随机变量及其分布考点总结
随机变量及其分布知识点整理 推荐

随机变量及其分布知识点整理以及高考训练一、离散型随机变量的分布列一般地,设离散型随机变量X 可能取的值为12,,,,,i n x x x x ⋅⋅⋅⋅⋅⋅,X 取每一个值(1,2,,)i x i n =⋅⋅⋅的概率()i i P X x p ==,则称以下表格Xx 1 x 2 … x i … x n Pp 1 p 2 … p i … p n为随机变量X 的概率分布列,简称X 的分布列. 离散型随机变量的分布列具有下述两个性质: (1)0,1,2,,i P i n =⋅⋅⋅≥ (2)121n p p p ++⋅⋅⋅+= 两点分布如果随机变量X 的分布列为 X1P 1-p p则称X 服从两点分布。
二、条件概率一般地,设A,B 为两个事件,且()0P A >,称()(|)()P AB P B A P A =为在事件A 发生的条件下,事件B 发生的条件概率. 0(|)1P B A ≤≤ 如果B 和C 互斥,那么[()|](|)(|)P B C A P B A P C A =+三、相互独立事件设A ,B 两个事件,如果事件A 是否发生对事件B 发生的概率没有影响(即()()()P AB P A P B =),则称事件A 与事件B 相互独立。
()()()A B P AB P A P B ⇔=即、相互独立一般地,如果事件A 1,A 2,…,A n 两两相互独立,那么这n 个事件同时发生的概率,等于每个事件发生的概率的积,即1212(...)()()...()n n P A A A P A P A P A =.注:(1)互斥事件:指同一次试验中的两个事件不可能同时发生;(2)相互独立事件:指在不同试验下的两个事件互不影响. 四、n 次独立重复试验一般地,在相同条件下,重复做的n 次试验称为n 次独立重复试验.在n 次独立重复试验中,记i A 是“第i 次试验的结果”,显然,1212()()()()n n P A A A P A P A P A ⋅⋅⋅=⋅⋅⋅ “相同条件下”等价于各次试验的结果不会受其他试验的影响 注: 独立重复试验模型满足以下三方面特征第一:每次试验是在同样条件下进行;第二:各次试验中的事件是相互独立的;第三:每次试验都只有两种结果,即事件要么发生,要么不发生. n 次独立重复试验的公式:n A X A p n A k 一般地,在次独立重复试验中,设事件发生的次数为,在每次试验中事件发生的概率为,那么在次独立重复试验中,事件恰好发生次的概率为()(1),0,1,2,...,.(1)k k n k k k n kn n P X k C p p C p q k n q p --==-===-其中,而称p 为成功概率.五、二项分布一般地,在n 次独立重复试验中,用X 表示事件A 发生的次数,设每次试验中事件A 发生的概率为p ,则()(1)0,1,2,,k kn k n P X k C p p k n -==-=⋅⋅⋅,X 01… k … nP00nn C p q111n n C p q -…k k n kn C p q - …n n n C p q此时称随机变量X 服从二项分布,记作~(,)X B n p ,并称p 为成功概率. 六、离散随机变量的均值(数学期望)一般地,随机变量X 的概率分布列为 Xx 1 x 2 … x i … x n Pp 1 p 2 … p i … p n则称1122()i i n n E X x p x p x p x p =+++++为X 的数学期望或均值,简称为期望.它反映了离散型随机变量取值的平均水平. 七、离散型随机变量取值的方差和标准差 一般地,若离散型随机变量x 的概率分布列为 Xx 1 x 2 … x i … x n Pp 1 p 2 … p i … p n2221122(())(())(())..n n DX x E X p x E X p x E X p X DX X =-+-+⋅⋅⋅+-则称为随机变量的方差并称为随机变量的标准差例题练习11年山东数学高考红队队员甲、乙、丙与蓝队队员A 、B 、C 进行围棋比赛,甲对A ,乙对B ,丙对C 各一盘,已知甲胜A ,乙胜B ,丙胜C 的概率分别为0.6,0.5,0.5,假设各盘比赛结果相互独立. (Ⅰ)求红队至少两名队员获胜的概率;(Ⅱ)用ξ表示红队队员获胜的总盘数,求ξ的分布列和数学期望E ξ.12年山东数学高考先在甲、乙两个靶.某射手向甲靶射击一次,命中的概率为34,命中得1分,没有命中得0分;向乙靶射击两次,每次命中的概率为23,每命中一次得2分,没有命中得0分.该射手每次射击的结果相互独立.假设该射手完成以上三次射击.(Ⅰ)求该射手恰好命中一次得的概率;(Ⅱ)求该射手的总得分X的分布列及数学期望EX.13年山东数学高考甲、乙两支排球队进行比赛,约定先胜3局者获得比赛的胜利,比赛随即结束.除第五局甲队获胜的概率是12外,其余每局比赛甲队获胜的概率是23.假设每局比赛结果互相独立.