2020版高考数学人教版理科一轮复习第三章三角函数_解三角形课时作业19 (1)
2020版高考数学一轮复习第3章三角函数、解三角形3.5两角和与差的正弦、余弦与正切公式课后作业理

3.5 两角和与差的正弦、余弦与正切公式[重点保分 两级优选练]A 级一、选择题1.计算sin43°cos13°+sin47°cos103°的结果等于( ) A.12 B.33 C.22 D.32 答案 A解析 原式=sin43°cos13°-cos43°sin13°=sin(43°-13°)=sin30°=12.故选A.2.sin47°-sin17°cos30°cos17°=( )A .-32 B .-12 C.12 D.32答案 C解析 sin47°=sin(30°+17°)=sin30°cos17°+cos30°·sin17°, ∴原式=sin30°cos17°cos17°=sin30°=12.故选C.3.已知过点(0,1)的直线l :x tan α-y -3tan β=0的斜率为2,则tan(α+β)=( ) A .-73 B.73 C.57 D .1答案 D解析 由题意知tan α=2,tan β=-13.∴tan(α+β)=tan α+tan β1-tan αtan β=2-131-2×⎝ ⎛⎭⎪⎫-13=1.故选D.4.(2017·云南一检)cos π9·c os 2π9·cos ⎝ ⎛⎭⎪⎫-23π9=( )A .-18B .-116 C.116 D.18答案 A解析 cos π9·cos 2π9·cos ⎝ ⎛⎭⎪⎫-23π9 =cos20°·cos40°·cos100°=-cos20°·cos40°·cos80°=-sin20°·cos20°·cos40°·cos80°sin20°=-12sin40°·cos40°·cos80°sin20°=-14sin80°·cos80°sin20°=-18sin160°sin20°=-18sin20°sin20°=-18.故选A.5.(2017·衡水中学二调)3cos10°-1sin170°=( )A .4B .2C .-2D .-4 答案 D 解析 3cos10°-1sin170°=3cos10°-1sin10°=3sin10°-cos10°sin10°cos10°=2sin 10°-30°12sin20°=-2sin 20°12sin20°=-4.故选D.6.若0<α<π2,-π2<β<0,cos ⎝ ⎛⎭⎪⎫π4+α=13,cos ⎝⎛ π4-⎭⎪⎫β2=33,则cos ⎝⎛⎭⎪⎫α+β2=( )A.33 B .-33 C.539 D .-69答案 C解析 cos ⎝ ⎛⎭⎪⎫α+β2=cos ⎣⎢⎡⎦⎥⎤⎝ ⎛⎭⎪⎫π4+α-⎝ ⎛⎭⎪⎫π4-β2=cos ⎝ ⎛⎭⎪⎫π4+αcos ⎝ ⎛⎭⎪⎫π4-β2+sin ⎝ ⎛⎭⎪⎫π4+αsin ⎝ ⎛⎭⎪⎫π4-β2,由0<α<π2,得π4<α+π4<3π4,则sin ⎝ ⎛⎭⎪⎫π4+α=223. 由-π2<β<0,得π4<π4-β2<π2,则sin ⎝ ⎛⎭⎪⎫π4-β2=63,代入上式,得cos ⎝⎛⎭⎪⎫α+β2=539,故选C.7.(2018·长春模拟)已知tan(α+β)=-1,tan(α-β)=12,则sin2αsin2β的值为( )A.13 B .-13 C .3 D .-3 答案 A 解析 sin2αsin2β=sin[α+β+α-β]sin[α+β-α-β]=sin α+βcos α-β+cos α+βsin α-βsin α+βcos α-β-cos α+βsin α-β=tan α+β+tan α-βtan α+β-tan α-β=13.故选A.8.