 22,y 1+y 22), 联立y =kx +k ―354y =x 2+2x ―8,消去y ,整理得:x 2+(2―k)x ―k +34=0, ∴x 1+x 2=k ―2,x 1x 2=―k +34,∴x 1+x 22=k 2―1,∴y 1+y 22=12k(x 1+x 2)+k ―354=12k(k ―2)+k ―354=12k 2―354,∴Q(12k ―1,12k 2―354),设Q 点到l 2的距离为QE ,则QE =12k 2―354―(―374)=12k 2+12,∵M(x 1,y 1)、N(x 2,y 2),∴y 1+y 2=k 2―352,y 1―y 2=x 21―x 22+2(x 1―x 2)=(x 1―x 2)(x 1+x 2+2)=k(x 1―x 2)∴M N 2=(x 1―x 2)2+(y 1―y 2)2=(x 1―x 2)2+k 2(x 1―x 2)2=(x 1―x 2)2(1+k 2)=[(x 1+x 2)2―4x 1x 2](1+k 2)=[(k ―2)2+4k ―3](k 2+1)=(k 2+1)(k 2+1)=(k 2+1)2∴MN =k 2+1,∴12MN =QE∴QM =QN =QE ,∴E 点总在⊙Q 上,MN 为直径,且⊙Q 与l 2:y =―374相切,∴∠MEN 为直角.∴无论k 为何值,平行于x 轴的直线l 2:y =―374上总存在一点E ,使得∠MEN 为直角.。
专题05一次函数--浙江省2019-2021年3年中考真题数学分项汇编(解析版)

三年(2019-2021)中考真题数学分项汇编(浙江专用)专题05一次函数(浙江专用)一.选择题(共8小题)1.(2021•嘉兴)已知点P (a ,b )在直线y =﹣3x ﹣4上,且2a ﹣5b ≤0,则下列不等式一定成立的是( ) A .a b≤52B .a b≥52C .b a≥25D .b a≤25【分析】结合选项可知,只需要判断出a 和b 的正负即可,点P (a ,b )在直线y =﹣3x ﹣4上,代入可得关于a 和b 的等式,再代入不等式2a ﹣5b ≤0中,可判断出a 与b 正负,即可得出结论. 【详解】解:∵点P (a ,b )在直线y =﹣3x ﹣4上, ∴﹣3a ﹣4=b , 又2a ﹣5b ≤0,∴2a ﹣5(﹣3a ﹣4)≤0, 解得a ≤−2017<0,当a =−2017时,得b =−817, ∴b ≥−817, ∵2a ﹣5b ≤0, ∴2a ≤5b , ∴ba≤25.故选:D .2.(2020•嘉兴)一次函数y =2x ﹣1的图象大致是( )A .B .C .D .【分析】根据一次函数的性质,判断出k 和b 的符号即可解答.【详解】解:由题意知,k=2>0,b=﹣1<0时,函数图象经过一、三、四象限.故选:B.3.(2020•湖州)已知在平面直角坐标系xOy中,直线y=2x+2和直线y=23x+2分别交x轴于点A和点B.则下列直线中,与x轴的交点不在线段AB上的直线是()A.y=x+2B.y=√2x+2C.y=4x+2D.y=2√33x+2【分析】求得A、B的坐标,然后分别求得各个直线与x的交点,进行比较即可得出结论.【详解】解:∵直线y=2x+2和直线y=23x+2分别交x轴于点A和点B.∴A(﹣1,0),B(﹣3,0)A、y=x+2与x轴的交点为(﹣2,0);故直线y=x+2与x轴的交点在线段AB上;B、y=√2x+2与x轴的交点为(−√2,0);故直线y=√2x+2与x轴的交点在线段AB上;C、y=4x+2与x轴的交点为(−12,0);故直线y=4x+2与x轴的交点不在线段AB上;D、y=2√33x+2与x轴的交点为(−√3,0);故直线y=2√33x+2与x轴的交点在线段AB上;故选:C.4.(2020•杭州)在平面直角坐标系中,已知函数y=ax+a(a≠0)的图象过点P(1,2),则该函数的图象可能是()A.B.C.D.【分析】求得解析式即可判断.【详解】解:∵函数y=ax+a(a≠0)的图象过点P(1,2),∴2=a+a,解得a=1,∴y=x+1,∴直线交y 轴的正半轴于点(0,1),且过点(1,2), 故选:A .5.(2019•绍兴)若三点(1,4),(2,7),(a ,10)在同一直线上,则a 的值等于( ) A .﹣1B .0C .3D .4【分析】利用(1,4),(2,7)两点求出所在的直线解析式,再将点(a ,10)代入解析式即可; 【详解】解:设经过(1,4),(2,7)两点的直线解析式为y =kx +b , ∴{4=k +b 7=2k +b ∴{k =3b =1, ∴y =3x +1,将点(a ,10)代入解析式,则a =3; 故选:C .6.(2019•杭州)已知一次函数y 1=ax +b 和y 2=bx +a (a ≠b ),函数y 1和y 2的图象可能是( )A .B .C .D .【分析】根据直线判断出a 、b 的符号,然后根据a 、b 的符号判断出直线经过的象限即可,做出判断.【详解】解:A 、由图可知:直线y 1=ax +b ,a >0,b >0.∴直线y 2=bx +a 经过一、二、三象限,故A 正确;B、由图可知:直线y1=ax+b,a<0,b>0.∴直线y2=bx+a经过一、四、三象限,故B错误;C、由图可知:直线y1=ax+b,a<0,b>0.∴直线y2=bx+a经过一、二、四象限,交点不对,故C错误;D、由图可知:直线y1=ax+b,a<0,b<0,∴直线y2=bx+a经过二、三、四象限,故D错误.故选:A.7.(2020•台州)如图1,小球从左侧的斜坡滚下,到达底端后又沿着右侧斜坡向上滚,在这个过程中,小球的运动速度v(单位:m/s)与运动时间t(单位:s)的函数图象如图2,则该小球的运动路程y(单位:m)与运动时间t(单位:s)之间的函数图象大致是()A.B.C.D.【分析】小球从左侧的斜坡滚下是匀变速运动,运动的路程y是t的二次函数,图象是先缓后陡,由此即可判断.【详解】解:由题意小球在左侧时,V=kt,∴y=0+kt2•t=12kt2,∴小球从左侧的斜坡滚下是匀变速运动,运动的路程y是t的二次函数,图象是先缓后陡,在右侧上升时,情形与左侧相反,故选:C.8.(2019•衢州)如图,正方形ABCD的边长为4,点E是AB的中点,点P从点E出发,沿E→A→D→C 移动至终点C.设P点经过的路径长为x,△CPE的面积为y,则下列图象能大致反映y与x函数关系的是()A.B.C.D.【分析】根据题意分类讨论,随着点P位置的变化,△CPE的面积的变化趋势.【详解】解:通过已知条件可知,当点P与点E重合时,△CPE的面积为0;当点P在EA上运动时,△CPE的高BC不变,则其面积是x的一次函数,面积随x增大而增大,当x=2时有最大面积为4,当P在AD边上运动时,△CPE的底边EC不变,则其面积是x的一次函数,面积随x增大而增大,当x=6时,有最大面积为8,当点P在DC边上运动时,△CPE的底边EC不变,则其面积是x的一次函数,面积随x增大而减小,最小面积为0;故选:C.二.填空题(共5小题)9.(2021•杭州)如图,在直角坐标系中,以点A(3,1)为端点的四条射线AB,AC,AD,AE分别过点B (1,1),点C(1,3),点D(4,4),点E(5,2),则∠BAC═∠DAE(填“>”、“=”、“<”中的一个).【分析】在直角坐标系中构造直角三角形,根据三角形边之间的关系推出角之间的关系.【详解】解:连接DE,由上图可知AB═2,BC═2,∴△ABC是等腰直角三角形,∴∠BAC═45°,又∵AE═√AF2+EF2═√22+12═√5,同理可得DE═√22+12═√5,AD═√12+32═√10,则在△ADE中,有AE2+DE2═AD2,∴△ADE 是等腰直角三角形, ∴∠DAE ═45°, ∴∠BAC ═∠DAE , 故答案为:═.10.(2019•杭州)某函数满足当自变量x =1时,函数值y =0,当自变量x =0时,函数值y =1,写出一个满足条件的函数表达式 y =﹣x +1(答案不唯一) . 【分析】根据题意写出一个一次函数即可. 【详解】解:设该函数的解析式为y =kx +b ,∵函数满足当自变量x =1时,函数值y =0,当自变量x =0时,函数值y =1, ∴{k +b =0b =1 解得:{k =−1b =1,所以函数的解析式为y =﹣x +1, 故答案为:y =﹣x +1(答案不唯一).11.(2019•金华)元朝朱世杰的《算学启蒙》一书记载:“今有良马日行二百四十里,驽马日行一百五十里.驽马先行一十二日,问良马几何日追及之.”如图是两匹马行走路程s 关于行走时间t 的函数图象,则两图象交点P 的坐标是 (32,4800) .【分析】根据题意可以得到关于t 的方程,从而可以求得点P 的坐标,本题得以解决. 【详解】解:令150t =240(t ﹣12), 解得,t =32,则150t =150×32=4800, ∴点P 的坐标为(32,4800), 故答案为:(32,4800).12.(2020•金华)点P (m ,2)在第二象限内,则m 的值可以是(写出一个即可) ﹣1(答案不唯一). . 【分析】直接利用第二象限内点的坐标特点得出m 的取值范围,进而得出答案. 【详解】解:∵点P (m ,2)在第二象限内, ∴m <0,则m 的值可以是﹣1(答案不唯一). 故答案为:﹣1(答案不唯一).13.(2019•衢州)如图,由两个长为2,宽为1的长方形组成“7”字图形(1)将一个“7”字图形按如图摆放在平面直角坐标系中,记为“7”字图形ABCDEF ,其中顶点A 位于x 轴上,顶点B ,D 位于y 轴上,O 为坐标原点,则OB OA的值为 12.(2)在(1)的基础上,继续摆放第二个“7”字图形得顶点F 1,摆放第三个“7”字图形得顶点F 2,依此类推,…,摆放第n 个“7”字图形得顶点F n ﹣1,…,则顶点F 2019的坐标为 (6062√55,405√5) .【分析】(1)先证明△AOB ∽△BCD ,所以OB OA=DC BC,因为DC =1,BC =2,所有OB OA=12;(2)利用三角形相似与三角形全等依次求出F 1,F 2,F 3,F 4的坐标,观察求出F 2019的坐标. 【详解】解:(1)∵∠ABO +∠DBC =90°,∠ABO +∠OAB =90°, ∴∠DBC =∠OAB , ∵∠AOB =∠BCD =90°, ∴△AOB ∽△BCD , ∴OB OA=DC BC,∵DC =1,BC =2, ∴OB OA=12,故答案为12;(2)解:过C 作CM ⊥y 轴于M ,过M 1作M 1N ⊥x 轴,过F 作FN 1⊥x 轴.根据勾股定理易证得BD =√22+12=√5,CM =OA =2√55,DM =OB =AN =√55, ∴C (2√55,√5), ∵AF =3,M 1F =BC =2, ∴AM 1=AF ﹣M 1F =3﹣2=1, ∴△BOA ≌ANM 1(AAS ), ∴NM 1=OA =2√55, ∵NM 1∥FN 1, ∴M 1N FN 1=AM 1AF, 2√55FN 1=13,∴FN 1=6√55, ∴AN 1=3√55, ∴ON 1=OA +AN 1=2√55+3√55=5√55 ∴F (5√55,6√55), 同理, F 1(8√55,7√55),即(1×3+55√5,6+15√5) F 2(11√55,8√55),即(2×3+55√5,6+25√5) F 3(14√55,9√55),即(3×3+55√5,6+35√5)F 4(17√55,10√55),即(4×3+55√5,6+45√5) …F 2019(2019×3+55√5,6+20195√5),即(60625√5,405√5), 故答案为即(60625√5,405√5). 三.解答题(共17小题)14.(2021•嘉兴)根据数学家凯勒的“百米赛跑数学模型”,前30米称为“加速期”,30米~80米为“中途期”,80米~100米为“冲刺期”.市田径队把运动员小斌某次百米跑训练时速度y (m /s )与路程x (m )之间的观测数据,绘制成曲线如图所示. (1)y 是关于x 的函数吗?为什么? (2)“加速期”结束时,小斌的速度为多少? (3)根据如图提供的信息,给小斌提一条训练建议.【分析】(1)根据函数的定义,可直接判断;(2)由图象可知,“加速期”结束时,即跑30米时,小斌的速度为10.4m /s . (3)答案不唯一.建议合理即可.【详解】解:(1)y 是x 的函数,在这个变化过程中,对于x 的每一个确定的值,y 都有唯一确定的值与之对应.(2)“加速期”结束时,小斌的速度为10.4m /s .(3)答案不唯一.例如:根据图象信息,小斌在80米左右时速度下降明显,建议增加耐力训练,提高成绩.15.(2020•嘉兴)经过实验获得两个变量x (x >0),y (y >0)的一组对应值如下表.x ..... 1 2 3 4 5 6 ...... y......6321.51.21......(1)请画出相应函数的图象,并求出函数表达式.(2)点A (x 1,y 1),B (x 2,y 2)在此函数图象上.若x 1<x 2,则y 1,y 2有怎样的大小关系?请说明理由.【分析】(1)利用描点法即可画出函数图象,再利用待定系数法即可得出函数表达式.(2)根据反比例函数的性质解答即可.【详解】解:(1)函数图象如图所示,设函数表达式为y=kx(k≠0),把x=1,y=6代入,得k=6,∴函数表达式为y=6x(x>0);(2)∵k=6>0,∴在第一象限,y随x的增大而减小,∴0<x1<x2时,则y1>y2.16.(2021•丽水)李师傅将容量为60升的货车油箱加满后,从工厂出发运送一批物资到某地.行驶过程中,货车离目的地的路程s(千米)与行驶时间t(小时)的关系如图所示(中途休息、加油的时间不计).当油箱中剩余油量为10升时,货车会自动显示加油提醒.设货车平均耗油量为0.1升/千米,请根据图象解答下列问题:(1)直接写出工厂离目的地的路程;(2)求s关于t的函数表达式;(3)当货车显示加油提醒后,问行驶时间t在怎样的范围内货车应进站加油?【分析】(1)由图象直接求出工厂离目的地的路程; (2)用待定系数法求出函数解析式即可;(3)当油箱中剩余油量为10升时和当油箱中剩余油量为0升时,求出t 的取值即可. 