(1)分别求甲队以3:0,3:1,3:2胜利的概率(2)若比赛结果为3:0或3:1,则胜利方得3分,对方得0分;若比赛结果为3:2,则胜利方得2分、对方得1分,求乙队得分x的分布列及数学期望.13年天津数学高考一个盒子里装有7张卡片, 其中有红色卡片4张, 编号分别为1, 2, 3, 4; 白色卡片3张, 编号分别为2, 3, 4. 从盒子中任取4张卡片(假设取到任何一张卡片的可能性相同).(Ⅰ) 求取出的4张卡片中, 含有编号为3的卡片的概率.(Ⅱ) 再取出的4张卡片中, 红色卡片编号的最大值设为X, 求随机变量X的分布列和数学期望.13年北京数学高考下图是某市3月1日至14日的空气质量指数趋势图,空气质量指数小于100表示空气质量优良,空气质量指数大于200表示空气重度污染,某人随机选择3月1日至3月13日中的某一天到达该市,并停留2天(Ⅰ)求此人到达当日空气重度污染的概率(Ⅱ)设X是此人停留期间空气质量优良的天数,求X的分布列与数学期望。
第二章随机变量及其分一、基本要求、重点与难点

第二章随机变量及其分一、基本要求、重点与难点(一)基本要求1.理解随机变量的概念。
2.掌握离散型随机变量和连续型随机变理的描述方法。
3.理解分布列与概率密度的概念及其性质。
4.理解分布函数的概念及性质。
5.会应用概率分布计算有关事件的概率。
6.掌握二项分布、泊松分布、均匀分布、正态分布和指数分布。
7.会求简单随机变量函数的分布。
(二)重点1.离散型随机变量的分布列和分布函数的概念及性质。
2.连续型随机变量的密度函数和分布函数的概念及性质。
3.掌握二项分布、泊松分布、均匀分布、正态分布和指数分布。
4.随机变量的一些简单函数的概率分布的求法。
(三)难点1.离散型随机变量的分布列与分布函数的关系。
2.连续型随机变量的密度函数与分布函数的关系。
3.随机变量函数的分布的计算。
二、重点内容简介§1 随机变量的概念及分类定义定义在样本空间Ω上的一个实值函数X=X(ω),使随机试验的每一个结果ω都可用一个实数X(ω)来表示,且实数X满足1)X是由ω唯一确定;2)对于任意给定的实数x,事件{X≤x}都是有概率的,则称X为一随机变量,一般用大写字母X,Y,Z等表示。
引入随机变量后,随机事件就可以通过随机变量来表示,这样,我们就把对事件的研究转化为对随机变量的研究。
随机变量一般可分为离散型和非离散型两大类。
非离散型又可分为连续型和混合型。
由于在实际工作中我们经常遇到的是离散型和连续型的随机变量,因此一般情况下我们仅讨论这两个类型的随机变量。
§2 随机变量的分布函数及其性质定义 设X 为一随机变量,x 是任意实数,称函数 F(x)=P(X ≤x) (-∞<x<+∞) 为随机变量X 的分布函数。
分布函数是一个以全体实数为其定义域,以事件{ω|∞<X(ω)≤∞}的概率为函数值的一个实值函数。
分布函数具有以下的基本性质: 1) 0≤F(x )≤1;2) F(x )是非减函数; 3) F(x )是右连续的; 4)lim ()0,lim ()1;x x F x F x →−∞→+∞==设随机变量X 的分布函数为F(x ),则可用F(x )来表示下列概率:(1) ()();(2) ()(0);(3) ()1()1();(4) ()1()1(0);(5) ()()()()(0);(6) (||)()()()(0)();P X a F a P X a F a P X a P X a F a P X a P X a F a P X a P X a P X a F a F a P X a P a X a P X a P X a F a F a ≤=<=−>=−≤=−≥=−<=−−==≤−<=−−<=−<<=<−≤−=−−−§ 3 离散型随机变量1 定义定义 如果随机变量X (ω)所有可能取值是有限个或可列多个,则称X (ω)为离散型随机变量(discrete random variable )简写作d .r .v .。
随机变量及其分布总结

随机变量及其分布1、基本概念⑴互斥事件:不可能同时发生的两个事件.如果事件A B C 、、,其中任何两个都是互斥事件,则说事件A B C 、、彼此互斥. 当A B 、是互斥事件时,那么事件A B +发生(即A B 、中有一个发生)的概率,等于事件A B 、分别发生的概率的和,即()()(P A B P A P B +=+.⑵对立事件:其中必有一个发生的两个互斥事件.事件A 的对立事件通常记着A . 对立事件的概率和等于1. ()1()P A P A =-.特别提醒:“互斥事件”与“对立事件”都是就两个事件而言的,互斥事件是不可能同时发生的两个事件,而对立事件是其中必有一个发生的互斥事件,因此,对立事件必然是互斥事件,但互斥事件不一定是对立事件,也就是说“互斥”是“对立”的必要但不充分的条件.⑶相互独立事件:事件A (或B )是否发生对事件B (或A )发生的概率没有影响,(即其中一个事件是否发生对另一个事件发生的概率没有影响).这样的两个事件叫做相互独立事件.当A B 、是相互独立事件时,那么事件A B ⋅发生(即A B 、同时发生)的概率,等于事件A B 、分别发生的概率的积.