(2017·山西八校联考)若将函数f (x )=sin(2x +φ)+3cos(2x +φ)(0<φ<π)的图象向左平移π4个单位长度,平移后的图象关于点⎝ ⎛⎭⎪⎫π2,0对称,则函数g (x )=cos(x +φ)在⎣⎢⎡⎦⎥⎤-π2,π6上的最小值是( )A .-12B .-32 C.22 D.12答案 D解析 ∵f (x )=sin(2x +φ)+3cos(2x +φ)=2sin ( 2x +φ+π3 ),∴将函数f (x )的图象向左平移π4个单位长度后,得到函数解析式为y =2sin ⎣⎢⎡⎦⎥⎤2⎝⎛⎭⎪⎫x +π4+φ+π3=2cos ⎝ ⎛⎭⎪⎫2x +φ+π3的图象.∵该图象关于点⎝ ⎛⎭⎪⎫π2,0对称,对称中心在函数图象上,∴2cos ⎝ ⎛⎭⎪⎫2×π2+φ+π3=2cos ⎝ ⎛⎭⎪⎫π+φ+π3=0,解得π+φ+π3=k π+π2,k ∈Z ,即φ=k π-5π6,k ∈Z . ∵0<φ<π,∴φ=π6,∴g (x )=cos ⎝ ⎛⎭⎪⎫x +π6,∵x ∈⎣⎢⎡⎦⎥⎤-π2,π6,∴x +π6∈⎣⎢⎡⎦⎥⎤-π3,π3,∴cos ⎝⎛⎭⎪⎫x +π6∈⎣⎢⎡⎦⎥⎤12,1,则函数g (x )=cos(x +φ)在⎣⎢⎡⎦⎥⎤-π2,π6上的最小值是12.故选D.9.(2018·兰州检测)在斜三角形ABC 中,sin A =-2cos B ·cos C ,且tan B tan C =1-2,则角A 的值为( )A.π4B.π3C.π2D.3π4 答案 A解析 由题意知,-2cos B cos C =sin A =sin(B +C )=sin B cos C +cos B sin C ,等式-2cos B cos C =sin B cos C +cos B sin C 两边同除以cos B cos C ,得tan B +tan C =-2,又tan(B +C )=tan B +tan C 1-tan B tan C =-1=-tan A ,即tan A =1,所以A =π4.故选A.10.(2018·河北模拟)已知θ∈⎝ ⎛⎭⎪⎫0,π4,且sin θ-cos θ=-144,则2cos 2θ-1cos ⎝ ⎛⎭⎪⎫π4+θ等于( )A.23B.43C.34D.32 答案 D解析 由sin θ-cos θ=-144,得sin ⎝ ⎛⎭⎪⎫π4-θ=74,∵θ∈⎝ ⎛⎭⎪⎫0,π4,∴π4-θ∈⎝⎛⎭⎪⎫0,π4,∴cos ⎝ ⎛⎭⎪⎫π4-θ=34,∴2cos 2θ-1cos ⎝ ⎛⎭⎪⎫π4+θ=cos2θsin ⎝ ⎛⎭⎪⎫π4-θ=sin ⎝ ⎛⎭⎪⎫π2-2θsin ⎝ ⎛⎭⎪⎫π4-θ=sin ⎣⎢⎡⎦⎥⎤2⎝ ⎛⎭⎪⎫π4-θsin ⎝ ⎛⎭⎪⎫π4-θ=2cos ⎝ ⎛⎭⎪⎫π4-θ=32.故选D.二、填空题11.已知cos(α+β)cos(α-β)=13,则cos 2α-sin 2β=________.答案 13解析 ∵(cos αcos β-sin αsin β)(cos αcos β+sin αsin β)=13,∴cos 2αcos 2β-sin 2αsin 2β=13.∴cos 2α(1-sin 2β)-(1-cos 2α)sin 2β=13.∴cos 2α-sin 2β=13.12.已知α,β∈(0,π),且tan(α-β)=12,tan β=-17,则2α-β的值为________.答案 -3π4解析 ∵tan α=tan[(α-β)+β]=tan α-β+tan β1-tan α-βtan β=12-171+12×17=13>0,又α∈(0,π),∴0<α<π2.又∵tan2α=2tan α1-tan 2α=2×131-⎝ ⎛⎭⎪⎫132=34>0, ∴0<2α<π2,∴tan(2α-β)=tan2α-tan β1+tan2αtan β=34+171-34×17=1.