【详解】解:(1)由图象,得t =0时,s =880, ∴工厂离目的地的路程为880千米, 答:工厂离目的地的路程为880千米; (2)设s =kt +b (k ≠0),将(0,880)和(4,560)代入s =kt +b 得, {880=b 560=4k +b , 解得:{k =−80b =880,∴s 关于t 的函数表达式:s =﹣80t +880(0≤t ≤11), 答:s 关于t 的函数表达式:s =﹣80t +880(0≤t ≤11); (3)当油箱中剩余油量为10升时, s =880﹣(60﹣10)÷0.1=380(千米), ∴380=﹣80t +880, 解得:t =254(小时), 当油箱中剩余油量为0升时, s =880﹣60÷0.1=280(千米), ∴280=﹣80t +880,解得:t =152(小时), ∵k =﹣80<0, ∴s 随t 的增大而减小, ∴t 的取值范围是254<t <152.17.(2021•金华)在平面直角坐标系中,点A 的坐标为(−√73,0),点B 在直线l :y =38x 上,过点B 作AB 的垂线,过原点O 作直线l 的垂线,两垂线相交于点C .(1)如图,点B ,C 分别在第三、二象限内,BC 与AO 相交于点D . ①若BA =BO ,求证:CD =CO .②若∠CBO =45°,求四边形ABOC 的面积.(2)是否存在点B ,使得以A ,B ,C 为顶点的三角形与△BCO 相似?若存在,求OB 的长;若不存在,请说明理由.【分析】(1)①由BC ⊥AB ,CO ⊥BO ,可得∠BAD +∠ADB =∠COD +∠DOB =90°,而根据已知有∠BAD =∠DOB ,故∠ADB =∠COD ,从而可得∠COD =∠CDO ,CD =CO ;②过A 作AM ⊥OB 于M ,过M 作MN ⊥y 轴于N ,设M (m ,38m ),可得tan ∠OMN =tan ∠AOM =38,即AM OM=38,设AM =3n ,则OM =8n ,Rt △AOM 中,AM 2+OM 2=OA 2,可求出AM =3,OM =8,由∠CBO =45°可知△BOC 是等腰直角三角形,△ABM 是等腰直角三角形,从而有AM =BM =3,BO =CO =OM ﹣BM =5,AB =√2AM =3√2,BC =√2BO =5√2,即可求出S 四边形ABOC =S △ABC +S △BOC =552; (2)(一)过A 作AM ⊥OB 于M ,当B 在线段OM 或OM 延长线上时,设OB =x ,则BM =|8﹣x |,AB =√9+(8−x)2, 由△AMB ∽△BOC ,OC BM=OB AM,即OC|8−x|=x3,得OC =x 3⋅|8−x|,BC =√OB 2+OC 2=x3√9+(8−x)2,以A ,B ,C 为顶点的三角形与△BCO 相似,分两种情况:①若AB OB=BC OC,OB =4;②若AB OC=BC OB,OB =4+√7或OB =4−√7或OB =9;(二)当B 在线段MO 延长线上时,设OB =x ,则BM =8+x ,AB =√9+(8+x)2,由△AMB ∽△BOC ,OCBM=OB AM,即OC8+x=x3,得OC =x3•(8+x ),以A ,B ,C 为顶点的三角形与△BCO 相似,需满足AB OC =BC OB ,即√9+(8+x)2x 3(8+x)=x3√9+(8+x)2x,可得OB =1.【详解】(1)①证明:∵BC ⊥AB ,CO ⊥BO , ∴∠ABC =∠BCO =90°,∴∠BAD +∠ADB =∠COD +∠DOB =90°, ∵BA =BO , ∴∠BAD =∠DOB , ∴∠ADB =∠COD , ∵∠ADB =∠CDO , ∴∠COD =∠CDO , ∴CD =CO ;②解:过A 作AM ⊥OB 于M ,过M 作MN ⊥y 轴于N ,如图:∵M 在直线l :y =38x 上,设M (m ,38m ),∴MN =|m |=﹣m ,ON =|38m |=−38m ,Rt △MON 中,tan ∠OMN =ON OM =38, 而OA ∥MN , ∴∠AOM =∠OMN , ∴tan ∠AOM =38,即AM OM=38,设AM =3n ,则OM =8n ,Rt △AOM 中,AM 2+OM 2=OA 2, 又A 的坐标为(−√73,0),∴OA=√73,∴(3n)2+(8n)2=(√73)2,解得n=1(n=﹣1舍去),∴AM=3,OM=8,∵∠CBO=45°,CO⊥BO,∴△BOC是等腰直角三角形,∵BC⊥AB,∠CBO=45°,∴∠ABM=45°,∵AM⊥OB,∴△ABM是等腰直角三角形,∴AM=BM=3,BO=CO=OM﹣BM=5,∴等腰直角三角形△ABM中,AB=√2AM=3√2,等腰直角三角形△BOC中,BC=√2BO=5√2,∴S△ABC=12AB•BC=15,S△BOC=12BO•CO=252,∴S四边形ABOC=S△ABC+S△BOC=55 2;(2)解:存在点B,使得以A,B,C为顶点的三角形与△BCO相似,理由如下:(一)过A作AM⊥OB于M,当B在线段OM或OM延长线上时,如图:由(1)②可知:AM=3,OM=8,设OB =x ,则BM =|8﹣x |,AB =√9+(8−x)2, ∵CO ⊥BO ,AM ⊥BO ,AB ⊥BC ,∴∠AMB =∠BOC =90°,∠ABM =90°﹣∠OBC =∠BCO , ∴△AMB ∽△BOC , ∴OC BM=OB AM,即OC|8−x|=x3,∴OC =x3⋅|8−x|,Rt △BOC 中,BC =√OB 2+OC 2=x3√9+(8−x)2,∵∠ABC =∠BOC =90°,∴以A ,B ,C 为顶点的三角形与△BCO 相似,分两种情况: ①若ABOB=BC OC,则√9+(8−x)2x=x3√9+(8−x)2x3|8−x|, 解得x =4, ∴此时OB =4; ②若AB OC=BC OB,则√9+(8−x)2x3|8−x|=x3√9+(8−x)2x,解得x 1=4+√7,x 2=4−√7,x 3=9,x 4=﹣1(舍去), ∴OB =4+√7或OB =4−√7或OB =9; (二)当B 在线段MO 延长线上时,如图:由(1)②可知:AM =3,OM =8, 设OB =x ,则BM =8+x ,AB =√9+(8+x)2, ∵CO ⊥BO ,AM ⊥BO ,AB ⊥BC ,∴∠AMB =∠BOC =90°,∠ABM =90°﹣∠OBC =∠BCO , ∴△AMB ∽△BOC , ∴OC BM=OB AM,即OC8+x=x3,∴OC =x3•(8+x ),Rt △BOC 中,BC =√OB 2+OC 2=x3•√9+(8+x)2,∵∠ABC =∠BOC =90°,∴以A ,B ,C 为顶点的三角形与△BCO 相似,需满足AB OC=BC OB,即√9+(8+x)2x3(8+x)=x3√9+(8+x)2x,解得x 1=﹣9(舍去),x 2=1, ∴OB =1,综上所述,以A ,B ,C 为顶点的三角形与△BCO 相似,则OB 的长度为:4或4+√7或4−√7或9或1; 18.(2021•绍兴)Ⅰ号无人机从海拔10m 处出发,以10m /min 的速度匀速上升,Ⅱ号无人机从海拔30m 处同时出发,以a (m /min )的速度匀速上升,经过5min 两架无人机位于同一海拔高度b (m ).无人机海拔高度y (m )与时间x (min )的关系如图.两架无人机都上升了15min . (1)求b 的值及Ⅱ号无人机海拔高度y (m )与时间x (min )的关系式; (2)问无人机上升了多少时间,Ⅰ号无人机比Ⅱ号无人机高28米.【分析】(1)由题意得:b =10+10×5=60;再用待定系数法求出函数表达式即可; (2)由题意得:(10z +10)﹣(6x +30)=28,即可求解. 【详解】解:(1)b =10+10×5=60, 设函数的表达式为y =kx +t ,将(0,30)、(5,60)代入上式得{t =3060=5k +t ,解得{k =6t =30,故函数表达式为y =6x +30(0≤x ≤15);(2)由题意得:(10z +10)﹣(6x +30)=28, 解得x =12<5,故无人机上升12min ,Ⅰ号无人机比Ⅱ号无人机高28米.19.(2021•温州)某公司生产的一种营养品信息如表.已知甲食材每千克的进价是乙食材的2倍,用80元购买的甲食材比用20元购买的乙食材多1千克.营养品信息表营养成份 每千克含铁42毫克配料表原料 每千克含铁 甲食材 50毫克 乙食材10毫克 规格 每包食材含量每包单价 A 包装 1千克 45元 B 包装0.25千克12元(1)问甲、乙两种食材每千克进价分别是多少元?(2)该公司每日用18000元购进甲、乙两种食材并恰好全部用完. ①问每日购进甲、乙两种食材各多少千克?②已知每日其他费用为2000元,且生产的营养品当日全部售出.若A 的数量不低于B 的数量,则A 为多少包时,每日所获总利润最大?最大总利润为多少元?【分析】(1)设乙食材每千克进价为a 元,则甲食材每千克进价为2a 元,根据“用80元购买的甲食材比用20元购买的乙食材多1千克”列分式方程解答即可;(2)①设每日购进甲食材x 千克,乙食材y 千克,根据(1)的结论以及“每日用18000元购进甲、乙两种食材并恰好全部用完”列方程组解答即可; ②设A 为m 包,则B 为500−m 0.25包,根据“A 的数量不低于B 的数量”求出m 的取值范围;设总利润为W 元,根据题意求出W 与x 的函数关系式,再根据一次函数的性质,即可得到获利最大的进货方案,并求出最大利润.【详解】解:(1)设乙食材每千克进价为a 元,则甲食材每千克进价为2a 元, 由题意得802a−20a=1,解得a =20,经检验,a =20是所列方程的根,且符合题意, ∴2a =40(元),答:甲食材每千克进价为40元,乙食材每千克进价为20元; (2)①设每日购进甲食材x 千克,乙食材y 千克, 由题意得{40x +20y =1800050x +10y =42(x +y),解得{x =400y =100,答:每日购进甲食材400千克,乙食材100千克; ②设A 为m 包,则B 为500−m 0.25=(2000﹣4m )包,∵A 的数量不低于B 的数量, ∴m ≥2000﹣4m , ∴m ≥400,设总利润为W 元,根据题意得:W =45m +12(2000﹣4m )﹣18000﹣2000=﹣3m +4000, ∵k =﹣3<0,∴W 随m 的增大而减小,∴当m =400时,W 的最大值为2800,答:当A 为400包时,总利润最大,最大总利润为2800元.20.(2020•金华)某地区山峰的高度每增加1百米,气温大约降低0.6℃,气温T (℃)和高度h (百米)的函数关系如图所示. 请根据图象解决下列问题: (1)求高度为5百米时的气温; (2)求T 关于h 的函数表达式;(3)测得山顶的气温为6℃,求该山峰的高度.【分析】(1)根据高度每增加1百米,气温大约降低0.6℃,由3百米时温度为13.2℃,即可得出高度为5百米时的气温;(2)应用待定系数法解答即可;(3)根据(2)的结论解答即可.【详解】解:(1)由题意得,高度增加2百米,则气温降低2×0.6=1.2(℃), ∴13.2﹣1.2=12(℃),∴高度为5百米时的气温大约是12℃;(2)设T 关于h 的函数表达式为T =kh +b , 则:{3k +b =13.25k +b =12,解得{k =−0.6b =15,∴T 关于h 的函数表达式为T =﹣0.6h +15(h >0);(3)当T =6时,6=﹣0.6h +15, 解得h =15.∴该山峰的高度大约为15百米,即1500米.21.(2020•宁波)A ,B 两地相距200千米.早上8:00货车甲从A 地出发将一批物资运往B 地,行驶一段路程后出现故障,即刻停车与B 地联系.B 地收到消息后立即派货车乙从B 地出发去接运甲车上的物资.货车乙遇到甲后,用了18分钟将物资从货车甲搬运到货车乙上,随后开往B 地.两辆货车离开各自出发地的路程y (千米)与时间x (小时)的函数关系如图所示.(通话等其他时间忽略不计) (1)求货车乙在遇到货车甲前,它离开出发地的路程y 关于x 的函数表达式.(2)因实际需要,要求货车乙到达B 地的时间比货车甲按原来的速度正常到达B 地的时间最多晚1个小时,问货车乙返回B 地的速度至少为每小时多少千米?【分析】(1)由待定系数法可求出函数解析式;(2)根据图中的信息求出乙返回B 地所需的时间,由题意可列出不等式1.6v ≥120,解不等式即可得出答案.【详解】解:(1)设函数表达式为y =kx +b (k ≠0),把(1.6,0),(2.6,80)代入y =kx +b ,得{0=1.6k +b80=2.6k +b ,解得:{k =80b =−128,∴y 关于x 的函数表达式为y =80x ﹣128;由图可知200﹣80=120(千米),120÷80=1.5(小时),1.6+1.5=3.1(小时), ∴x 的取值范围是1.6≤x <3.1.∴货车乙在遇到货车甲前,它离开出发地的路程y 关于x 的函数表达式为y =80x ﹣128(1.6≤x <3.1); (2)当y =200﹣80=120时, 120=80x ﹣128, 解得x =3.1, 由图可知,甲的速度为801.6=50(千米/小时),货车甲正常到达B 地的时间为200÷50=4(小时),18÷60=0.3(小时),4+1=5(小时),5﹣3.1﹣0.3=1.6(小时), 设货车乙返回B 地的车速为v 千米/小时, ∴1.6v ≥120, 解得v ≥75.答:货车乙返回B 地的车速至少为75千米/小时.22.(2020•衢州)2020年5月16日,“钱塘江诗路”航道全线开通.一艘游轮从杭州出发前往衢州,线路如图1所示.当游轮到达建德境内的“七里扬帆”景点时,一艘货轮沿着同样的线路从杭州出发前往衢州.已知游轮的速度为20km /h ,游轮行驶的时间记为t (h ),两艘轮船距离杭州的路程s (km )关于t (h )的图象如图2所示(游轮在停靠前后的行驶速度不变).(1)写出图2中C 点横坐标的实际意义,并求出游轮在“七里扬帆”停靠的时长. (2)若货轮比游轮早36分钟到达衢州.问: ①货轮出发后几小时追上游轮? ②游轮与货轮何时相距12km ?【分析】(1)根据图中信息解答即可.(2)①求出B,C,D,E的坐标,利用待定系数法求解即可.②分三种情形种情形分别构建方程求解即可.【详解】解:(1)C点横坐标的实际意义是游轮从杭州出发前往衢州共用了23h.