即()()()P A B P A P B ⋅=⋅.若A 、B 两事件相互独立,则A 与B 、A 与B 、A 与B 也都是相互独立的.⑷独立重复试验①一般地,在相同条件下重复做的n 次试验称为n 次独立重复试验.②独立重复试验的概率公式p ,那么在n 次独立重复试验中这个试验恰好发生k 次的概率()()(1)0,12,.,k k n k n n P k n k C p p -==-⑸条件概率:对任意事件A 和事件B ,在已知事件A 发生的条件下事件B 发生的概率,叫做条件概率.记作P(B|A),读作A 发生的条件下B 发生的概率.知识结构公式:()(),()0.()P AB P B A P A P A => 2、离散型随机变量 ⑴随机变量:如果随机试验的结果可以用一个变量来表示,那么这样的变量叫做随机变量 随机变量常用字母,,,X Y ξη等表示.⑵离散型随机变量:对于随机变量可能取的值,可以按一定次序一一列出,这样的随机变量叫做离散型随机变量.⑶连续型随机变量: 对于随机变量可能取的值,可以取某一区间内的一切值,这样的变量就叫做连续型随机变量.⑷离散型随机变量与连续型随机变量的区别与联系: 离散型随机变量与连续型随机变量都是用变量表示随机试验的结果;但是离散型随机变量的结果可以按一定次序一一列出,而连续性随机变量的结果不可以一一列出.若X 是随机变量,(,Y aX b a b =+是常数)则Y 也是随机变量 并且不改变其属性(离散型、连续型).3、离散型随机变量的分布列⑴概率分布(分布列)设离散型随机变量X 可能取的不同值为12,x x ,…,i x ,…,n x ,X )i i X x p ==,则称表为随机变量的概率分布,简称的分布列.性质:①0,1,2,...;i p i n ≥= ②1 1.n i i p ==∑⑵两点分布则称X 服从两点分布,并称(1)p P X ==为成功概率.⑶二项分布如果在一次试验中某事件发生的概率是p ,那么在n 次独立重复试验中这个事件恰好发生k 次的概率是()(1).k k n k n P X k C p p -==-我们称这样的随机变量X 服从二项分布,记作()p n B X ,~,并称p 为成功概率.判断一个随机变量是否服从二项分布,关键有三点:①对立性:即一次试验中事件发生与否二者必居其一;②重复性:即试验是独立重复地进行了n 次;① 等概率性:在每次试验中事件发生的概率均相等.② 注:⑴二项分布的模型是有放回抽样;⑵二项分布中的参数是,,.p k n⑷超几何分布一般地, 在含有M 件次品的N 件产品中,任取n 件,其中恰有X 件次品数,则事件{}X k =发生的概率为()(0,1,2,,)k n k M N M n N C C P X k k m C --===,于是得到随机变量X其中{}min ,m M n =,*,,,,n N M N n M N N ∈≤≤. 我们称这样的随机变量X 的分布列为超几何分布列,且称随机变量X 服从超几何分布.注:⑴超几何分布的模型是不放回抽样;⑵超几何分布中的参数是,,.M N n 其意义分别是总体中的个体总数、N 中一类的总数、样本容量.4、离散型随机变量的均值与方差⑴离散型随机变量的均值则称()1122i i n n E X x p x p x p x p =+++++为离散型随机变量X 的均值或数学期望(简称期望).它反映了离散型随机变量取值的平均水平.⑵离散型随机变量的方差则称21()(())n ii i D X x E X p ==-∑为离散型随机变量X 的方差,为随机变量X 的标准差.它反映了离散型随机变量取值的稳定与波动,集中与离散的程度. ()D X 越小,X 的稳定性越高,波动越小,取值越集中;()D X 越大,X 的稳定性越差,波动越大,取值越分散.。
随机变量及其分布知识点总结资料讲解.doc

圆梦教育中心 随机变量及其分布知识点整理一、离散型随机 量的分布列一 般 地 , 离 散 型 随 机 量 X 可 能 取 的x 1 , x 2 , , x i ,, x n , X 取 每 一 个 x i (i1,2, , n) 的 概 率P( Xx i ) p i , 称以下表格Xx 1 x 2 ⋯ x i ⋯ x n Pp 1p 2⋯p i⋯p n随机 量 X 的概率分布列, 称X 的分布列 .离散型随机 量的分布列具有下述两个性 :( 1) P i ≥ 0, i1,2, , n ( 2) p 1 p 2 p n 11.两点分布如果随机 量X 的分布列X1P 1-p p称 X 服从两点分布,并称p=P(X=1) 成功概率 .2.超几何分布 一般地,在含有M 件次品的 N 件 品中,任取 n 件,其中恰有 X 件次品, 事件X k 生的概率 :P( X k ) C M k C N n k M , k 0,1,2,3,..., mC nN 随机 量 X 的概率分布列如下:X1 ⋯ mPC M 0 C N n 0MC M 1 C N n 1M⋯C M m C N n m MC N nC N nC N n其中 mmin M , n , 且nN , M N , n, M , N N * 。