∵tan β=-17<0,∴π2<β<π,-π<2α-β<0,∴2α-β=-3π4.13.(2017·江苏模拟)已知α、β为三角形的两个内角,cos α=17,sin(α+β)=5314,则β=________.答案π3解析 因为0<α<π,cos α=17,所以sin α=1-cos 2α=437,故π3<α<π2,又因为0<α+β<π,sin(α+β)=5314<32,所以0<α+β<π3或2π3<α+β<π.由π3<α<π2,知2π3<α+β<π, 所以cos(α+β)=-1-sin2α+β=-1114,所以cos β=cos[(α+β)-α]=cos(α+β)cos α+sin(α+β)sin α=12,又0<β<π,所以β=π3.14.已知sin α=12+cos α,且α∈⎝⎛⎭⎪⎫0,π2,则cos2αsin ⎝⎛⎭⎪⎫α-π4的值为________. 答案 -142解析 ∵sin α=12+cos α,∴sin α-cos α=12,∴(sin α-cos α)2=1-2sin αcos α=14,∴2sin αcos α=34,∵α∈⎝⎛⎭⎪⎫0,π2,∴sin α+cos α=sin 2α+cos 2α+2sin αcos α = 1+34=72, ∴cos2αsin ⎝ ⎛⎭⎪⎫α-π4=cos α+sin αcos α-sin α22sin α-cos α =-2(sin α+cos α)=-142. B 级三、解答题15.(2017·合肥质检)已知a =(sin x ,3cos x ),b =(cos x ,-cos x ),函数f (x )=a ·b +32. (1)求函数y =f (x )图象的对称轴方程;(2)若方程f (x )=13在(0,π)上的解为x 1,x 2,求cos(x 1-x 2)的值.解 (1)f (x )=a ·b +32=(sin x ,3cos x )·(cos x ,-cos x )+32=sin x ·cos x -3cos 2x +32=12sin2x -32cos2x =sin ⎝⎛⎭⎪⎫2x -π3.令2x -π3=k π+π2(k ∈Z ),得x =5π12+k π2(k ∈Z ),即函数y =f (x )图象的对称轴方程为x =5π12+k π2(k ∈Z ).(2)由条件知sin ⎝ ⎛⎭⎪⎫2x 1-π3=sin ⎝⎛⎭⎪⎫2x 2-π3=13>0,设x 1<x 2,则0<x 1<5π12<x 2<2π3,易知(x 1,f (x 1))与(x 2,f (x 2))关于直线x =5π12对称,则x 1+x 2=5π6, ∴cos(x 1-x 2)=cos ⎣⎢⎡⎦⎥⎤x 1-⎝ ⎛⎭⎪⎫5π6-x 1=cos ⎝ ⎛⎭⎪⎫2x 1-5π6=cos ⎣⎢⎡⎦⎥⎤⎝ ⎛⎭⎪⎫2x 1-π3-π2=sin ⎝⎛⎭⎪⎫2x 1-π3=13.16.(2017·黄冈质检)已知函数f (x )=2cos 2x -sin ⎝ ⎛⎭⎪⎫2x -7π6.(1)求函数f (x )的最大值,并写出f (x )取最大值时x 的取值集合;(2)已知△ABC 中,角A ,B ,C 的对边分别为a ,b ,c ,若f (A )=32,b +c =2.求实数a的取值范围.解 (1)f (x )=2cos 2x -sin ⎝ ⎛⎭⎪⎫2x -7π6=(1+cos2x )-⎝ ⎛⎭⎪⎫sin2x cos 7π6-cos2x sin 7π6 =1+32sin2x +12cos2x =1+sin ⎝⎛⎭⎪⎫2x +π6.∴函数f (x )的最大值为2.