∴游轮在“七里扬帆”停靠的时长=23﹣(420÷20)=23﹣21=2(h).(2)①280÷20=14h,∴点A(14,280),点B(16,280),∵36÷60=0.6(h),23﹣0.6=22.4,∴点E(22.4,420),设BC的解析式为s=20t+b,把B(16,280)代入s=20t+b,可得b=﹣40,∴s=20t﹣40(16≤t≤23),同理由D(14,0),E(22.4,420)可得DE的解析式为s=50t﹣700(14≤t≤22.4),由题意:20t﹣40=50t﹣700,解得t=22,∵22﹣14=8(h),∴货轮出发后8小时追上游轮.②相遇之前相距12km时,20t﹣40﹣(50t﹣700)=12,解得t=21.6.相遇之后相距12km时,50t﹣700﹣(20t﹣40)=12,解得t=22.4,当游轮在刚离开杭州12km时,此时根据图象可知货轮就在杭州,游轮距离杭州12km,所以此时两船应该也是相距12km,即在0.6h的时候,两船也相距12km∴0.6h或21.6h或22.4h时游轮与货轮相距12km.23.(2020•绍兴)我国传统的计重工具﹣﹣秤的应用,方便了人们的生活.如图1,可以用秤砣到秤纽的水平距离,来得出秤钩上所挂物体的重量.称重时,若秤杆上秤砣到秤纽的水平距离为x (厘米)时,秤钩所挂物重为y (斤),则y 是x 的一次函数.下表中为若干次称重时所记录的一些数据. x (厘米) 1 2 4 7 11 12 y (斤)0.751.001.502.753.253.50(1)在上表x ,y 的数据中,发现有一对数据记录错误.在图2中,通过描点的方法,观察判断哪一对是错误的?(2)根据(1)的发现,问秤杆上秤砣到秤纽的水平距离为16厘米时,秤钩所挂物重是多少?【分析】(1)利用描点法画出图形即可判断.(2)设函数关系式为y =kx +b ,利用待定系数法解决问题即可. 【详解】解:(1)观察图象可知:x =7,y =2.75这组数据错误.(2)设y =kx +b ,把x =1,y =0.75,x =2,y =1代入可得{k +b =0.752k +b =1,解得{k =14b =12, ∴y =14x +12, 当x =16时,y =4.5,答:秤杆上秤砣到秤纽的水平距离为16厘米时,秤钩所挂物重是4.5斤.24.(2020•温州)某经销商3月份用18000元购进一批T恤衫售完后,4月份用39000元购进一批相同的T 恤衫,数量是3月份的2倍,但每件进价涨了10元.(1)4月份进了这批T恤衫多少件?(2)4月份,经销商将这批T恤衫平均分给甲、乙两家分店销售,每件标价180元.甲店按标价卖出a 件以后,剩余的按标价八折全部售出;乙店同样按标价卖出a件,然后将b件按标价九折售出,再将剩余的按标价七折全部售出,结果利润与甲店相同.①用含a的代数式表示b.②已知乙店按标价售出的数量不超过九折售出的数量,请你求出乙店利润的最大值.【分析】(1)根据4月份用39000元购进一批相同的T恤衫,数量是3月份的2倍,可以得到相应的分式方程,从而可以求得4月份进了这批T恤衫多少件;(2)①根据甲乙两店的利润相同,可以得到关于a、b的方程,然后化简,即可用含a的代数式表示b;②根据题意,可以得到利润与a的函数关系式,再根据乙店按标价售出的数量不超过九折售出的数量,可以得到a的取值范围,从而可以求得乙店利润的最大值.【详解】解:(1)设3月份购进x件T恤衫,18000 x +10=390002x,解得,x=150,经检验,x=150是原分式方程的解,则2x=300,答:4月份进了这批T恤衫300件;(2)①每件T恤衫的进价为:39000÷300=130(元),(180﹣130)a+(180×0.8﹣130)(150﹣a)=(180﹣130)a+(180×0.9﹣130)b+(180×0.7﹣130)(150﹣a﹣b)化简,得b=150−a2;②设乙店的利润为w元,w=(180﹣130)a+(180×0.9﹣130)b+(180×0.7﹣130)(150﹣a﹣b)=54a+36b﹣600=54a+36×150−a2−600=36a+2100,∵乙店按标价售出的数量不超过九折售出的数量,∴a≤b,即a ≤150−a2, 解得,a ≤50,∴当a =50时,w 取得最大值,此时w =3900, 答:乙店利润的最大值是3900元.25.(2019•绍兴)如图是某型号新能源纯电动汽车充满电后,蓄电池剩余电量y (千瓦时)关于已行驶路程x (千米)的函数图象.(1)根据图象,直接写出蓄电池剩余电量为35千瓦时时汽车已行驶的路程.当0≤x ≤150时,求1千瓦时的电量汽车能行驶的路程.(2)当150≤x ≤200时,求y 关于x 的函数表达式,并计算当汽车已行驶180千米时,蓄电池的剩余电量.【分析】(1)由图象可知,蓄电池剩余电量为35千瓦时时汽车已行驶了150千米,据此即可求出1千瓦时的电量汽车能行驶的路程;(2)运用待定系数法求出y 关于x 的函数表达式,再把x =180代入即可求出当汽车已行驶180千米时,蓄电池的剩余电量.【详解】解:(1)由图象可知,蓄电池剩余电量为35千瓦时时汽车已行驶了150千米. 1千瓦时的电量汽车能行驶的路程为:15060−35=6千米;(2)设y =kx +b (k ≠0),把点(150,35),(200,10)代入, 得{150k +b =35200k +b =10, ∴{k =−0.5b =110, ∴y =﹣0.5x +110,当x =180时,y =﹣0.5×180+110=20,答:当150≤x≤200时,函数表达式为y=﹣0.5x+110,当汽车已行驶180千米时,蓄电池的剩余电量为20千瓦时.26.(2019•温州)如图,在平面直角坐标系中,直线y=−12x+4分别交x轴、y轴于点B,C,正方形AOCD的顶点D在第二象限内,E是BC中点,OF⊥DE于点F,连接OE.动点P在AO上从点A向终点O匀速运动,同时,动点Q在直线BC上从某一点Q1向终点Q2匀速运动,它们同时到达终点.(1)求点B的坐标和OE的长.(2)设点Q2为(m,n),当nm =17tan∠EOF时,求点Q2的坐标.(3)根据(2)的条件,当点P运动到AO中点时,点Q恰好与点C重合.①延长AD交直线BC于点Q3,当点Q在线段Q2Q3上时,设Q3Q=s,AP=t,求s关于t的函数表达式.②当PQ与△OEF的一边平行时,求所有满足条件的AP的长.【分析】(1)令y=0,可得B的坐标,利用勾股定理可得BC的长,进而求出OE的长;(2)如图1,作辅助线,证明△CDN∽△MEN,得CN=MN=1,计算EN的长,根据面积法可得OF的长,利用勾股定理得OF的长,由nm =17tan∠EOF和n=−12m+4,可得结论;(3)①先设s关于t成一次函数关系,设s=kt+b,根据当点P运动到AO中点时,点Q恰好与点C重合,得t=2时,CD=4,DQ3=2,s=2√5,根据Q3(﹣4,6),Q2(6,1),可得t=4时,s=5√5,利用待定系数法可得s关于t的函数表达式,根据s和t都不是负数,确定t的取值;②分三种情况:(i)当PQ∥OE时,如图2,根据cos∠QBH=ABBQ3=BHBQ=126√5=25√5,表示BH的长,根据AB=12,列方程可得t的值;(ii)当PQ∥OF时,如图3,根据tan∠HPQ=tan∠CDN=14,列方程为2t﹣2=14(7−32t),可得t的值.(iii)由图形可知PQ不可能与EF平行.【详解】解:(1)令y=0,则−12x+4=0,∴x=8,∴B(8,0),∵C(0,4),∴OC=4,OB=8,在Rt△BOC中,BC=√82+42=4√5,又∵E为BC中点,∴OE=12BC=2√5;(2)如图1,作EM⊥OC于M,则EM∥CD,∵E是BC的中点∴M是OC的中点∴EM=12OB=4,OE=12BC=2√5∵∠CDN=∠NEM,∠CND=∠MNE ∴△CDN∽△MEN,∴CNMN =CDEM=1,∴CN=MN=1,∴EN=√12+42=√17,∵S△ONE=12EN•OF=12ON•EM,∴OF=√17=1217√17,由勾股定理得:EF=√OE2−OF2=(2√5)2−(12√1717)2=1417√17,∴tan∠EOF=EFOF=14√171712√1717=76,∴n m=17×76=16,∵n =−12m +4, ∴m =6,n =1, ∴Q 2(6,1);(3)①∵动点P 、Q 同时作匀速直线运动, ∴s 关于t 成一次函数关系,设s =kt +b ,∵当点P 运动到AO 中点时,点Q 恰好与点C 重合, ∴t =2时,CD =4,DQ 3=2, ∴s =Q 3C =√22+42=2√5, ∵Q 3(﹣4,6),Q 2(6,1),∴t =4时,s =√(6+4)2+(6−1)2=5√5,将{t =2s =2√5和{t =4s =5√5代入得{2k +b =2√54k +b =5√5,解得:{k =32√5b =−√5, ∴s =3√52t −√5, ∵s ≥0,t ≥0,且32√5>0,∴s 随t 的增大而增大, 当s ≥0时,3√52t −√5≥0,即t ≥23,当t =23时,Q 3与Q 重合,∵点Q 在线段Q 2Q 3上,综上,s 关于t 的函数表达式为:s =3√52t −√5(23≤t ≤4);②(i )当PQ ∥OE 时,如图2,∠QPB =∠EOB =∠OBE , 作QH ⊥x 轴于点H ,则PH =BH =12PB ,Rt △ABQ 3中,AQ 3=6,AB =4+8=12, ∴BQ 3=√62+122=6√5, ∵BQ =6√5−s =6√5−3√52t +√5=7√5−3√52t , ∵cos ∠QBH =ABBQ 3=BHBQ =6√5=25√5, ∴BH =14﹣3t , ∴PB =28﹣6t , ∴t +28﹣6t =12,t =165;(ii )当PQ ∥OF 时,如图3,过点Q 作QG ⊥AQ 3于点G ,过点P 作PH ⊥GQ 于点H ,由△Q 3QG ∽△CBO 得:Q 3G :QG :Q 3Q =1:2:√5, ∵Q 3Q =s =3√52t −√5, ∴Q 3G =32t ﹣1,GQ =3t ﹣2,∴PH =AG =AQ 3﹣Q 3G =6﹣(32t ﹣1)=7−32t ,∴QH =QG ﹣AP =3t ﹣2﹣t =2t ﹣2, ∵∠HPQ =∠CDN , ∴tan ∠HPQ =tan ∠CDN =14, ∴2t ﹣2=14(7−32t),t =3019,(iii )由图形可知PQ 不可能与EF 平行, 综上,当PQ 与△OEF 的一边平行时,AP 的长为165或3019.27.(2019•台州)如图1,某商场在一楼到二楼之间设有上、下行自动扶梯和步行楼梯.甲、乙两人从二楼同时下行,甲乘自动扶梯,乙走步行楼梯,甲离一楼地面的高度h (单位:m )与下行时间x (单位:s )之间具有函数关系h=−310x+6,乙离一楼地面的高度y(单位:m)与下行时间x(单位:s)的函数关系如图2所示.(1)求y关于x的函数解析式;(2)请通过计算说明甲、乙两人谁先到达一楼地面.【分析】(1)根据函数图象中的数据可以得到y关于x的函数解析式;(2)分别令h=0和y=0求出相应的x的值,然后比较大小即可解答本题.【详解】解:(1)设y关于x的函数解析式是y=kx+b,{b=615k+b=3,解得,{k=−15 b=6,∴y=−15x+6,∴当y=0时,x=30,即y关于x的函数解析式是y=−15x+6(0≤x≤30);(2)当h=0时,0=−310x+6,得x=20,当y=0时,0=−15x+6,得x=30,∵20<30,∴甲先到达地面.28.(2019•宁波)某风景区内的公路如图1所示,景区内有免费的班车,从入口处出发,沿该公路开往草甸,途中停靠塔林(上下车时间忽略不计).第一班车上午8点发车,以后每隔10分钟有一班车从入口处发车.小聪周末到该风景区游玩,上午7:40到达入口处,因还没到班车发车时间,于是从景区入口处出发,沿该公路步行25分钟后到达塔林.离入口处的路程y(米)与时间x(分)的函数关系如图2所示.(1)求第一班车离入口处的路程y(米)与时间x(分)的函数表达式.(2)求第一班车从入口处到达塔林所需的时间.(3)小聪在塔林游玩40分钟后,想坐班车到草甸,则小聪最早能够坐上第几班车?如果他坐这班车到草甸,比他在塔林游玩结束后立即步行到草甸提早了几分钟?(假设每一班车速度均相同,小聪步行速度不变)【分析】(1)设y =kx +b ,运用待定系数法求解即可;(2)把y =1500代入(1)的结论即可;(3)设小聪坐上了第n 班车,30﹣25+10(n ﹣1)≥40,解得n ≥4.5,可得小聪坐上了第5班车,再根据“路程、速度与时间的关系”解答即可.【详解】解:(1)由题意得,可设函数表达式为:y =kx +b (k ≠0),把(20,0),(38,2700)代入y =kx +b ,得{0=20k +b 2700=38k +b ,解得{k =150b =−3000, ∴第一班车离入口处的路程y (米)与时间x (分)的函数表达为y =150x ﹣3000(20≤x ≤38);(2)把y =1500代入y =150x ﹣3000,解得x =30,30﹣20=10(分),∴第一班车从入口处到达塔林所需时间10分钟;(3)设小聪坐上了第n 班车,则30﹣25+10(n ﹣1)≥40,解得n ≥4.5,∴小聪坐上了第5班车,等车的时间为5分钟,坐班车所需时间为:1200÷150=8(分),步行所需时间:1200÷(1500÷25)=20(分),20﹣(8+5)=7(分),∴比他在塔林游玩结束后立即步行到草甸提早了7分钟.。
广东省广州市三年中考数学真题分类汇编-03解答题(提升题)知识点分类