注:超几何分布的模型是不放回抽 二、条件概率一般地, A,B 两个事件 , 且 P( A)0 ,称P(B | A)P( AB )在事件 A 生的条件下 , 事件 B 生的条件概率 .P( A)0≤ P(B | A) ≤ 1如果 B 和 C 互斥,那么 P[( B U C ) | A] P( B | A) P(C | A)三、 相互独立事件A ,B 两个事件, 如果事件 A 是否 生 事件 B 生的概率没有影响( 即 P( AB) P( A)P( B) ), 称事件 A 与事件B 相互独立。
即 A 、 B 相互独立P( AB) P( A) P(B)一般地,如果事件A ,A , ⋯,A n 两两相互独立,那么n 个事件同 生的概率,等于每个事件 生的概率的 ,12即 P( A 1A 2... A n ) P( A 1 ) P( A 2 )...P( A n ) .注: (1) 互斥事件:指同一次试验中的两个事件不可能同时发生;(2)相互独立事件:指在不同试验下的两个事件互不影响.四、 n 次独立重复试验一般地,在相同条件下,重复做的n 次试验称为n 次独立重复试验.在 n 次独立重复试验中,记A i是“第i次试验的结果” ,显然, P( A1 A2A n ) P( A1 )P( A2 )P( A n )“相同条件下”等价于各次试验的结果不会受其他试验的影响注: 独立重复试验模型满足以下三方面特征第一:每次试验是在同样条件下进行;第二:各次试验中的事件是相互独立的;第三:每次试验都只有两种结果,即事件要么发生,要么不发生.n次独立重复试验的公式:一般地,在 n次独立重复中,事件 A生的次数 X,在每次中事件 A生的概率 p,那么在 n次独立重复中,事件 A 恰好生 k次的概率P( X k ) C n k p k (1 p)n k C n k p k q n k , k 0,1,2,..., n.(其中 q 1 p) ,而称p为成功概率.五、二项分布一般地,在n 次独立重复试验中,用X 表示事件 A 发生的次数,设每次试验中事件 A 发生的概率为p,则P( X k ) C n k p k (1 p)n k, k 0,1,2, ,nX01⋯k⋯nP C n0 p0q n C n1 p1q n 1⋯C n k p k q n k⋯C n n p n q0此时称随机变量X 服从二项分布,记作X ~ B(n, p) ,并称p为成功概率.六、离散随机变量的均值(数学期望)一般地,随机变量X 的概率分布列为X x1 x2 ⋯x i ⋯x nP p1 p2 ⋯p i ⋯p n则称 E( X ) x1 p1 x2 p2x i p i x n p n为X 的数学期望或均值,简称为期望 . 它反映了离散型随机变量取值的平均水平 .1.若Y aX b ,其中a,b常数,则Y 也是变量Y ax1 b ax2 b ⋯ax i b ⋯ax n bP p1 p2⋯p ⋯pi n则 EY aE( X ) b ,即 E(aX b) aE ( X ) b 2.一般地,如果随机变量X 服从两点分布,那么E( X )=1 p 0 (1 p)p 3.若X ~ B(n, p),则E( X ) np七、离散型随机变量取值的方差和标准差一般地 , 若离散型随机变量x 的概率分布列为X x1 x2 ⋯x i ⋯x nP p1 p2 ⋯p i ⋯p n则称 DX ( x1 E (X )) 2 p1 ( x2 E( X )) 2 p2 (x n E ( X 并称DX 为随机变量 X的标准差 .1.若 X 服从两点分布,则 D ( X ) p(1 p)2.若X ~ B(n, p),则D ( X )np(1 p)3.D ( aX b)a2 D ( X )即若 X 服从两点分布,则E( X )p。
高中数学随机变量总结归纳

高中数学随机变量总结归纳随机变量是概率论和数理统计中的重要概念,用于描述随机试验中各种可能结果的数值特征。
在高中数学中,我们学习了随机变量及其分布、均值、方差等基本概念。
本文将对高中数学中关于随机变量的知识进行总结和归纳。
一、随机变量的定义及分类随机试验是指可以重复进行、结果不确定的试验,随机变量是对试验结果进行数值化的方式。
随机变量可以分为离散随机变量和连续随机变量。
1. 离散随机变量离散随机变量的取值有限或可数。
例如,掷骰子的点数、抛硬币的正反面等都属于离散随机变量。
离散随机变量可以用概率分布列来描述。
2. 连续随机变量连续随机变量的取值是无限的某个区间内的任意数值。
例如,身高、体重等都属于连续随机变量。
连续随机变量可以用概率密度函数来描述。
二、离散随机变量的分布律离散随机变量的分布律用概率分布列来表示。
概率分布列包括随机变量的各个取值及其对应的概率。
以掷骰子为例,掷骰子的点数可以取1、2、3、4、5、6六个值,每个值的概率相等,都是1/6。
三、连续随机变量的概率密度函数连续随机变量的概率密度函数描述了随机变量的取值在某个区间内的概率分布情况。