当且仅当sin ⎝⎛⎭⎪⎫2x +π6=1,即2x +π6=2k π+π2(k ∈Z ),即x =k π+π6,k ∈Z 时取到.∴函数f (x )的最大值为2时x 的取值集合为x ⎪⎪⎪⎭⎬⎫x =k π+π6,k ∈Z . (2)由题意,f (A )=sin ⎝ ⎛⎭⎪⎫2A +π6+1=32,化简得sin ⎝⎛⎭⎪⎫2A +π6=12.∵A ∈(0,π),∴2A +π6∈⎝ ⎛⎭⎪⎫π6,13π6,∴2A +π6=5π6,∴A =π3.在△ABC 中,根据余弦定理,得a 2=b 2+c 2-2bc cos π3=(b +c )2-3bc .由b +c =2,知bc ≤⎝⎛⎭⎪⎫b +c 22=1,即a 2≥1.∴当且仅当b =c =1时,取等号.又由b +c >a 得a <2.所以a 的取值范围是[1,2).17.(2017·青岛诊断)在△ABC 中,角A ,B ,C 所对的边分别为a ,b ,c ,且a sin B +3a cos B =3c .(1)求角A 的大小;(2)已知函数f (x )=λcos 2⎝ ⎛⎭⎪⎫ωx +A 2-3(λ>0,ω>0)的最大值为2,将y =f (x )的图象的纵坐标不变,横坐标伸长到原来的32倍后便得到函数y =g (x )的图象,若函数y =g (x )的最小正周期为π.当x ∈⎣⎢⎡⎦⎥⎤0,π2时,求函数f (x )的值域.解 (1)∵a sin B +3a cos B =3c , ∴sin A sin B +3sin A cos B =3sin C . ∵C =π-(A +B ),∴sin A sin B +3sin A cos B =3sin(A +B ) =3(sin A cos B +cos A sin B ). 即sin A sin B =3cos A sin B .∵sin B ≠0,∴tan A =3,∵0<A <π,∴A =π3.(2)由A =π3,得f (x )=λcos 2⎝ ⎛⎭⎪⎫ωx +π6-3=λ·1+cos ⎝ ⎛⎭⎪⎫2ωx +π32-3=λ2cos ⎝⎛⎭⎪⎫2ωx +π3+λ2-3,∴λ-3=2,λ=5.∴f (x )=5cos 2⎝ ⎛⎭⎪⎫ωx +π6-3=52cos ⎝ ⎛⎭⎪⎫2ωx +π3-12,从而g (x )=52cos ⎝ ⎛⎭⎪⎫43ωx +π3-12,∴2π43ω=π,得ω=32, ∴f (x )=52cos ⎝⎛⎭⎪⎫3x +π3-12.当x ∈⎣⎢⎡⎦⎥⎤0,π2时,π3≤3x +π3≤11π6,∴-1≤cos ⎝ ⎛⎭⎪⎫3x +π3≤32,从而-3≤f (x )≤53-24,∴f (x )的值域为⎣⎢⎡⎦⎥⎤-3,53-24.18.(2017·江西南昌三校模拟)已知函数f (x )=sin ⎝⎛⎭⎪⎫5π6-2x -2sin ⎝ ⎛⎭⎪⎫x -π4cos ⎝⎛⎭⎪⎫x +3π4.(1)求函数f (x )的最小正周期和单调递增区间; (2)若x ∈⎣⎢⎡⎦⎥⎤π12,π3,且F (x )=-4λf (x )-cos ⎝ ⎛⎭⎪⎫4x -π3的最小值是-32,求实数λ的值. 解 (1)∵f (x )=sin ⎝ ⎛⎭⎪⎫5π6-2x -2sin ⎝ ⎛⎭⎪⎫x -π4cos ⎝ ⎛⎭⎪⎫x +3π4=12cos2x +32sin2x +(sin x-cos x )(sin x +cos x )=12cos2x +32sin2x +sin 2x -cos 2x =12cos2x +32sin2x -cos2x =sin ⎝⎛⎭⎪⎫2x -π6.∴函数f (x )的最小正周期T =2π2=π.由2k π-π2≤2x -π6≤2k π+π2得k π-π6≤x ≤k π+π3(k ∈Z ),∴函数f (x )的单调递增区间为⎣⎢⎡⎦⎥⎤k π-π6,k π+π3(k ∈Z ).