广东省广州市2021-2023三年中考数学真题分类汇编-03解答题(提升题)知识点分类一.一次函数的应用(共1小题)1.(2023•广州)因活动需要购买某种水果,数学活动小组的同学通过市场调查得知:在甲商店购买该水果的费用y1(元)与该水果的质量x(千克)之间的关系如图所示;在乙商店购买该水果的费用y2(元)与该水果的质量x(千克)之间的函数解析式为y2=10x (x≥0).(1)求y1与x之间的函数解析式;(2)现计划用600元购买该水果,选甲、乙哪家商店能购买该水果更多一些?二.反比例函数综合题(共1小题)2.(2023•广州)已知点P(m,n)在函数y=﹣(x<0)的图象上.(1)若m=﹣2,求n的值;(2)抛物线y=(x﹣m)(x﹣n)与x轴交于两点M,N(M在N的左边),与y轴交于点G,记抛物线的顶点为E.①m为何值时,点E到达最高处;②设△GMN的外接圆圆心为C,⊙C与y轴的另一个交点为F,当m+n≠0时,是否存在四边形FGEC为平行四边形?若存在,求此时顶点E的坐标;若不存在,请说明理由.三.二次函数综合题(共2小题)3.(2022•广州)已知直线l:y=kx+b经过点(0,7)和点(1,6).(1)求直线l的解析式;(2)若点P(m,n)在直线l上,以P为顶点的抛物线G过点(0,﹣3),且开口向下.①求m的取值范围;②设抛物线G与直线l的另一个交点为Q,当点Q向左平移1个单位长度后得到的点Q′也在G上时,求G在≤x≤+1的图象的最高点的坐标.4.(2021•广州)已知抛物线y=x2﹣(m+1)x+2m+3.(1)当m=0时,请判断点(2,4)是否在该抛物线上;(2)该抛物线的顶点随着m的变化而移动,当顶点移动到最高处时,求该抛物线的顶点坐标;(3)已知点E(﹣1,﹣1)、F(3,7),若该抛物线与线段EF只有一个交点,求该抛物线顶点横坐标的取值范围.四.全等三角形的判定与性质(共1小题)5.(2023•广州)如图,B是AD的中点,BC∥DE,BC=DE.求证:∠C=∠E.五.四边形综合题(共3小题)6.(2023•广州)如图,在正方形ABCD中,E是边AD上一动点(不与点A,D重合).边BC关于BE对称的线段为BF,连接AF.(1)若∠ABE=15°,求证:△ABF是等边三角形;(2)延长F A,交射线BE于点G.①△BGF能否为等腰三角形?如果能,求此时∠ABE的度数;如果不能,请说明理由;②若,求△BGF面积的最大值,并求此时AE的长.7.(2022•广州)如图,在菱形ABCD中,∠BAD=120°,AB=6,连接BD.(1)求BD的长;(2)点E为线段BD上一动点(不与点B,D重合),点F在边AD上,且BE=DF.①当CE⊥AB时,求四边形ABEF的面积;②当四边形ABEF的面积取得最小值时,CE+CF的值是否也最小?如果是,求CE+CF的最小值;如果不是,请说明理由.8.(2021•广州)如图,在菱形ABCD中,∠DAB=60°,AB=2,点E为边AB上一个动点,延长BA到点F,使AF=AE,且CF、DE相交于点G.(1)当点E运动到AB中点时,证明:四边形DFEC是平行四边形;(2)当CG=2时,求AE的长;(3)当点E从点A开始向右运动到点B时,求点G运动路径的长度.六.圆的综合题(共2小题)9.(2023•广州)如图,在平面直角坐标系xOy中,点A(﹣2,0),B(0,2),所在圆的圆心为O.将向右平移5个单位,得到(点A平移后的对应点为C).(1)点D的坐标是,所在圆的圆心坐标是;(2)在图中画出,并连接AC,BD;(3)求由,BD,,CA首尾依次相接所围成的封闭图形的周长.(结果保留π)10.(2021•广州)如图,在平面直角坐标系xOy中,直线l:y=x+4分别与x轴,y轴相交于A、B两点,点P(x,y)为直线l在第二象限的点.(1)求A、B两点的坐标;(2)设△P AO的面积为S,求S关于x的函数解析式,并写出x的取值范围;(3)作△P AO的外接圆⊙C,延长PC交⊙C于点Q,当△POQ的面积最小时,求⊙C 的半径.七.作图—基本作图(共1小题)11.(2021•广州)如图,在四边形ABCD中,∠ABC=90°,点E是AC的中点,且AC=AD.(1)尺规作图:作∠CAD的平分线AF,交CD于点F,连结EF、BF(保留作图痕迹,不写作法);(2)在(1)所作的图中,若∠BAD=45°,且∠CAD=2∠BAC,证明:△BEF为等边三角形.八.相似形综合题(共1小题)12.(2023•广州)如图,AC是菱形ABCD的对角线.(1)尺规作图:将△ABC绕点A逆时针旋转得到△ADE,点B旋转后的对应点为D(保留作图痕迹,不写作法);(2)在(1)所作的图中,连接BD,CE.①求证:△ABD∽△ACE;②若tan∠BAC=,求cos∠DCE的值.九.解直角三角形(共1小题)13.(2022•广州)如图,AB是⊙O的直径,点C在⊙O上,且AC=8,BC=6.(1)尺规作图:过点O作AC的垂线,交劣弧于点D,连接CD(保留作图痕迹,不写作法);(2)在(1)所作的图形中,求点O到AC的距离及sin∠ACD的值.一十.解直角三角形的应用-仰角俯角问题(共1小题)14.(2022•广州)某数学活动小组利用太阳光线下物体的影子和标杆测量旗杆的高度.如图,在某一时刻,旗杆AB的影子为BC,与此同时在C处立一根标杆CD,标杆CD的影子为CE,CD=1.6m,BC=5CD.(1)求BC的长;(2)从条件①、条件②这两个条件中选择一个作为已知,求旗杆AB的高度.条件①:CE=1.0m;条件②:从D处看旗杆顶部A的仰角α为54.46°.注:如果选择条件①和条件②分别作答,按第一个解答计分.参考数据:sin54.46°≈0.81,cos54.46°≈0.58,tan54.46°≈1.40.一十一.频数(率)分布直方图(共1小题)15.(2022•广州)某校在九年级学生中随机抽取了若干名学生参加“平均每天体育运动时间”的调查,根据调查结果绘制了如下不完整的频数分布表和频数分布直方图.频数分布表运动时间t/min频数频率30≤t<6040.160≤t<9070.17590≤t<120a0.35120≤t<15090.225150≤t<1806b合计n1请根据图表中的信息解答下列问题:(1)频数分布表中的a=,b=,n=;(2)请补全频数分布直方图;(3)若该校九年级共有480名学生,试估计该校九年级学生平均每天体育运动时间不低于120min的学生人数.广东省广州市2021-2023三年中考数学真题分类汇编-03解答题(提升题)知识点分类参考答案与试题解析一.一次函数的应用(共1小题)1.(2023•广州)因活动需要购买某种水果,数学活动小组的同学通过市场调查得知:在甲商店购买该水果的费用y1(元)与该水果的质量x(千克)之间的关系如图所示;在乙商店购买该水果的费用y2(元)与该水果的质量x(千克)之间的函数解析式为y2=10x (x≥0).(1)求y1与x之间的函数解析式;(2)现计划用600元购买该水果,选甲、乙哪家商店能购买该水果更多一些?【答案】(1)y1与x之间的函数解析式为y1=;(2)在甲商店购买更多一些.【解答】解:(1)当0≤x≤5时,设y1与x之间的函数解析式为y1=kx(k≠0),把(5,75)代入解析式得:5k=75,解得k=15,∴y1=15x;当x>5时,设y1与x之间的函数解析式为y1=mx+n(m≠0),把(5,75)和(10,120)代入解析式得,解得,∴y1=9x+30,综上所述,y1与x之间的函数解析式为y1=;(2)在甲商店购买:9x+30=600,解得x=63,∴在甲商店600元可以购买63千克水果;在乙商店购买:10x=600,解得x=60,∴在乙商店600元可以购买60千克,∵63>60,∴在甲商店购买更多一些.二.反比例函数综合题(共1小题)2.(2023•广州)已知点P(m,n)在函数y=﹣(x<0)的图象上.(1)若m=﹣2,求n的值;(2)抛物线y=(x﹣m)(x﹣n)与x轴交于两点M,N(M在N的左边),与y轴交于点G,记抛物线的顶点为E.①m为何值时,点E到达最高处;②设△GMN的外接圆圆心为C,⊙C与y轴的另一个交点为F,当m+n≠0时,是否存在四边形FGEC为平行四边形?若存在,求此时顶点E的坐标;若不存在,请说明理由.【答案】(1)1;(2)①m=﹣;②假设存在,E(﹣,﹣),或(,﹣).【解答】解:(1)把m=﹣2代入y=﹣(x<0)得n=﹣=1;故n的值为1;(2)①在y=(x﹣m)(x﹣n)中,令y=0,则(x﹣m)(x﹣n)=0,解得x=m或x=n,∴M(m,0),N(n,0),∵点P(m,n)在函数y=﹣(x<0)的图象上,∴mn=﹣2,令x=,得y=(x﹣m)(x﹣n)=﹣(m﹣n)2=﹣2﹣(m+n)2≤﹣2,即当m+n=0,且mn=﹣2,则m2=2,解得:m=﹣(正值已舍去),即m=﹣时,点E到达最高处;②假设存在,理由:对于y=(x﹣m)(x﹣n),当x=0时,y=mn=﹣2,即点G(0,﹣2),由①得M(m,0),N(n,0),G(0,﹣2),E(,﹣(m﹣n)2),对称轴为直线x=,由点M(m,0)、G(0,﹣2)的坐标知,tan∠OMG==,作MG的中垂线交MG于点T,交y轴于点S,交x轴于点K,则点T(m,﹣1),则tan∠MKT=﹣m,则直线TS的表达式为:y=﹣m(x﹣m)﹣1.当x=时,y=﹣m(x﹣m)﹣1=﹣,则点C的坐标为:(,﹣).由垂径定理知,点C在FG的中垂线上,则FG=2(y C﹣y G)=2×(﹣+2)=3.∵四边形FGEC为平行四边形,则CE=FG=3=y C﹣y E=﹣﹣y E,解得:y E=﹣,即﹣(m﹣n)2=﹣,且mn=﹣2,则m+n=,∴E(﹣,﹣),或(,﹣).三.二次函数综合题(共2小题)3.(2022•广州)已知直线l:y=kx+b经过点(0,7)和点(1,6).(1)求直线l的解析式;(2)若点P(m,n)在直线l上,以P为顶点的抛物线G过点(0,﹣3),且开口向下.①求m的取值范围;②设抛物线G与直线l的另一个交点为Q,当点Q向左平移1个单位长度后得到的点Q′也在G上时,求G在≤x≤+1的图象的最高点的坐标.【答案】(1)y=﹣x+7;(2)①m<10且m≠0;②(﹣2,9)或(2,5).【解答】解:(1)将点(0,7)和点(1,6)代入y=kx+b,∴,解得,∴y=﹣x+7;(2)①∵点P(m,n)在直线l上,∴n=﹣m+7,设抛物线的解析式为y=a(x﹣m)2+7﹣m,∵抛物线经过点(0,﹣3),∴am2+7﹣m=﹣3,∴a=,∵抛物线开口向下,∴a<0,∴a=<0,∴m<10且m≠0;②∵抛物线的对称轴为直线x=m,∴Q点与Q'关于x=m对称,∴Q点的横坐标为m+,联立方程组,整理得ax2+(1﹣2ma)x+am2﹣m=0,∵P点和Q点是直线l与抛物线G的交点,∴m+m+=2m﹣,∴a=﹣2,∴y=﹣2(x﹣m)2+7﹣m,∴﹣2m2+7﹣m=﹣3,解得m=2或m=﹣,当m=2时,y=﹣2(x﹣2)2+5,此时抛物线的对称轴为直线x=2,图象在≤x≤上的最高点坐标为(2,5);当m=﹣时,y=﹣2(x+)2+,此时抛物线的对称轴为直线x=﹣,图象在﹣2≤x≤﹣1上的最高点坐标为(﹣2,9);综上所述:G在≤x≤+1的图象的最高点的坐标为(﹣2,9)或(2,5).4.(2021•广州)已知抛物线y=x2﹣(m+1)x+2m+3.(1)当m=0时,请判断点(2,4)是否在该抛物线上;(2)该抛物线的顶点随着m的变化而移动,当顶点移动到最高处时,求该抛物线的顶点坐标;(3)已知点E(﹣1,﹣1)、F(3,7),若该抛物线与线段EF只有一个交点,求该抛物线顶点横坐标的取值范围.【答案】(1)点(2,4)不在抛物线上;(2)(2,5);(3)x顶点<﹣或x顶点>或x顶点=1.【解答】解:(1)当m=0时,抛物线为y=x2﹣x+3,将x=2代入得y=4﹣2+3=5,∴点(2,4)不在抛物线上;(2)抛物线y=x2﹣(m+1)x+2m+3的顶点为(,),化简得(,),顶点移动到最高处,即是顶点纵坐标最大,而=﹣(m﹣3)2+5,∴m=3时,纵坐标最大,即是顶点移动到了最高处,此时该抛物线解析式为y=x2﹣4x+9,顶点坐标为:(2,5);(3)设直线EF解析式为y=kx+b,将E(﹣1,﹣1)、F(3,7)代入得:,解得,∴直线EF的解析式为y=2x+1,由得:或,∴直线y=2x+1与抛物线y=x2﹣(m+1)x+2m+3的交点为:(2,5)和(m+1,2m+3),而(2,5)在线段EF上,∴若该抛物线与线段EF只有一个交点,则(m+1,2m+3)不在线段EF上,或(2,5)与(m+1,2m+3)重合,∴m+1<﹣1或m+1>3或m+1=2(此时2m+3=5),∴此时抛物线顶点横坐标x顶点=<﹣或x顶点=>或x顶点===1.四.全等三角形的判定与性质(共1小题)5.(2023•广州)如图,B是AD的中点,BC∥DE,BC=DE.求证:∠C=∠E.【答案】证明见解析.【解答】证明:∵B是AD的中点,∴AB=BD,∵BC∥DE,∴∠ABC=∠D,在△ABC和△BDE中,,∴△ABC≌△BDE(SAS),∴∠C=∠E.五.四边形综合题(共3小题)6.(2023•广州)如图,在正方形ABCD中,E是边AD上一动点(不与点A,D重合).边BC关于BE对称的线段为BF,连接AF.(1)若∠ABE=15°,求证:△ABF是等边三角形;(2)延长F A,交射线BE于点G.①△BGF能否为等腰三角形?如果能,求此时∠ABE的度数;如果不能,请说明理由;②若,求△BGF面积的最大值,并求此时AE的长.【答案】(1)见解析;(2)①22.5°;②;.【解答】(1)证明:由轴对称的性质得到BF=BC,∵四边形ABCD是正方形,∴∠ABC=90°,∵∠ABE=15°,∴∠CBE=75°,∵BC关于BE对称的线段为BF,∴∠FBE=∠CBE=75°,∴∠ABF=∠FBE﹣∠ABE=60°,∴△ABF是等边三角形;(2)解:①能,∵边BC关于BE对称的线段为BF,∴BC=BF,∵四边形ABCD是正方形,∴BC=AB,∴BF=BC=BA,∵E是边AD上一动点,∴BA<BE<BG,∴点B不可能是等腰三角形BGF的顶点,若点F是等腰三角形BGF的顶点,则有∠FGB=∠FBG=∠CBG,此时E与D重合,不合题意,∴只剩下GF=GB了,连接CG交AD于H,∵BC=BF,∠CBG=∠FBG,BG=BG,∴△CBG≌△FBG(SAS),∴FG=CG,∴BG=CG,∴△BGF为等腰三角形,∵BA=BC=BF,∴∠BF A=∠BAF,∵△CBG≌△FBG,∴∠BFG=∠BCG,∵AD∥BC,∴∠AHG=∠BCG,∴∠BAF+∠HAG=∠AHG+∠HAG=180°﹣∠BAD=90°,∴∠FGC=180°﹣∠HAG﹣∠AHG=90°,∴∠BGF=∠BGC==45°,∵GB=GC,∴∠GBC=∠GCB=(180°﹣∠BGC)=67.5°,∴∠ABE=∠ABC﹣∠GBC=90°﹣67.5°=22.5°;②由①知,△CBG≌△FBG,要求△BGF面积的最大值,即求△BGC面积的最大值,在△GBC中,底边BC是定值,即求高的最大值即可,如图2,过G作GP⊥BC于P,连接AC,取AC的中点M,连接GM,作MN⊥BC于N,设AB=2x,则AC=2x,由①知∠AGC=90°,M是AC的中点,∴GM==x,MN==x,∴PG≤GM+MN=()x,当G,M,N三点共线时,取等号,∴△BGF面积的最大值==(1)×=;如图3,设PG与AD交于Q,则四边形ABPQ是矩形,∴AQ=PB=x,PQ=AB=2x,∴QM=MP=x,GM=x,∴,∵QE+AE=AQ=x,∴,∴=2()x=2(×()=.7.