概率密度函数具有非负性和归一性。
以身高为例,身高的概率密度函数可以用正态分布曲线来表示。
四、随机变量的均值与方差随机变量的均值和方差是描述随机变量集中趋势和离散程度的重要指标。
1. 离散随机变量的均值和方差离散随机变量的均值用期望值来表示,记作E(X),方差用Var(X)来表示。
离散随机变量的期望值等于各个取值乘以其对应的概率之和,方差则是各个取值与期望值的差的平方乘以对应概率之和。
2. 连续随机变量的均值和方差连续随机变量的均值和方差的计算方法与离散随机变量类似,只是求和变成了积分。
五、常见的离散分布和连续分布在概率论和数理统计中,有很多常见的离散分布和连续分布。
我们在高中数学中主要学习了以下几种:1. 离散分布(1) 二项分布(2) 泊松分布2. 连续分布(1) 正态分布(2) 均匀分布(3) 指数分布六、随机变量的独立性和和的分布当存在多个随机变量时,我们可以研究它们之间的独立性以及它们的和的分布。
随机变量及其分布方法总结经典习题及解答

随机变量及其分布方法总结经典习题及解答一、离散型随机变量及其分布列1、离散型随机变量:对于随机变量可能取的值,可以按一定次序一一列出,这样的随机变量叫做离散型随机变量。
常用大写英文字母X、Y等或希腊字母ξ、η等表示。
2、分布列:设离散型随机变量ξ可能取得值为:x1,x2,…,x3,…,ξ取每一个值xi(i=1,2,…)的概率为,则称表ξx1x2…xi…PP1P2…Pi…为随机变量ξ的分布列3、分布列的两个性质:⑴Pi≥0,i=1,2,… ⑵P1+P2+…=1、常用性质来判断所求随机变量的分布列是否正确!二、热点考点题型考点一: 离散型随机变量分布列的性质1、随机变量ξ的概率分布规律为P(ξ=n)=(n=1,2,3,4),其中a是常数,则P(<ξ<)的值为A、B、C、D、答案:D考点二:离散型随机变量及其分布列的计算2、有六节电池,其中有2只没电,4只有电,每次随机抽取一个测试,不放回,直至分清楚有电没电为止,所要测试的次数为随机变量,求的分布列。
解:由题知2,3,4,5∵ 表示前2只测试均为没电,∴ ∵ 表示前两次中一好一坏,第三次为坏,∴ ∵ 表示前四只均为好,或前三只中一坏二好,第四个为坏,∴ ∵ 表示前四只三好一坏,第五只为坏或前四只三好一坏第五只为好∴ ∴ 分布列为2345P三、条件概率、事件的独立性、独立重复试验、二项分布与超几何分布1、条件概率:称为在事件A发生的条件下,事件B发生的概率。
2、相互独立事件:如果事件A(或B)是否发生对事件B (或A)发生的概率没有影响,这样的两个事件叫做相互独立事件。
①如果事件A、B是相互独立事件,那么,A与、与B、与都是相互独立事件②两个相互独立事件同时发生的概率,等于每个事件发生的概率的积。
我们把两个事件A、B同时发生记作AB,则有P(AB)= P(A)P(B)推广:如果事件A1,A2,…An相互独立,那么这n个事件同时发生的概率,等于每个事件发生的概率的积。
随机变量及其分布考点总结

第二章 随机变量及其分布 复习一、随机变量.1. 随机试验的结构应该是不确定的.试验如果满足下述条件:①试验可以在相同的情形下重复进行;②试验的所有可能结果是明确可知的,并且不止一个;③每次试验总是恰好出现这些结果中的一个,但在一次试验之前却不能肯定这次试验会出现哪一个结果. 它就被称为一个随机试验.2. 离散型随机变量:如果对于随机变量可能取的值,可以按一定次序一一列出,这样的随机变量叫做离散型随机变量.若ξ是一个随机变量,a ,b 是常数.则b a +=ξη也是一个随机变量.一般地,若ξ是随机变量,)(x f 是连续函数或单调函数,则)(ξf 也是随机变量.也就是说,随机变量的某些函数也是随机变量.3、分布列:设离散型随机变量ξ可能取的值为: ,,,,21i x x xξ取每一个值),2,1( =i x 的概率p x P ==)(,则表称为随机变量ξ的概率分布,简称ξ的分布列.1=≥i p ; ②121=++++ i p p p .注意:若随机变量可以取某一区间的一切值,这样的变量叫做连续型随机变量.例如:]5,0[∈ξ即ξ可以取0~5之间的一切数,包括整数、小数、无理数. 典型例题:1、随机变量ξ的分布列为(),1,2,3(1)cP k k k k ξ===+……,则P(13)____ξ≤≤=2、袋中装有黑球和白球共7个,从中任取两个球都是白球的概率为17,现在甲乙两人从袋中轮流摸去一球,甲先取,乙后取,然后甲再取……,取后不放回,直到两人中有一人取到白球时终止,用ξ表示取球的次数。
(1)求ξ的分布列(2)求甲取到白球的的概率3、5封不同的信,放入三个不同的信箱,且每封信投入每个信箱的机会均等,X 表示三哥信箱中放有信件树木的最大值,求X 的分布列。