(2)F (x )=-4λf (x )-cos ⎝ ⎛⎭⎪⎫4x -π3 =-4λsin ⎝ ⎛⎭⎪⎫2x -π6-⎣⎢⎡⎦⎥⎤1-2sin 2⎝ ⎛⎭⎪⎫2x -π6=2sin 2⎝ ⎛⎭⎪⎫2x -π6-4λsin ⎝ ⎛⎭⎪⎫2x -π6-1 =2⎣⎢⎡⎦⎥⎤sin ⎝ ⎛⎭⎪⎫2x -π6-λ2-1-2λ2.∵x ∈⎣⎢⎡⎦⎥⎤π12,π3,∴0≤2x -π6≤π2, ∴0≤sin ⎝⎛⎭⎪⎫2x -π6≤1. ①当λ<0时,当且仅当sin ⎝ ⎛⎭⎪⎫2x -π6=0时,F (x )取得最小值,最小值为-1,这与已知不相符;②当0≤λ≤1时,当且仅当sin ⎝ ⎛⎭⎪⎫2x -π6=λ时,F (x )取得最小值,最小值为-1-2λ2,由已知得-1-2λ2=-32,解得λ=-12(舍)或λ=12;③当λ>1时,当且仅当sin ⎝ ⎛⎭⎪⎫2x -π6=1时,F (x )取得最小值,最小值为1-4λ,由已知得1-4λ=-32,解得λ=58,这与λ>1矛盾.综上所述,λ=12.。
2020版高考数学一轮复习第3章三角函数解三角形第3讲课后作业理含解析

高考数学一轮复习第3章三角函数解三角形:第3章 三角函数、解三角形 第3讲A 组 基础关1.函数y =cos2⎝⎛⎭⎪⎫x +π4是( )A .周期为π的奇函数B .周期为π的偶函数C .周期为2π的奇函数D .周期为2π的偶函数 答案 A解析 因为y =cos2⎝ ⎛⎭⎪⎫x +π4=cos ⎝ ⎛⎭⎪⎫2x +π2=-sin2x ,故选A. 2.(2018·全国卷Ⅰ)已知函数f (x )=2cos 2x -sin 2x +2,则( ) A .f (x )的最小正周期为π,最大值为3 B .f (x )的最小正周期为π,最大值为4 C .f (x )的最小正周期为2π,最大值为3 D .f (x )的最小正周期为2π,最大值为4 答案 B解析 根据题意,有f (x )=32cos2x +52,所以函数f (x )的最小正周期为T =2π2=π,且最大值为f (x )max =32+52=4.故选B.3.函数f (x )=tan ⎝ ⎛⎭⎪⎫2x -π3的单调递增区间是( ) A.⎣⎢⎡⎦⎥⎤k π2-π12,k π2+5π12(k ∈Z ) B.⎝⎛⎭⎪⎫k π2-π12,k π2+5π12(k ∈Z ) C.⎣⎢⎡⎦⎥⎤k π-π12,k π+5π12(k ∈Z )D.⎝ ⎛⎭⎪⎫k π+π6,k π+2π3(k ∈Z ) 答案 B解析 由k π-π2<2x -π3<k π+π2(k ∈Z )得,k π2-π12<x <k π2+5π12(k ∈Z ),所以函数f (x )=tan ⎝ ⎛⎭⎪⎫2x -π3的单调递增区间为⎝ ⎛⎭⎪⎫k π2-π12,k π2+5π12(k ∈Z ). 4.已知函数f (x )=tan x +sin x +1,若f (b )=2,则f (-b )=( ) A .0 B .3 C .-1 D .-2 答案 A解析 因为f (b )=tan b +sin b +1=2,即tan b +sin b =1.所以f (-b )=tan(-b )+sin(-b )+1=-(tan b +sin b )+1=0.5.(2019·福建六校联考)若函数f (x )=2sin(ωx +φ)对任意x 都有f ⎝⎛⎭⎪⎫π3+x =f (-x ),则f ⎝ ⎛⎭⎪⎫π6=( )A .2或0B .0C .-2或0D .-2或2 答案 D解析 因为f ⎝ ⎛⎭⎪⎫π3+x =f (-x )对任意x ∈R 都成立,所以函数f (x )的图象的一个对称轴是直线x =π6,所以f ⎝ ⎛⎭⎪⎫π6=±2. 