(2022•广州)如图,在菱形ABCD中,∠BAD=120°,AB=6,连接BD.(1)求BD的长;(2)点E为线段BD上一动点(不与点B,D重合),点F在边AD上,且BE=DF.①当CE⊥AB时,求四边形ABEF的面积;②当四边形ABEF的面积取得最小值时,CE+CF的值是否也最小?如果是,求CE+CF的最小值;如果不是,请说明理由.【答案】(1)6(2)①7;②是,最小值为12.【解答】解:(1)过点D作DH⊥AB交BA的延长线于H,如图:∵四边形ABCD是菱形,∴AD=AB=6,∵∠BAD=120°,∴∠DAH=60°,在Rt△ADH中,DH=AD•sin∠DAH=6×=3,AH=AD•cos∠DAH=6×=3,∴BD===6;(2)①设CE⊥AB交AB于M点,过点F作FN⊥AB交BA的延长线于N,如图:菱形ABCD中,∵AB=BC=CD=AD=6,AD∥BC,∠BAD=120°,∴∠ABC+∠BAD=180°,∴∠ABC=180°﹣∠BAD=60°,在Rt△BCM中,BM=BC•cos∠ABC=6×=3,∵BD是菱形ABCD的对角线,∴∠DBA=ABC=30°,在Rt△BEM中,ME=BM•tan∠DBM=3×=,BE===2,∵BE=DF,∴DF=2,∴AF=AD﹣DF=4,在Rt△AFN中,∠F AN=180°﹣∠BAD=60°,∴FN=AF•sin∠F AN=4×=2,AN=AF•cos∠F AN=4×=2,∴MN=AB+AN﹣BM=6+2﹣3=5,∴S四边形ABEF=S△BEM+S梯形EMNF﹣S△AFN=EM•BM+(EM+FN)•MN﹣AN•FN=3+(+2)×5﹣2×2=+﹣2=7;②当四边形ABEF的面积取最小值时,CE+CF的值是最小,理由:设DF=x,则BE=DF=x,过点C作CH⊥AB于点H,过点F作FG⊥CH 于点G,过点E作EY⊥CH于点Y,作EM⊥AB于M点,过点F作FN⊥AB交BA的延长线于N,如图:∴EY∥FG∥AB,FN∥CH,∴四边形EMHY、FNHG是矩形,∴FN=GH,FG=NH,EY=MH,EM=YH,由①可知:ME=BE=x,BM=BE=x,AN=AF=(AD﹣DF)=3﹣x,FN=AF=,CH=BC=3,BH=BC=3,∴AM=AB﹣BM=6﹣x,AH=AB﹣BH=3,YH=ME=x,GH=FN=,EY=MH=BM﹣BH=x﹣3,∴CY=CH﹣YH=3﹣x,FG=NH=AN+AH=6﹣,CG=CH﹣GH=3﹣=x,∴MN=AB+AN﹣BM=6+3﹣x﹣x=9﹣2x,∴S四边形ABEF=S△BEM+S梯形EMNF﹣S△AFN=EM•BM+(EM+FN)•MN﹣AN•FN=x×x+(x+)•(9﹣2x)﹣(3﹣x)•=x2﹣x+9=(x﹣3)2+,∵>0,∴当x=3时,四边形ABEF的面积取得最小值,方法一:CE+CF=+•=+=+×=+×=+,∵(x﹣3)2≥0,当且仅当x=3时,(x﹣3)2=0,∴CE+CF=+≥12,当且仅当x=3时,CE+CF=12,即当x=3时,CE+CF的最小值为12,∴当四边形ABEF的面积取最小值时,CE+CF的值也最小,最小值为12.方法二:如图:将△BCD绕点B逆时针旋转60°至△BAG,连接CG,在Rt△BCG中,CG=2BC=12,∵==,∠CDF=∠GBE=60°,∴△BEG∽△DFC,∴==,即GE=CF,∴CE+CF=CE+GE≥CG=12,即当且仅当点C、E、G三点共线时,CE+CF的值最小,此时点E为菱形对角线的交点,BD中点,BE=3,DF=3,∴当四边形ABEF的面积取最小值时,CE+CF的值也最小,最小值为12.解法二:如图,在BD上截取DM,使得DM=2,在DA上取点F,连接DF,使得△DFM∽△BEC.则有CE=FM,作点M关于AD的对称点M′,∴CE+CF=FM+CF=(CF+FM)=(CF+FM′),∴C,F,M′共线时,最小,此时DF=3,可得CE+CF的值也最小,最小值为12.8.(2021•广州)如图,在菱形ABCD中,∠DAB=60°,AB=2,点E为边AB上一个动点,延长BA到点F,使AF=AE,且CF、DE相交于点G.(1)当点E运动到AB中点时,证明:四边形DFEC是平行四边形;(2)当CG=2时,求AE的长;(3)当点E从点A开始向右运动到点B时,求点G运动路径的长度.【答案】见试题解答内容【解答】解:(1)证明:连接DF,CE,如图所示:,∵E为AB中点,∴AE=AF=AB,∴EF=AB=CD,∵四边形ABCD是菱形,∴EF∥CD,∴四边形DFEC是平行四边形.(2)作CH⊥BH,设AE=F A=m,如图所示,,∵四边形ABCD是菱形,∴CD∥EF,∴△CDG∽△FEG,∴,∴FG=2m,在Rt△CBH中,∠CBH=60°,BC=2,sin60°=,CH=,cos60°=,BH=1,在Rt△CFH中,CF=2+2m,CH=,FH=3+m,CF2=CH2+FH2,即(2+2m)2=()2+(3+m)2,整理得:3m2+2m﹣8=0,解得:m1=,m2=﹣2(舍去),∴.(3)G点轨迹为线段AG,证明:如图,(此图仅作为证明AG轨迹用),延长线段AG交CD于H,作HM⊥AB于M,作DN⊥AB于N,∵四边形ABCD是菱形,∴BF∥CD,∴△DHG∽△EGA,△HGC∽△AGF,∴,,∴,∵AE=AF,∴DH=CH=1,在Rt△ADN中,AD=2,∠DAB=60°.∴sin60°=,DN=.cos60°=,AN=1,在Rt△AHM中,HM=DN=,AM=AN+NM=AN+DH=2,tan∠HAM=,G点轨迹为线段AG.∴G点轨迹是线段AG.如图所示,作GH⊥AB,∵四边形ABCD为菱形,∠DAB=60°,AB=2,∴CD∥BF,BD=2,∴△CDG∽△FBG,∴,即BG=2DG,∵BG+DG=BD=2,∴BG=,在Rt△GHB中,BG=,∠DBA=60°,sin60°=,GH=,cos60°=,BH=,在Rt△AHG中,AH=2﹣=,GH=,AG2=()2+()2=,∴AG=.∴G点路径长度为.解法二:如图,连接AG,延长AG交CD于点W.∵CD∥BF,∴=,=,∴=,∵AF=AE,∴DW=CW,∴点G在AW上运动.下面的解法同上.六.圆的综合题(共2小题)9.(2023•广州)如图,在平面直角坐标系xOy中,点A(﹣2,0),B(0,2),所在圆的圆心为O.将向右平移5个单位,得到(点A平移后的对应点为C).(1)点D的坐标是(5,2),所在圆的圆心坐标是(5,0);(2)在图中画出,并连接AC,BD;(3)求由,BD,,CA首尾依次相接所围成的封闭图形的周长.(结果保留π)【答案】(1)(5,2)、(5,0);(2)见解答;(3)2π+10.【解答】解:(1)如下图,由平移的性质知,点D(5,2),所在圆的圆心坐标是(5,0),故答案为:(5,2)、(5,0);(2)在图中画出,并连接AC,BD,见下图;(3)和长度相等,均为×2πr=×2=π,而BD=AC=5,则封闭图形的周长=++2BD=2π+10.10.(2021•广州)如图,在平面直角坐标系xOy中,直线l:y=x+4分别与x轴,y轴相交于A、B两点,点P(x,y)为直线l在第二象限的点.(1)求A、B两点的坐标;(2)设△P AO的面积为S,求S关于x的函数解析式,并写出x的取值范围;(3)作△P AO的外接圆⊙C,延长PC交⊙C于点Q,当△POQ的面积最小时,求⊙C的半径.【答案】(1)A(﹣8,0),B(0,4);(2)S=2x+16(﹣8<x<0);(3)4.【解答】解:(1)∵直线y=x+4分别与x轴,y轴相交于A、B两点,∴当x=0时,y=4;当y=0时,x=﹣8,∴A(﹣8,0),B(0,4);(2)∵点P(x,y)为直线l在第二象限的点,∴P(x,),∴S△APO==2x+16(﹣8<x<0);∴S=2x+16(﹣8<x<0);(3)∵A(﹣8,0),B(0,4),∴OA=8,OB=4,在Rt△AOB中,由勾股定理得:AB=,在⊙C中,∵PQ是直径,∴∠POQ=90°,∵∠BAO=∠Q,∴tan Q=tan∠BAO=,∴,∴OQ=2OP,∴S△POQ=,∴当S△POQ最小时,则OP最小,∵点P在线段AB上运动,∴当OP⊥AB时,OP最小,∴S△AOB=,∴,∵sin Q=sin∠BAO,∴,∴,∴PQ=8,∴⊙C半径为4.七.作图—基本作图(共1小题)11.(2021•广州)如图,在四边形ABCD中,∠ABC=90°,点E是AC的中点,且AC=AD.(1)尺规作图:作∠CAD的平分线AF,交CD于点F,连结EF、BF(保留作图痕迹,不写作法);(2)在(1)所作的图中,若∠BAD=45°,且∠CAD=2∠BAC,证明:△BEF为等边三角形.【答案】(1)作图见解析部分.(2)证明见解析部分.【解答】(1)解:如图,图形如图所示.(2)证明:∵AC=AD,AF平分∠CAD,∴∠CAF=∠DAF,AF⊥CD,∵∠CAD=2∠BAC,∠BAD=45°,∴∠BAE=∠EAF=∠F AD=15°,∵∠ABC=∠AFC=90°,AE=EC,∴BE=AE=EC,EF=AE=EC,∴EB=EF,∠EAB=∠EBA=15°,∠EAF=∠EF A=15°,∴∠BEC=∠EAB+∠EBA=30°,∠CEF=∠EAF+∠EF A=30°,∴∠BEF=60°,∴△BEF是等边三角形.八.相似形综合题(共1小题)12.(2023•广州)如图,AC是菱形ABCD的对角线.(1)尺规作图:将△ABC绕点A逆时针旋转得到△ADE,点B旋转后的对应点为D(保留作图痕迹,不写作法);(2)在(1)所作的图中,连接BD,CE.①求证:△ABD∽△ACE;②若tan∠BAC=,求cos∠DCE的值.【答案】(1)作法、证明见解答;(2)①证明见解答;②cos∠DCE的值是.【解答】解:(1)如图1,作法:1.以点D为圆心,BC长为半径作弧,2.以点A为圆心,AC长为半径作弧,交前弧于点E,3.连接DE、AE,△ADE就是所求的图形.证明:∵四边形ABCD是菱形,∴AD=AB,∵DE=BC,AE=AC,∴△ADE≌△ABC(SSS),∴△ADE就是△ABC绕点A逆时针旋转得到图形.(2)①如图2,由旋转得AB=AD,AC=AE,∠BAC=∠DAE,∴=,∠BAC+∠CAD=∠DAE+∠CAD,∴∠BAD=∠CAE,∴△ABD∽△ACE.②如图2,延长AD交CE于点F,∵AB=AD,BC=DC,AC=AC,∴△ABC≌△ADC(SSS),∴∠BAC=∠DAC,∵∠BAC=∠DAE,∴∠DAE=∠DAC,∵AE=AC,∴AD⊥CE,∴∠CFD=90°,设CF=m,CD=AD=x,∵=tan∠DAC=tan∠BAC=,∴AF=3CF=3m,∴DF=3m﹣x,∵CF2+DF2=CD2,∴m2+(3m﹣x)2=x2,∴解关于x的方程得x=m,∴CD=m,∴cos∠DCE===,∴cos∠DCE的值是.九.解直角三角形(共1小题)13.(2022•广州)如图,AB是⊙O的直径,点C在⊙O上,且AC=8,BC=6.(1)尺规作图:过点O作AC的垂线,交劣弧于点D,连接CD(保留作图痕迹,不写作法);(2)在(1)所作的图形中,求点O到AC的距离及sin∠ACD的值.【答案】(1)详见解答;(2)点O到AC的距离为4,sin∠ACD=.【解答】解:(1)分别以A、C为圆心,大于AC为半径画弧,在AC的两侧分别相交于P、Q两点,画直线PQ交劣弧于点D,交AC于点E,即作线段AC的垂直平分线,由垂径定理可知,直线PQ一定过点O;(2)∵AB是⊙O的直径,∴∠ACB=90°,在Rt△ABC中,且AC=8,BC=6.∴AB==10,∵OD⊥AC,∴AE=CE=AC=4,又∵OA=OB,∴OE是△ABC的中位线,∴OE=BC=3,由于PQ过圆心O,且PQ⊥AC,即点O到AC的距离为3,连接OC,在Rt△CDE中,∵DE=OD﹣CE=5﹣3=2,CE=4,∴CD===2∴sin∠ACD===.一十.解直角三角形的应用-仰角俯角问题(共1小题)14.(2022•广州)某数学活动小组利用太阳光线下物体的影子和标杆测量旗杆的高度.如图,在某一时刻,旗杆AB的影子为BC,与此同时在C处立一根标杆CD,标杆CD的影子为CE,CD=1.6m,BC=5CD.(1)求BC的长;(2)从条件①、条件②这两个条件中选择一个作为已知,求旗杆AB的高度.条件①:CE=1.0m;条件②:从D处看旗杆顶部A的仰角α为54.46°.注:如果选择条件①和条件②分别作答,按第一个解答计分.参考数据:sin54.46°≈0.81,cos54.46°≈0.58,tan54.46°≈1.40.【答案】(1)BC的长为8m;(2)旗杆AB的高度约为12.8m.【解答】解:(1)∵BC=5CD,CD=1.6m,∴BC=5×1.6=8(m),∴BC的长为8m;(2)若选择条件①:由题意得:=,∴=,∴AB=12.8,∴旗杆AB的高度为12.8m;若选择条件②:过点D作DF⊥AB,垂足为F,则DC=BF=1.6m,DF=BC=8m,在Rt△ADF中,∠ADF=54.46°,∴AF=DF•tan54.46°≈8×1.4=11.2(m),∴AB=AF+BF=11.2+1.6=12.8(m),∴旗杆AB的高度约为12.8m.一十一.频数(率)分布直方图(共1小题)15.(2022•广州)某校在九年级学生中随机抽取了若干名学生参加“平均每天体育运动时间”的调查,根据调查结果绘制了如下不完整的频数分布表和频数分布直方图.频数分布表运动时间t/min频数频率30≤t<6040.160≤t<9070.17590≤t<120a0.35120≤t<15090.225150≤t<1806b合计n1请根据图表中的信息解答下列问题:(1)频数分布表中的a=14,b=0.15,n=40;(2)请补全频数分布直方图;(3)若该校九年级共有480名学生,试估计该校九年级学生平均每天体育运动时间不低于120min的学生人数.【答案】见试题解答内容【解答】解:(1)由题意可知,n=4÷0.1=40,∴a=40×0.35=14,b=6÷40=0.15,故答案为:14;0.15;40;(2)补全频数分布直方图如下:(3)480×=180(名),答:估计该校九年级学生平均每天体育运动时间不低于120min的学生人数为180名.。