4已知在全部50人中随机抽取1人抽到喜爱打篮球的学生的概率为5.(1)请将上面的列联表补充完整;(2)是否有99.5%的把握认为喜爱打篮球与性别有关?说明你的理由;(3)已知喜爱打篮球的10位女生中,12345,,A A A A A ,,还喜欢打羽毛球,123B B B ,,还喜欢打乒乓球,12C C ,还喜欢踢足球,现再从喜欢打羽毛球、喜欢打乒乓球、喜欢踢足球的女生中各选出1名进行其他方面的调查,求1B 和1C 不全被选中的概率.k2.072 2.7063.841 5.024 6.635 7.879 10.828(参考公式:2()()()()()n ad bc K a b c d a c b d -=++++,其中n a b c d =+++)二、几种常见概率1、条件概率与事件的独立性(1)B|A 与AB 的区别:__________________(2)P(B|A)的计算公式_____________,注意分子分母事件的性质相同 (3)P(AB)的计算公式_____________注意三点:前提,目标,一般情况___________________ (4)P (A+B )的计算公式__________注意三点:前提,目标,一般情况____________________ 典型例题:1、市场上供应的灯泡,甲厂产品占70%,乙厂产品占30%,甲厂产品的合格率是95%,乙厂产品的合格率80%,则从市场上买到一个是甲厂产的合格品的概率是多少?2、把一副扑克52随即均分给钱四家,A={家得到六章草花},B={家得到3草花},计算P(B|A),P(AB)3、从混有5假钞的20百元钞票中任取两,将其中1在验钞机上检验发现是假钞,求两都是假钞的概率。
随机变量及其分布知识点总结

随机变量及其分布知识点总结随机变量是数学中的一个基本概念,描述了一个随机事件的可能结果。
在概率论和统计学中,随机变量的分布是研究随机变量性质的重要工具。
本文将总结随机变量及其分布的相关知识,包括随机变量的定义、表示、分布、期望、方差等。
一、随机变量的定义随机变量是一种描述随机事件可能的变量,通常用符号 $X$ 表示。
随机变量的取值可以是离散的或连续的。
离散的随机变量只取有限或可数个取值,而连续的随机变量则取无限个取值。
二、随机变量的表示随机变量的表示通常用概率密度函数 $f_X(x)$ 或概率质量函数$g_X(x)$ 表示。
概率密度函数是描述随机变量取值分布的函数,通常用$f_X(x)$ 表示。
概率质量函数是描述随机变量离散程度的函数,通常用$g_X(x)$ 表示。
三、随机变量的分布随机变量的分布描述了随机变量取值的概率分布。
离散分布描述了随机变量只取有限或可数个取值的概率分布,连续分布描述了随机变量取无限个取值的概率分布。
1. 离散分布离散分布通常用 $P(X=x)$ 表示,其中 $x$ 是随机变量的取值。
离散分布的概率质量函数通常用 $g_X(x)$ 表示。
例如,正态分布的概率质量函数为:$$g_X(x) = frac{sqrt{2pi}}{x!}e^{-frac{(x-1)^2}{2}}$$2. 连续分布连续分布通常用 $P(X leq x)$ 表示,其中 $x$ 是随机变量的取值。
连续分布的概率质量函数通常用 $f_X(x)$ 表示。
例如,均匀分布的概率质量函数为: $$f_X(x) = begin{cases}1, & x in [0,1],0, & x in [1,2],end{cases}$$四、期望和方差随机变量的期望是随机变量的取值的总和。
离散分布的期望通常用$E(X)$ 表示,连续分布的期望通常用 $E[X]$ 表示。
期望的概率质量函数通常用$f_X(x)$ 表示。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
第二章 随机变量及其分布 复习一、随机变量.1. 随机试验的结构应该是不确定的.试验如果满足下述条件:①试验可以在相同的情形下重复进行;②试验的所有可能结果是明确可知的,并且不止一个;③每次试验总是恰好出现这些结果中的一个,但在一次试验之前却不能肯定这次试验会出现哪一个结果. 它就被称为一个随机试验.2. 离散型随机变量:如果对于随机变量可能取的值,可以按一定次序一一列出,这样的随机变量叫做离散型随机变量.若ξ是一个随机变量,a ,b 是常数.则b a +=ξη也是一个随机变量.一般地,若ξ是随机变量,)(x f 是连续函数或单调函数,则)(ξf 也是随机变量.也就是说,随机变量的某些函数也是随机变量. 3、分布列:设离散型随机变量ξ可能取的值为:ΛΛ,,,,21i x x xξ取每一个值),2,1(Λ=i x 的概率p x P ==)(,则表称为随机变量ξ的概率分布,简称ξ的分布列.121i 注意:若随机变量可以取某一区间内的一切值,这样的变量叫做连续型随机变量.例如:]5,0[∈ξ即ξ可以取0~5之间的一切数,包括整数、小数、无理数. 典型例题:1、随机变量ξ的分布列为(),1,2,3(1)cP k k k k ξ===+……,则P(13)____ξ≤≤=2、袋中装有黑球和白球共7个,从中任取两个球都是白球的概率为17,现在甲乙两人从袋中轮流摸去一球,甲先取,乙后取,然后甲再取……,取后不放回,直到两人中有一人取到白球时终止,用ξ表示取球的次数。
(1)求ξ的分布列(2)求甲取到白球的的概率3、5封不同的信,放入三个不同的信箱,且每封信投入每个信箱的机会均等,X 表示三哥信箱中放有信件树木的最大值,求X 的分布列。
4已知在全部50人中随机抽取1人抽到喜爱打篮球的学生的概率为5.(1)请将上面的列联表补充完整;(2)是否有99.5%的把握认为喜爱打篮球与性别有关?说明你的理由;(3)已知喜爱打篮球的10位女生中,12345,,A A A A A ,,还喜欢打羽毛球,123B B B ,,还喜欢打乒乓球,12C C ,还喜欢踢足球,现再从喜欢打羽毛球、喜欢打乒乓球、喜欢踢足球的女生中各选出1名进行其他方面的调查,求1B 和1C 不全被选中的概率.(参考公式:2()()()()()n ad bc K a b c d a c b d -=++++,其中n a b c d =+++)二、几种常见概率1、条件概率与事件的独立性(1)B|A 与AB 的区别:__________________(2)P(B|A)的计算公式_____________,注意分子分母事件的性质相同 (3)P(AB)的计算公式_____________注意三点:前提,目标,一般情况___________________ (4)P (A+B )的计算公式__________注意三点:前提,目标,一般情况____________________ 典型例题:1、市场上供应的灯泡,甲厂产品占70%,乙厂产品占30%,甲厂产品的合格率是95%,乙厂产品的合格率80%,则从市场上买到一个是甲厂产的合格品的概率是多少?2、把一副扑克52张随即均分给赵钱孙李四家,A={赵家得到六章草花},B={孙家得到3张草花},计算P(B|A),P(AB)3、从混有5张假钞的20张百元钞票中任取两张,将其中1张在验钞机上检验发现是假钞,求两张都是假钞的概率。
4、有外形相同的球分装在三个盒子,每个盒子10个,其中第一个盒子7球标有字母A ,3个球标有字母B ;第二个盒子中五个红球五个白球;第三个盒子八个红球,两个白球;在如下规则下:先在第一个盒子取一个球,若是A 球,则在第二个盒子取球;如果第一次取出的是B 球,则在第三个盒子中取球,如果第二次取出的球是红球,则称试验成功,求试验成功的概率。
5、在图所示的电路中,5只箱子表示保险匣,箱中所示数值表示通电时保险丝被切断的概率,当开关合上时,电路畅通的概率是________6、甲、乙二射击运动员分别对一目标射击1次,甲射中的概率为0.8,乙射中的概率为0.9,求:(1)2人都射中目标的概率; (2)2人中恰有1人射中目标的概率; (3)2人至少有1人射中目标的概率; (4)2人至多有1人射中目标的概率?三、几种分布1. ⑴独立重复试验与二项分布:如果在一次试验中某事件发生的概率是P ,那么在n 次独立重复试验中这个事件恰好发生k 次的概率是:kn k k n qp C k)P(ξ-==[其中p q n k -==1,,,1,0Λ] 于是得到随机变量ξ的概率分布如下:我们称这样的随机变量ξ服从二项分布,记作ξ~B (n ·p ),其中n ,p 为参数,并记p)n b(k;q p C k n k k n ⋅=-. ⑵二项分布的判断与应用.①二项分布,实际是对n 次独立重复试验.关键是看某一事件是否是进行n 次独立重复,且每次试验只有两种结果,如果不满足此两条件,随机变量就不服从二项分布.②当随机变量的总体很大且抽取的样本容量相对于总体来说又比较小,而每次抽取时又只有两种试验结果,此时可以把它看作独立重复试验,利用二项分布求其分布列. 2. 几何分布:“k =ξ”表示在第k 次独立重复试验时,事件第一次发生,如果把k 次试验时事件A 发生记为k A ,事A 不发生记为q )P(A ,A k k =,那么)A A A A P(k)P(ξk 1k 21-==Λ.根据相互独立事件的概率乘法分式:))P(A A P()A )P(A P(k)P(ξ==Λ),3,2,1(1Λ==-k p q k 于是得到随机变量ξ的概率分布列.我们称ξ服从几何分布,并记p q p)g(k,1k -=,其中Λ3,2,1.1=-=k p q3. ⑴超几何分布:一批产品共有N 件,其中有M (M <N )件次品,今抽取)N n n(1≤≤件,则其中的次品数ξ是一离散型随机变量,分布列为)M N k n M,0k (0C C C k)P(ξnNk n MN k M -≤-≤≤≤⋅⋅==--.〔分子是从M 件次品中取k 件,从N-M 件正品中取n-k 件的取法数,如果规定m <r 时0C rm=,则k 的范围可以写为k=0,1,…,n.〕⑵超几何分布的另一种形式:一批产品由 a 件次品、b 件正品组成,今抽取n 件(1≤n ≤a+b ),则次品数ξ的分布列为n.,0,1,k C C C k)P(ξn ba kn bk a Λ=⋅==+-.⑶超几何分布与二项分布的关系.设一批产品由a 件次品、b 件正品组成,不放回抽取n 件时,其中次品数ξ服从超几何分布.