全国181套中考数学试题分类汇编16一次函数(正比例函数)的图像和性质

16:一次函数(正比例函数)的图像和性质一、选择题1.(重庆江津4分)直线1y x =-的图象经过的象限是A 、第一、二、三象限B 、第一、二、四象限C 、第二、三、四象限D 、第一、三、四象限【答案】D 。
【考点】一次函数的性质。
【分析】由1y x =-可知直线与y 轴交于(0,﹣1)点,且y 随x 的增大而增大,可判断直线经过第一、三、四象限。
故选D 。
2.(黑龙江牡丹江3分)在平面直角坐标系中,点O 为原点,直线y kx b =+交x 轴于点A(-2,0),交y 轴于点B .若△AOB 的面积为8,则k 的值为 A .1 B .2 C .-2或4 D .4或-4 【答案】D 。
【考点】待定系数法,点的坐标与方程的关系。
【分析】根据题意画出图形,注意要分情况讨论,当B 在y 的正半轴和负半轴上时,分别求出B 点坐标,然后再利用待定系数法求出一次函数解析式,得到k 的值:①当B 在y 的正半轴上时,∵△AOB 的面积为8,∴12·OA·OB=8。
∵A(-2,0),∴OA=2,∴OB=8。
∴B(0,8)。
∵直线y kx b =+经过点A (-2,0)和点B (0,8). ∴208k b b -+=⎧⎨=⎩,解得48k b =⎧⎨=⎩。
②当B 在y 的负半轴上时,同①可得4k =-。
故选D 。
3.(广西桂林3分)直线1y kx =-一定经过点A 、(1,0)B 、(1,k )C 、(0,k )D 、(0,﹣1)【答案】D 。
【考点】直线上点的坐标与方程的关系。
【分析】根据点在直线上,点的坐标 满足方程的关系,由一次函数y kx b =+与y 轴的交点为(0,b )进行解答即可:∵直线y kx b =+中b =-1,∴此直线一定与y 轴相较于(0,-1)点, ∴此直线一定过点(0,-1)。
故选D 。
4.(广西百色3分)两条直线11y k x b =+和22y k x b =+相交于点A(-2,3),则方程组⎩⎨⎧+=+=2211b x k y b x k y 的解是 A ⎩⎨⎧==32y x B ⎩⎨⎧=-=32y x C ⎩⎨⎧-==23y x D ⎩⎨⎧==23y x【答案】B 。
2022年中考数学真题分类汇编:一次函数

2022年中考数学真题分类汇编:一次函数一、单选题(共15题;共45分)1.(3分)(2022·北部湾)已知反比例函数y=b x(b≠0)的图象如图所示,则一次函数y=cx−a(c≠0)和二次函数y=ax2+bx+c(a≠0)在同一平面直角坐标系中的图象可能是()A.B.C.D.【答案】D【解析】【解答】解:∵反比例函数y=bx(b≠0)的图象在第一和第三象限内,∴b>0,若a<0,则- b2a>0,所以二次函数开口向下,对称轴在y轴右侧,故A,B,C,D选项全不符合;当a>0,则- b2a<0时,所以二次函数开口向上,对称轴在y轴左侧,故只有C、D两选项可能符合题意,由C、D两选图象知,c<0,又∵a>0,则-a<0,当c<0,a>0时,一次函数y=cx-a图象经过第二、第三、第四象限,故只有D选项符合题意.故答案为:D.【分析】根据反比例函数图象所在的象限可得b>0,若a>0,则-b 2a <0时,二次函数开口向上,对称轴在y 轴左侧,据此排除A 、B ;若a>0,c<0,一次函数图象经过二、三、四象限,据此判断C 、D.2.(3分)(2022·鄂州)数形结合是解决数学问题常用的思想方法.如图,一次函数y =kx+b (k 、b 为常数,且k <0)的图象与直线y =13x 都经过点A (3,1),当kx+b <13x 时,x 的取值范围是( )A .x >3B .x <3C .x <1D .x >1【答案】A【解析】【解答】解:由函数图象可知不等式kx+b <13x 的解集即为一次函数图象在正比例函数图象下方的自变量的取值范围,∴当kx+b <13x 时,x 的取值范围是x >3.故答案为:A.【分析】根据图象,找出一次函数y=kx+b 的图象在直线 y =13x 的图象下方部分所对应的x 的范围即可.3.(3分)(2022·绥化)小王同学从家出发,步行到离家a 米的公园晨练,4分钟后爸爸也从家出发沿着同一路线骑自行车到公园晨练,爸爸到达公园后立即以原速折返回到家中,两人离家的距离y (单位:米)与出发时间x (单位:分钟)的函数关系如图所示,则两人先后两次相遇的时间间隔为( )A .2.7分钟B .2.8分钟C .3分钟D .3.2分钟【答案】C【解析】【解答】解: 如图:根据题意可得A (8,a ),D (12,a ),E (4,0),F (12,0)设AE 的解析式为y=kx+b ,则{0=4k +b a =8k +b ,解得{k =a 4b =−a ∴直线AE 的解析式为y=a4x-3a同理:直线AF 的解析式为:y=-a 4x+3a ,直线OD 的解析式为:y=a12x 联立{y =a 12x y =a 4x −a ,解得{x =6y =a 2联立{y =a12xy =−a 4x +3a,解得{x =9y =3a 4 两人先后两次相遇的时间间隔为9-6=3min .故答案为C .【分析】先求出直线AE 和直线OD 的解析式,再联立方程组{y =a12x y =a 4x −a 求出{x =6y =a 2和{y =a12xy =−a 4x +3a 求出{x =9y =3a 4,最后作差即可得到答案。
辽宁省2019年、2020年中考数学试题分类汇编(6)——一次函数

2019年、2020年 辽宁省数学中考试题分类(6)——一次函数一.规律型:点的坐标(共2小题)1.(2019•阜新)如图,在平面直角坐标系中,将△ABO 沿x 轴向右滚动到△AB 1C 1的位置,再到△A 1B 1C 2的位置……依次进行下去,若已知点A (4,0),B (0,3),则点C 100的坐标为( )A .(1200,125)B .(600,0)C .(600,125)D .(1200,0)2.(2020•朝阳)如图,动点P 从坐标原点(0,0)出发,以每秒一个单位长度的速度按图中箭头所示方向运动,第1秒运动到点(1,0),第2秒运动到点(1,1),第3秒运动到点(0,1),第4秒运动到点(0,2)…则第2068秒点P 所在位置的坐标是 .二.一次函数的图象(共1小题)3.(2019•辽阳)若ab <0且a >b ,则函数y =ax +b 的图象可能是( )A .B .C .D .三.一次函数的性质(共1小题)4.(2020•丹东)一次函数y =﹣2x +b ,且b >0,则它的图象不经过第 象限.四.正比例函数的性质(共1小题)5.(2019•本溪)函数y=5x的图象经过的象限是.五.一次函数图象与系数的关系(共3小题)6.(2020•沈阳)一次函数y=kx+b(k≠0)的图象经过点A(﹣3,0),点B(0,2),那么该图象不经过的象限是()A.第一象限B.第二象限C.第三象限D.第四象限7.(2019•铁岭)在平面直角坐标系中,函数y=kx+b的图象如图所示,则下列判断正确的是()A.k>0B.b<0C.k•b>0D.k•b<0 8.(2019•沈阳)已知一次函数y=(k+1)x+b的图象如图所示,则k的取值范围是()A.k<0B.k<﹣1C.k<1D.k>﹣1六.一次函数图象上点的坐标特征(共8小题)9.(2020•鞍山)如图,在平面直角坐标系中,点A1,A2,A3,A4,…在x轴正半轴上,点B1,B2,B3,…在直线y=√33x(x≥0)上,若A1(1,0),且△A1B1A2,△A2B2A3,△A3B3A4,…均为等边三角形,则线段B2019B2020的长度为()A.22021√3B.22020√3C.22019√3D.22018√310.(2019•锦州)如图,一次函数y =2x +1的图象与坐标轴分别交于A ,B 两点,O 为坐标原点,则△AOB 的面积为( )A .14B .12C .2D .411.(2020•锦州)如图,过直线l :y =√3x 上的点A 1作A 1B 1⊥l ,交x 轴于点B 1,过点B 1作B 1A 2⊥x 轴.交直线l 于点A 2;过点A 2作A 2B 2⊥l ,交x 轴于点B 2,过点B 2作B 2A 3⊥x 轴,交直线l 于点A 3;…按照此方法继续作下去,若OB 1=1,则线段A n A n ﹣1的长度为 .(结果用含正整数n 的代数式表示)12.(2020•辽阳)若一次函数y =2x +2的图象经过点(3,m ),则m = .13.(2019•朝阳)如图,直线y =13x +1与x 轴交于点M ,与y 轴交于点A ,过点A 作AB ⊥AM ,交x 轴于点B ,以AB 为边在AB 的右侧作正方形ABCA 1,延长A 1C 交x 轴于点B 1,以A 1B 1为边在A 1B 1的右侧作正方形A 1B 1C 1A 2…按照此规律继续作下去,再将每个正方形分割成四个全等的直角三角形和一个小正方形,每个小正方形的每条边都与其中的一条坐标轴平行,正方形ABCA 1,A 1B 1C 1A 2,…,A n ﹣1B n ﹣1C n ﹣1A n 中的阴影部分的面积分别为S 1,S 2,…,S n ,则S n 可表示为 .14.(2019•营口)如图,在平面直角坐标系中,直线l1:y=√3x+√3与x轴交于点A1,与y轴交于点A2,过点A1作x轴的垂线交直线l2:y=√33x于点B1,过点A1作A1B1的垂线交y轴于点B2,此时点B2与原点O重合,连接A2B1交x轴于点C1,得到第1个△C1B1B2;过点A2作y轴的垂线交l2于点B3,过点B3作y轴的平行线交l1于点A3,连接A3B2与A2B3交于点C2,得到第2个△C2B2B3……按照此规律进行下去,则第2019个△C2019B2019B2020的面积是.15.如图,点B1在直线l:y=12x上,点B1的横坐标为2,过B1作B1A1⊥l,交x轴于点A1,以A1B1为边,向右作正方形A1B1B2C1,延长B2C1交x轴于点A2;以A2B2为边,向右作正方形A2B2B3C2,延长B3C2交x轴于点A3;以A3B3为边,向右作正方形A3B3B4C3,延长B4C3交x轴于点A4;…;按照这个规律进行下去,点∁n的横坐标为(结果用含正整数n的代数式表示)16.(2019•大连)如图,在平面直角坐标系xOy中,直线y=−34x+3与x轴,y轴分别相交于点A,B,点C在射线BO上,点D在射线BA上,且BD=53OC,以CO,CD为邻边作▱COED.设点C的坐标为(0,m),▱COED在x轴下方部分的面积为S.求:(1)线段AB的长;(2)S关于m的函数解析式,并直接写出自变量m的取值范围.七.待定系数法求一次函数解析式(共1小题)17.(2019•丹东)如图,在平面直角坐标系中,点A,C分别在x轴、y轴上,四边形ABCO 是边长为4的正方形,点D为AB的中点,点P为OB上的一个动点,连接DP,AP,当点P满足DP+AP的值最小时,直线AP的解析式为.八.一次函数与一元一次不等式(共1小题)18.(2019•鞍山)如图,若一次函数y=﹣2x+b的图象与两坐标轴分别交于A,B两点,点A的坐标为(0,3),则不等式﹣2x+b>0的解集为()A.x>32B.x<32C.x>3D.x<3九.一次函数的应用(共5小题)19.(2019•辽阳)一条公路旁依次有A,B,C三个村庄,甲乙两人骑自行车分别从A村、B村同时出发前往C村,甲乙之间的距离s(km)与骑行时间t(h)之间的函数关系如图所示,下列结论:①A,B两村相距10km;②出发1.25h后两人相遇;③甲每小时比乙多骑行8km;④相遇后,乙又骑行了15min或65min时两人相距2km.其中正确的个数是()A.1个B.2个C.3个D.4个20.(2020•阜新)甲、乙两人沿笔直公路匀速由A地到B地,甲先出发30分钟,到达B地后原路原速返回与乙在C地相遇.甲的速度比乙的速度快35km/h,甲、乙两人与A地的距离y(km)和乙行驶的时间x(h)之间的函数关系如图所示,则B,C两地的距离为km(结果精确到1km).21.(2019•阜新)甲、乙两人分别从A,B两地相向而行,匀速行进甲先出发且先到达B地,他们之间的距离s(km)与甲出发的时间t(h)的关系如图所示,则乙由B地到A地用了h.22.(2019•大连)甲、乙两人沿同一条直路走步,如果两人分别从这条直路上的A,B两处同时出发,都以不变的速度相向而行,图1是甲离开A处后行走的路程y(单位:m)与行走时间x(单位:min)的函数图象,图2是甲、乙两人之间的距离y(单位:m)与甲行走时间x(单位:min)的函数图象,则a﹣b=.23.(2020•大连)甲、乙两个探测气球分别从海拔5m和15m处同时出发,匀速上升60min.如图是甲、乙两个探测气球所在位置的海拔y(单位:m)与气球上升时间x(单位:min)的函数图象.(1)求这两个气球在上升过程中y关于x的函数解析式;(2)当这两个气球的海拔高度相差15m时,求上升的时间.一十.一次函数综合题(共1小题)24.(2019•沈阳)在平面直角坐标系中,直线y=kx+4(k≠0)交x轴于点A(8,0),交y 轴于点B.(1)k的值是;(2)点C是直线AB上的一个动点,点D和点E分别在x轴和y轴上.①如图,点E 为线段OB 的中点,且四边形OCED 是平行四边形时,求▱OCED 的周长; ②当CE 平行于x 轴,CD 平行于y 轴时,连接DE ,若△CDE 的面积为334,请直接写出点C 的坐标.2019年、2020年辽宁省数学中考试题分类(6)——一次函数参考答案与试题解析一.规律型:点的坐标(共2小题)1.【解答】解:根据题意,可知:每滚动3次为一个周期,点C1,C3,C5,…在第一象限,点C2,C4,C6,…在x轴上.∵A(4,0),B(0,3),∴OA=4,OB=3,∴AB=√OA2+OB2=5,∴点C2的横坐标为4+5+3=12=2×6,同理,可得出:点C4的横坐标为4×6,点C6的横坐标为6×6,…,∴点C2n的横坐标为2n×6(n为正整数),∴点C100的横坐标为100×6=600,∴点C100的坐标为(600,0).故选:B.2.【解答】解:由题意分析可得,动点P第8=2×4秒运动到(2,0),动点P第24=4×6秒运动到(4,0),动点P第48=6×8秒运动到(6,0),以此类推,动点P第2n(2n+2)秒运动到(2n,0),∴动点P第2024=44×46秒运动到(44,0),2068﹣2024=44,∴按照运动路线,点P到达(44,0)后,向右一个单位,然后向上43个单位,∴第2068秒点P所在位置的坐标是(45,43),故答案为:(45,43).二.一次函数的图象(共1小题)3.【解答】解:∵ab<0,且a>b,∴a>0,b<0,∴函数y=ax+b的图象经过第一、三、四象限.故选:A.三.一次函数的性质(共1小题)4.【解答】解:∵一次函数y =﹣2x +b ,且b >0,∴它的图象经过第一、二、四象限,不经过第三象限.故答案为:三.四.正比例函数的性质(共1小题)5.【解答】解:函数y =5x 的图象经过一三象限,故答案为:一、三五.一次函数图象与系数的关系(共3小题)6.【解答】解:(方法一)将A (﹣3,0),B (0,2)代入y =kx +b ,得:{−3k +b =0b =2, 解得:{k =23b =2, ∴一次函数解析式为y =23x +2.∵k =23>0,b =2>0,∴一次函数y =23x +2的图象经过第一、二、三象限,即该图象不经过第四象限.故选:D .(方法二)依照题意,画出函数图象,如图所示.观察函数图象,可知:一次函数y =kx +b (k ≠0)的图象不经过第四象限. 故选:D .7.【解答】解:∵一次函数y =kx +b 的图象经过一、二、四象限, ∴k <0,b >0.∴kb <0,故选:D.8.【解答】解:∵观察图象知:y随x的增大而减小,∴k+1<0,解得:k<﹣1,故选:B.六.一次函数图象上点的坐标特征(共8小题)9.【解答】解:设△B n A n A n+1的边长为a n,∵点B1,B2,B3,…是直线y=√33x上的第一象限内的点,∴∠A n OB n=30°,又∵△B n A n A n+1为等边三角形,∴∠B n A n A n+1=60°,∴∠OB n A n=30°,∠OB n A n+1=90°,∴B n B n+1=OB n=√3a n,∵点A1的坐标为(1,0),∴a1=1,a2=1+1=2,a3=1+a1+a2=4,a4=1+a1+a2+a3=8,…,∴a n=2n﹣1.∴B2019B2020=√3a2019=√3×22018=22018√3,故选:D.10.【解答】解:一次函数y=2x+1中,当x=0时,y=1;当y=0时,x=﹣0.5;∴A(﹣0.5,0),B(0,1)∴OA=0.5,OB=1∴△AOB的面积=0.5×1÷2=1 4故选:A.11.【解答】解:∵直线l:y=√3x,∴直线l与x轴夹角为60°,∵B1为l上一点,且OB1=1,∴OA1=cos60°•OB1=12OB1=12,OB1=cos60°•OA2,∴OA2=2OB1=2,∴A2A1=2−12=32∵OA2=2,∴OB2=2OA2=4,∴OA3=2OB2=8,∴A3A2=8﹣2=6,…A n A n﹣1=3×22n﹣5故答案为3×22n﹣5.12.【解答】解:∵一次函数y=2x+2的图象经过点(3,m),∴m=2×3+2=8.故答案为:8.13.【解答】解:在直线y=13x+1中,当x=0时,y=1;当y=0时,x=﹣3;∴OA=1,OM=3,∴tan∠AMO=1 3,∵∠OAB+∠OAM=90°,∠AMO+∠OAM=90°,∴∠OAB=∠AMO,∴tan∠OAB=OBOA=13,∴OB=1 3.∵1−13=23,∴S1=(23)2=49,易得tan∠CBB1=B1CBC=tan∠OAB=13,∴B1C=13BC=13A1C=13AB,∴A1B1=43 AB,∴S2=(43)2S1=169S1,同理可得S3=169S2=(169)2S1,S4=169S3=(169)3S1,…,S n=(169)n−1S1=(169)n−1×49=(2432)n−1×(23)2=24n−432n−2×2232=24n−232n . 故答案为:24n−232n .14.【解答】解:∵y =√3x +√3与x 轴交于点A 1,与y 轴交于点A 2,∴A 1(−1,0),A 2(0,√3),在y =√33x 中,当x =﹣1时,y =−√33, ∴B 1(−1,−√33),设直线A 2B 1的解析式为:y =kx +b , 可得:{b =√3−k +b =−√33, 解得:{k =4√33b =√3,∴直线A 2B 1的解析式为:y =4√33x +√3,令y =0,可得:x =−34, ∴C 1(−34,0),∴S △C 1B 1B 2=12B 2C 1⋅A 1B 1=12×34×√33=√38=90√38, ∵△A 1B 1B 2∽△A 2B 2B 3,∴△C 1B 1B 2∽△C 2B 2B 3,∴S △C 2B 2B 3S △C 1B 1B 2=(B 2B 3B 1B 2)2=(A 2B 2A 1B 1)2=√3)2(√33)=9, ∴S △C 2B 2B 3=9S △C 1B 1B 2=98√3,同理可得:S △C 3B 3B 4=9S △C 2B 2B 3=928√3⋯, ∴△C 2019B 2019B 2020的面积=920188√3=340368√3, 故答案为:340368√3.15.【解答】解:过点B 1、C 1、C 2、C 3、C 4分别作B 1D ⊥x 轴,C 1D 1⊥x 轴,C 2D 2⊥x 轴,C 3D 3⊥x 轴,C 4D 4⊥x 轴,……垂足分别为D 、D 1、D 2、D 3、D 4……∵点B 1在直线l :y =12x 上,点B 1的横坐标为2,∴点B 1的纵坐标为1,即:OD =2,B 1D =1,图中所有的直角三角形都相似,两条直角边的比都是1:2,B 1D OD =12=DA 1B 1D =C 1D 1A 1D 1=D 1A 2C 1D 1=⋯ ∴点C 1的横坐标为:2+12+(32)0,点C 2的横坐标为:2+12+(32)0+(32)0×14+(32)1=52+(32)0×54+(32)1 点C 3的横坐标为:2+12+(32)0+(32)0×14+(32)1+(32)1×14+(32)2=52+(32)0×54+(32)1×54++(32)2 点C 4的横坐标为:=52+(32)0×54+(32)1×54+(32)2×54+(32)3 …… 点∁n 的横坐标为:=52+(32)0×54+(32)1×54+(32)2×54+(32)3×54+(32)4×54⋯⋯+(32)n ﹣1 =52+54[(32)0+(32)1×+(32)2+(32)3+(32)4……]+(32)n ﹣1 =72(32)n ﹣1. 故答案为:72(32)n ﹣1.16.【解答】解:(1)当x =0时,y =3,当y =0时,x =4,∴直线y =−34x +3与x 轴点交A (4,0),与y 轴交点B (0,3)∴OA =4,OB =3,∴AB =√32+42=5,因此:线段AB 的长为5.(2)当CD ∥OA 时,如图,∵BD =53OC ,OC =m ,∴BD =53m ,由△BCD ∽△BOA 得:BD BA =BC BO ,即:53m 5=3−m 3,解得:m =32; ①当32<m ≤3时,如图1所示:过点D 作DF ⊥OB ,垂足为F ,此时在x 轴下方的三角形与△CDF 全等,∵△BDF ∽△BAO ,∴BD DF =BA OA =54, ∴DF =43m ,同理:BF =m ,∴CF =2m ﹣3,∴S △CDF =12DF ⋅CF =12(2m ﹣3)×43m =43m 2﹣2m ,即:S =43m 2﹣2m ,(32<m ≤3) ②当0<m ≤32时,如图2所示:DE =m ≤32,此时点E 在△AOB 的内部,S =0 (0<m ≤32);③当﹣3<m ≤0时,如图3所示:同理可得:点D (−43m ,m +3)设直线CD 关系式为y =kx +b ,把C (0,m )、D (−43m ,m +3)代入得:{b =m −43mk +b =m +3,解得:k =−94m ,b =m , 直线CD 关系式为y =−94m x +m ,当y =0时,0=−94m x +m ,解得x =49m 2F (49m 2,0)∴S △COF =12OC •OF =12(﹣m )×49m 2=−29m 3,即:S =−29m 3,(﹣3<m ≤0)④当m <﹣3时,如图4所示:同理可得:点D (−43m ,m +3)此时,DF =﹣m ﹣3,OC =﹣m ,OF =−43m ,∴S 梯形OCDF =12(﹣m ﹣3﹣m )×(−43m )=43m 2+2m即:S =43m 2+2m (m <﹣3)综上所述:S 与m 的函数关系式为:S ={ 43m 2−2m(32<m ≤3)0(0<m ≤32)−29m 3(−3<m ≤0)43m 2+2m(m ≤−3).七.待定系数法求一次函数解析式(共1小题)17.【解答】解:∵四边形ABCO是正方形,∴点A,C关于直线OB对称,连接CD交OB于P,连接P A,PD,则此时,PD+AP的值最小,∵OC=OA=AB=4,∴C(0,4),A(4,0),∵D为AB的中点,∴AD =12AB =2,∴D (4,2),设直线CD 的解析式为:y =kx +b ,∴{4k +b =2b =4, ∴{k =−12b =4, ∴直线CD 的解析式为:y =−12x +4,∵直线OB 的解析式为y =x ,∴{y =−12x +4y =x, 解得:x =y =83,∴P (83,83), 设直线AP 的解析式为:y =mx +n ,∴{4m +n =083m +n =83,解得:{m =−2,n =8, ∴直线AP 的解析式为y =﹣2x +8,故答案为:y =﹣2x +8.八.一次函数与一元一次不等式(共1小题)18.【解答】解:∵一次函数y =﹣2x +b 的图象交y 轴于点A (0,3),∴b =3,令y =﹣2x +3中y =0,则﹣2x +3=0,解得:x =32,∴点B (32,0). 观察函数图象,发现:当x <32时,一次函数图象在x 轴上方,∴不等式﹣2x +b >0的解集为x <32.故选:B .九.一次函数的应用(共5小题)19.【解答】解:由图象可知A 村、B 村相离10km ,故①正确,当1.25h 时,甲、乙相距为0km ,故在此时相遇,故②正确,当0≤t ≤1.25时,易得一次函数的解析式为s =﹣8t +10,故甲的速度比乙的速度快8km /h .故③正确当1.25≤t ≤2时,函数图象经过点(1.25,0)(2,6)设一次函数的解析式为s =kt +b代入得{0=1.25k +b 6=2k +b ,解得{k =8b =−10∴s =8t ﹣10当s =2时.得2=8t ﹣10,解得t =1.5h由1.5﹣1.25=0.25h =15min同理当2≤t ≤2.5时,设函数解析式为s =kt +b将点(2,6)(2.5,0)代入得{0=2.5k +b 6=2k +b ,解得{k =−12b =30∴s =﹣12t +30当s =2时,得2=﹣12t +30,解得t =73由73−1.25=1312h =65min 故相遇后,乙又骑行了15min 或65min 时两人相距2km ,④正确.故选:D .20.【解答】解:由题意可知,甲行驶的速度为:25÷12=50(km /h ),A 、B 两地之间的距离为:25+50×2=125(km ),乙的速度为:50﹣35=15(km /h ),2+(125﹣15×2)÷(50+15)=3613,即乙出发3613小时后与甲相遇, 所以B ,C 两地的距离为:125−15×3613≈73(km ).故答案为:73.21.【解答】解:由图可得,甲的速度为:36÷6=6(km /h ),则乙的速度为:36−6×4.54.5−2=3.6(km /h ),则乙由B 地到A 地用时:36÷3.6=10(h ),故答案为:10.22.【解答】解:从图1,可见甲的速度为1202=60, 从图2可以看出,当x =67时,二人相遇,即:(60+V 乙)×67=120,解得:乙的速度V 乙=80,∵乙的速度快,从图2看出乙用了b 分钟走完全程,甲用了a 分钟走完全程,a ﹣b =12060−12080=12, 故答案为12.23.【解答】解:(1)设甲气球的函数解析式为:y =kx +b ,乙气球的函数解析式为:y =mx +n , 分别将(0,5),(20,25)和(0,15),(20,25)代入,{5=b 25=20k +b ,{15=n 25=20m +n, 解得:{k =1b =5,{m =12n =15, ∴甲气球的函数解析式为:y =x +5(x ≥0),乙气球的函数解析式为:y =12x +15(x ≥0);(2)由初始位置可得:当x 大于20时,两个气球的海拔高度可能相差15m ,且此时甲气球海拔更高,∴x +5﹣(12x +15)=15, 解得:x =50,∴当这两个气球的海拔高度相差15m 时,上升的时间为50min . 一十.一次函数综合题(共1小题)24.【解答】解:(1)将A (8,0)代入y =kx +4,得:0=8k +4, 解得:k =−12.故答案为:−12.(2)①由(1)可知直线AB 的解析式为y =−12x +4. 当x =0时,y =−12x +4=4,∴点B 的坐标为(0,4),∴OB =4.∵点E 为OB 的中点,∴BE =OE =12OB =2.∵点A 的坐标为(8,0),∴OA =8.∵四边形OCED 是平行四边形,∴CE ∥DA ,∴BC AC =BE OE =1,∴BC =AC ,∴CE 是△ABO 的中位线,∴CE =12OA =4.∵四边形OCED 是平行四边形,∴OD =CE =4,OC =DE .在Rt △DOE 中,∠DOE =90°,OD =4,OE =2,∴DE =√OD 2+OE 2=2√5,∴C 平行四边形OCED =2(OD +DE )=2(4+2√5)=8+4√5. ②设点C 的坐标为(x ,−12x +4),则CE =|x |,CD =|−12x +4|,∴S △CDE =12CD •CE =|−14x 2+2x |=334, ∴x 2﹣8x +33=0或x 2﹣8x ﹣33=0. 方程x 2﹣8x +33=0无解; 解方程x 2﹣8x ﹣33=0,得:x 1=﹣3,x 2=11, ∴点C 的坐标为(﹣3,112)或(11,−32).。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