若放回式抽取,则其中次品数η的分布列可如下求得:把b a +个产品编号,则抽取n 次共有n b a )(+个可能结果,等可能:k)(η=含kn k k n ba C -个结果,故n ,0,1,2,k ,)ba a (1)b a a (C b)(a ba C k)P(ηkn k k n nkn k k n Λ=+-+=+==--,即η~)(b a a n B +⋅.[我们先为k 个次品选定位置,共k n C 种选法;然后每个次品位置有a 种选法,每个正品位置有b 种选法] 可以证明:当产品总数很大而抽取个数不多时,k)P(ηk)P(ξ=≈=,因此二项分布可作为超几何分布的近似,无放回抽样可近似看作放回抽样. 典型例题:1、某气象站天气预报的准确率为80%,计算(结果保留两个有效数字):(1)5次预报中恰有4次准确的概率;(2)5次预报中至少有4次准确的概率2、在一个圆锥体的培养房内培养了40只蜜蜂,准备进行某种实验,过圆锥高的中点有一个不计厚度且平行于圆锥底面的平面把培养房分成两个实验区,其中小锥体叫第一实验区,圆台体叫第二实验区,且两个实验区是互通的。
假设蜜蜂落入培养房内任何位置是等可能的,且蜜蜂落入哪个位置相互之间是不受影响的。
(1)求蜜蜂落入第二实验区的概率;(2)若其中有10只蜜蜂被染上了红色,求恰有一只红色蜜蜂落入第二实验区的概率; (3)记X 为落入第一实验区的蜜蜂数,求随机变量X 的数学期望EX 。
3、A 、B 是治疗同一种疾病的两种药,用若干试验组进行对比试验。
每个试验组由4只小白鼠组成,其中两只服用A ,两只服用B ,然后观察疗效。
若在一个试验组中,服用A 有效的小白鼠只数比服用B 有效的多,就称该试验组为甲类组。
设每只小白鼠服用A 有效的概率为2/3,服用B 有效的概率为1/2. (1)求一个试验组为甲类组的概率。
(2)观察3个试验组,用ξ表示3个试验组中甲类组的个数,求ξ分布列4. 某射击运动员每次射击击中目标的概率为p (0<p<1)。
他有10发子弹,现对某一目标连续射击,每次打一发子弹,直到击中目标,或子弹打光为止。
求他射击次数的分布列。
5、、由180只集成电路组成的一批产品中,有8只是次品,现从中任抽4只,用ξ表示其中的次品数,试求:(1)抽取的4只中恰好有k 只次品的概率;(2)求ξ分布列.二、数学期望与方差.n n 2211.数学期望反映了离散型随机变量取值的平均水平.2. ⑴随机变量b a +=ξη的数学期望:b aE b a E E +=+=ξξη)( ①当0=a 时,b b E =)(,即常数的数学期望就是这个常数本身.②当1=a 时,b E b E +=+ξξ)(,即随机变量ξ与常数之和的期望等于ξ的期望与这个常数的和. ③当0=b 时,ξξaE a E =)(,即常数与随机变量乘积的期望等于这个常数与随机变量期望的乘积. ⑵单点分布:c c E =⨯=1ξ其分布列为:c P ==)1(ξ. ⑶两点分布:p p q E =⨯+⨯=10ξ,其分布列为: (p + q = 1) ⑷二项分布:∑=⋅-⋅=-np q p k n k n k E k n k )!(!!ξ 其分布列为ξ~),(p n B .(P 为发生ξ的概率)⑸几何分布:pE 1=ξ 其分布列为ξ~),(p k q .(P 为发生ξ的概率) 3.方差、标准差的定义:当已知随机变量ξ的分布列为),2,1()(Λ===k p x P k k ξ时,则称ΛΛ+-++-+-=n n p E x p E x p E x D 2222121)()()(ξξξξ为ξ的方差. 显然0≥ξD ,故σξξσξ.D =为ξ的根方差或标准差.随机变量ξ的方差与标准差都反映了随机变量ξ取值的稳定与波动,集中与离散的程度.ξD 越小,稳....定性越高,波动越小........... 4.方差的性质.⑴随机变量b a +=ξη的方差ξξηD a b a D D 2)()(=+=.(a、b 均为常数) ⑵单点分布:0=ξD 其分布列为p P ==)1(ξ ⑶两点分布:pq D =ξ 其分布列为:(p + q = 1) ⑷二项分布:npq D =ξ ⑸几何分布:2p q D =ξ5. 期望与方差的关系.⑴如果ξE 和ηE 都存在,则ηξηξE E E ±=±)(⑵设ξ和η是互相独立的两个随机变量,则ηξηξηξξηD D D E E E +=+⋅=)(,)(⑶期望与方差的转化:22)(ξξξE E D -= ⑷)()()(ξξξξE E E E E -=-(因为ξE 为一常数)0=-=ξξE E . 典型例题:1、 如图,由M 到N 的电路中有4个元件,分别标为T 1,T 2,T 3,T 4,电流能通过T 1,T 2,T 3的概率都是p ,电流能通过T 4的概率是0.9.电流能否通过各元件相互独立.已知T 1,T 2,T 3中至少有一个能通过电流的概率为0.999.(Ⅰ)求p ; (Ⅱ)求电流能在M 与N 之间通过的概率;(Ⅲ)ξ表示T 1,T 2,T 3,T 4中能通过电流的元件个数,求ξ的期望.2、一名小学教师为了激发学生阅读名著的热情,在班内进行名著和其作者的连线游戏,作为奖励,参加连线的同学每连对一个奖励一朵小红花。