中考数学一次函数试题分类汇编一、选择题1、(2007)已知一次函数(1)y a x b =-+的图象如图1所示,那么a 的取值围是( )A A .1a >B .1a <C .0a >D .0a <2、(2007市)如果一次函数y kx b =+的图象经过第一象限,且与y 轴负半轴相交,那么( )B A .0k >,0b > B .0k >,0b <C .0k <,0b >D .0k <,0b <3、(2007)如图2,一次函数图象经过点A ,且与正比例函数y x =-的 图象交于点B ,则该一次函数的表达式为( )B A .2y x =-+ B .2y x =+ C .2y x =-D .2y x =--4、(2007)将直线y =2x 向右平移2个单位所得的直线的解析式是( )。
CA 、y =2x +2B 、y =2x -2C 、y =2(x -2)D 、y =2(x +2)5、(2007)如图,是一次函数y=kx+b 与反比例函数y=2x的图像,则关于x 的方程kx+b=2x的解为( )C (A)x l =1,x 2=2 (B)x l =-2,x 2=-1 (C)x l =1,x 2=-2 (D)x l =2,x 2=-16、(2007)已知一次函数y kx b =+的图象如图(6)所示,当1x <时,y 的取值围是( )CA.20y -<< B.40y -<<C.2y <-D.4y <-7、(2007)一次函数1y kx b =+与2y x a =+的图象如图,则下列结论①0k <;②0a >;③当3x <时,12y y <中,正确的个数是( )B A .0 B .1 C .2D .3二、填空题1、(2007)若正比例函数kx y =(k ≠0)经过点(1-,2),则该正比例函数的解析式为=y ___________。
x 2-2、(2007广西)随着海拔高度的升高,大气压强下降,空气中的含氧量也随之下降,xyO32y x a =+1y kx b =+第7题图1Oxy图(6)2-4xy Oxy A B1- y x =- 2图2即含氧量3(g /m )y 与大气压强(kPa)x 成正比例函数关系.当36(kPa)x =时,3108(g /m )y =,请写出y 与x 的函数关系式3y x =3、(2007)如图,一次函数y ax b =+的图象经过A 、B 两点,则关于x 的不等式0ax b +<的解集是 . x <24、(2007)抛物线()2226y x =--的顶点为C ,已知3y kx =-+的图象经过点C ,则这个一次函数图象与两坐标轴所围成的三角形面积为 。
15、(2007)在平面直角坐标系xOy 中,已知一次函数(0)y kx b k =+≠的图象过点(11)P ,,与x 轴交于点A ,与y 轴交于点B ,且tan 3ABO ∠=,那么点A 的坐标是 .(20)(40)-,,,.6、(2007)从-2,-1,1,2这四个数中,任取两个不同的数作为一次函数y kx b =+的系数k ,b ,则一次函数y kx b =+的图象不经过第四象限的概率是________.167、(2007)如图7,正比例函数图象经过点A ,该函数解析式是 .3y x =三、解答题1、(2007等7市)某产品每件成本10元,试销阶段每件产品的销售价x (元)与产品的日销售量y (件)之间的关系如下表:若日销售量y 是销售价x 的一次函数.(1)求出日销售量y (件)与销售价x (元)的函数关系式;(2)求销售价定为30元时,每日的销售利润. 解:(1)设此一次函数解析式为.y kx b =+则1525,2020.k b k b +=⎧⎨+=⎩ 解得k =-1,b =40.即一次函数解析式为40y x =-+.x (元) 15 20 25… y (件) 25 20 15… (第3题图)图7xy AO 1 3(2)每日的销售量为y =-30+40=10件, 所获销售利润为(30-10)×10=200元2、(2007陇南) 如图,两摞相同规格的饭碗整齐地叠放在桌面上,请根据图中给的数据信息,解答下列问题:(1)求整齐摆放在桌面上饭碗的高度y (cm )与饭碗数x (个)之间的一次函数解析式; (2)把这两摞饭碗整齐地摆成一摞时,这摞饭碗的高度是多少?解:(1)设y kx b =+.由图可知:当4x =时,10.5y =;当7x =时,15y =.把它们分别代入上式,得 10.54,157.k b k b =+⎧⎨=+⎩ ,解得 1.5k =, 4.5b =.∴ 一次函数的解析式是 1.5 4.5y x =+.(2)当4711x =+=时, 1.511 4.521y =⨯+=.即把这两摞饭碗整齐地摆成一摞时,这摞饭碗的高度是21cm .3、(2007)周日上午,小俊从外地乘车回.一路上,小俊记下了如下数据:观察时间 9∶00(t =0) 9∶06(t =6) 9∶18(t =18) 路牌容 90km 80km 60km(注:“90km ”表示离的距离为90千米)假设汽车离的距离s (千米)是行驶时间t (分钟)的一次函数,求s 关于t 的函数关系式.解:设s =kt +b ,则90680b k b =⎧⎨+=⎩,解得:5390k b ⎧=-⎪⎨⎪=⎩,所以s =-53t +904、(2007)为调动销售人员的积极性,A 、B 两公司采取如下工资支付方式:A 公司每月2000元基本工资,另加销售额的2%作为奖金;B 公司每月1600元基本工资,另加销售额的4%作为奖金。
已知A 、B 公司两位销售员小、小1~6月份的销售额如下表:月份 销售额 销售额(单位:元) 1月 2月 3月 4月 5月 6月 小(A 公司) 11600 12800 14000 15200 16400 17600 小(B 公司 7400 9200 1100 12800 14600 16400 (1)请问小与小3月份的工资各是多少? (2)小1~6月份的销售额1y 与月份x 的函数关系式是1120010400,y x =+小1~6月份的销售额2y 也是月份x 的一次函数,请求出2y 与x 的函数关系式;(3)如果7~12月份两人的销售额也分别满足(2)中两个一次函数的关系,问几月份起小的工资高于小的工资。
解:(1)小3月份工资=2000+2%×14000=2280(元) 小3月份工资=1600+4%×11000=2040(元)(2)设2y kx b =+,取表中的两对数(1,7400),(2,9200)代入解析式,得274001800560092002,k b k y x k b b =+⎧⎧=+⎨⎨=+⎩⎩=1800 解得 即=5600(3)小的工资120002%(120010400)242208w x x =++=+小的工资216004%(18005600)721824w x x =++=+ 当小的工资211824242208w w x x >+>+时,即72 解得,x>8答:从9月份起,小的工资高于小的工资。
5、(2007)某校八年级学生小丽、小强和小红到某超市参加了社会实践活动,在活动中他们参与了某种水果的销售工作,已知该水果的进价为8元/千克,下面是他们在活动结束后的对话。
小丽:如果以10元/千克的价格销售,那么每天可售出300千克。
小强:如果以13元/千克的价格销售,那么每天可获取利润750元。
小红:通过调查验证,我发现每天的销售量y (千克)与销售单价x (元)之间存在一次函数关系。
(1)求y (千克)与x (元)(x >0)的函数关系式;(2)设该超市销售这种水果每天获取的利润为W 元,那么当销售单价为何值时,每天可获得的利润最大?最大利润是多少元?【利润=销售量×(销售单价-进价)】6、(2007)东从A 地出发以某一速度向B 地走去,同时小明从B 地出发以另一速度向A 地而行,如图所示,图中的线段1y 、2y 分别表示小东、小明离B 地的距离(千米)与所用时间(小时)的关系。
⑴试用文字说明:交点P 所表示的实际意义。
⑵试求出A 、B 两地之间的距离。
解:⑴交点P 所表示的实际意义是:经过2.5小时后,小东与小明在距离B 地7.5千米处相遇。
⑵设b kx y +=1,又1y 经过点P (2.5,7.5),(4,0) ∴⎩⎨⎧=+=+045.75.2b k b k ,解得⎩⎨⎧-==520k m∴2051+-=x y 当0=x 时,201=y 故AB 两地之间的距离为20千米。
7、(2007)某市为了鼓励居民节约用水,采用分段计费的方法按月计算每户家庭的水费,月用水量不超过203m 时,按2元/3m 计费;月用水量超过203m 时,其中的203m 仍按2元/3m 收费,超过部Oy (千米)x (小时)y 1y 21 2 32.5 4 7.5P分按2.6元/3m 计费.设每户家庭用用水量为3m x 时,应交水费y 元. (1)分别求出020x ≤≤和20x >时y 与x 的函数表达式; (2)小明家第二季度交纳水费的情况如下: 月份 四月份 五月份 六月份 交费金额 30元 34元 42.6元小明家这个季度共用水多少立方米?解:(1)当020x ≤≤时,y 与x 的函数表达式是2y x =; 当20x >时,y 与x 的函数表达式是220 2.6(20)y x =⨯+-,即 2.612y x =-; ····························· 3分(2)因为小明家四、五月份的水费都不超过40元,六月份的水费超过40元,所以把30y =代入2y x =中,得15x =;把34y =代入2y x =中,得17x =;把42.6y =代入 2.612y x =-中,得21x =. ····································· 5分 所以15172153++=. ··························· 6分 答:小明家这个季度共用水253m .8、(2007)通过市场调查,一段时间某地区某一种农副产品的需求数量y (千克)与市场价格x (元/千克)(030x <<)存在下列关系: x (元/千克) 5 10 15 20 y (千克) 4500 4000 3500 3000又假设该地区这种农副产品在这段时间的生产数量z (千克)与市场价格x (元/千克)成正比例关系:400z x =(030x <<).现不计其它因素影响,如果需求数量y 等于生产数量z ,那么此时市场处于平衡状态.(1)请通过描点画图探究y 与x 之间的函数关系,并求出函数关系式;(2)根据以上市场调查,请你分析:当市场处于平衡状态时,该地区这种农副产品的市场价格与这段时间农民的总销售收入各是多少?5 10 15 20 25 x (元/千克) y (千克)5000 4500 4000 3500 3000(第8题图)O(3)如果该地区农民对这种农副产品进行精加工,此时生产数量z 与市场价格x 的函数关系发生改变,而需求数量y 与市场价格x 的函数关系未发生变化,那么当市场处于平衡状态时,该地区农民的总销售收入比未精加工市场平衡时增加了17600元.请问这时该农副产品的市场价格为多少元? 解:(1)描点略.设y kx b =+,用任两点代入求得1005000y x =-+, 再用另两点代入解析式验证. (2)y z =,1005000400x x ∴-+=,10x ∴=.∴总销售收入10400040000=⨯=(元)∴农副产品的市场价格是10元/千克,农民的总销售收入是40000元. (3)设这时该农副产品的市场价格为a 元/千克,则(1005000)4000017600a a -+=+, 解之得:118a =,232a =.030a <<,18a ∴=.∴这时该农副产品的市场价格为18元/千克.9、(2007)2007年5月,第五届中国长江三峡国际龙舟拉力赛在黄陵庙揭开比赛帷幕.20日上午9时,参赛龙舟从黄陵庙同时出发.其中甲、乙两队在比赛时,路程y (千米)与时间x (小时)的函数关系如图所示.甲队在上午11时30分到达终点黄柏河港. (1)哪个队先到达终点?乙队何时追上甲队?(2)在比赛过程中,甲、乙两队何时相距最远? 解:(1)乙队先达到终点,(1分)对于乙队,x =1时,y =16,所以y =16x ,(2分)对于甲队,出发1小时后,设y 与x 关系为y =kx +b , 将x =1,y =20和x =2.5,y =35分别代入上式得:⎩⎨⎧+=+=bk bk 5.23520 解得:y =10x +10(3分) (第9题)解方程组⎩⎨⎧+==101016x y x y 得:x =35,即:出发1小时40分钟后(或者上午10点40分)乙队追上甲队.(4分)(2)1小时之,两队相距最远距离是4千米,(1分)乙队追上甲队后,两队的距离是16x -(10x +10)=6x -10,当x 为最大,即x =1635时,6x -10最大,(2分)此时最大距离为6×1635-10=3.125<4,(也可以求出AD 、CE 的长度,比较其大小)所以比赛过程中,甲、乙两队在出发后1小时(或者上午10时)相距最远(3分)10、(2007市)平面直角坐标系中,点A 的坐标是(4,0),点P 在直线y =-x +m 上,且AP =OP =4.求m 的值.CBA路程/千米时间/时1.5160.5 2.521403520解:由已知AP =OP ,点P 在线段OA 的垂直平分线PM 上. ………………(2分) 如图,当点P 在第一象限时,OM =2,OP =4.在Rt △OPM 中,PM =22224223OP OM -=-=, ……………………(4分)∴ P (2,23).∵ 点P 在y =-x +m 上,∴ m =2+23.………………………………(6分)当点P 在第四象限时,根据对称性,P '((2,-23). ∵ 点P'在y =-x +m 上,∴ m =2-23. ………………………………(8分)则m 的值为2+23或2-23.11、(2007)某县在实施“村村通”工程中,决定在A 、B 两村之间修筑一条公路,甲乙两个工程队分别从A ,B 两村同时相向开始修筑,施工期间,乙队因另有任务提前离开,余下的任务四甲队单独完成,直到道路修通,下图是甲乙两个工程队修道路的长度Y (米)与修筑时间x (天)之间的函数图象,请根据图象所提供的信息,求该的公路的总长度。