6.(2018·甘肃省河西五市一模)已知函数f (x )=cos(x +φ)⎝ ⎛⎭⎪⎫0<|φ|<π2,f ⎝ ⎛⎭⎪⎫x +π4是奇函数,则( )A .f (x )在⎝ ⎛⎭⎪⎫π4,π上单调递减B .f (x )在⎝ ⎛⎭⎪⎫0,π4上单调递减C .f (x )在⎝ ⎛⎭⎪⎫π4,π上单调递增D .f (x )在⎝⎛⎭⎪⎫0,π4上单调递增答案 B解析 因为f (x )=cos(x +φ),所以f ⎝ ⎛⎭⎪⎫x +π4=cos ⎝ ⎛⎭⎪⎫x +π4+φ,又因为f ⎝⎛⎭⎪⎫x +π4是奇函数,所以π4+φ=k π+π2,k ∈Z ,所以φ=k π+π4,k ∈Z ,又0<|φ|<π2,所以φ=π4,f (x )=cos ⎝ ⎛⎭⎪⎫x +π4,当x ∈⎝ ⎛⎭⎪⎫0,π4时,x +π4∈⎝ ⎛⎭⎪⎫π4,π2,f (x )单调递减,当x ∈⎝ ⎛⎭⎪⎫π4,π时,x +π4∈⎝ ⎛⎭⎪⎫π2,5π4,f (x )先减后增,故选B.7.(2018·湖南衡阳八中月考)定义运算:a *b =⎩⎪⎨⎪⎧a ,a ≤b ,b ,a >b .例如1]( )A.⎣⎢⎡⎦⎥⎤-22,22 B .[-1,1] C.⎣⎢⎡⎦⎥⎤22,1 D.⎣⎢⎡⎦⎥⎤-1,22 答案 D解析 画出函数f (x )=⎩⎪⎨⎪⎧sin x ,sin x ≤cos x ,cos x ,sin x >cos x的图象(如图中实线所示).根据三角函数的周期性,只看一个最小正周期(即2π)的情况即可. 观察图象可知函数f (x )的值域为⎣⎢⎡⎦⎥⎤-1,22. 8.函数y =lg (sin2x )+9-x 2的定义域为________. 答案 ⎣⎢⎡⎭⎪⎫-3,-π2∪⎝ ⎛⎭⎪⎫0,π2 解析 由⎩⎪⎨⎪⎧sin2x >0,9-x 2≥0,解得⎩⎪⎨⎪⎧k π<x <k π+π2,k ∈Z ,-3≤x ≤3,所以-3≤x <-π2或0<x <π2.所以函数的定义域为⎣⎢⎡⎭⎪⎫-3,-π2∪⎝ ⎛⎭⎪⎫0,π2.9.若函数f (x )=⎪⎪⎪⎪⎪⎪sin ⎝ ⎛⎭⎪⎫ωx +π3(ω>0)的最小正周期为π,则f ⎝ ⎛⎭⎪⎫π3=________. 答案32解析 由题设及周期公式得T =πω=π,所以ω=1,即f (x )=⎪⎪⎪⎪⎪⎪sin ⎝ ⎛⎭⎪⎫x +π3,所以f ⎝ ⎛⎭⎪⎫π3=⎪⎪⎪⎪⎪⎪sin 2π3=32.10.已知函数y =2cos x 的定义域为⎣⎢⎡⎦⎥⎤π3,π,值域为[a ,b ],则b -a 的值是________.答案 3解析 函数y =2cos x 在⎣⎢⎡⎦⎥⎤π3,π上为减函数,所以函数y =2cos x 在⎣⎢⎡⎦⎥⎤π3,π上的值域为⎣⎢⎡⎦⎥⎤2cosπ,2cos π3,即[-2,1],所以a =-2,b =1,所以b -a =1-(-2)=3.B 组 能力关1.(2017·全国卷Ⅰ)函数y =sin2x1-cos x的部分图象大致为( )答案 C解析 令f (x )=sin2x 1-cos x ,∵f (1)=sin21-cos1>0,f (π)=sin2π1-cosπ=0,∴排除A ,D.由1-cos x ≠0得x ≠2k π(k ∈Z ),故函数f (x )的定义域关于原点对称.又∵f (-x )=sin -2x 1-cos -x =-sin2x1-cos x =-f (x ),∴f (x )为奇函数,其图象关于原点对称,∴排除B.故选C.2.(2018·皖江最后一卷)函数f (x )=A sin(ωx +φ)(A >0,ω>0),若f (x )在区间⎣⎢⎡⎦⎥⎤0,π2上是单调函数,且f (-π)=f (0)=-f ⎝ ⎛⎭⎪⎫π2,则ω的值为( )A.23 B.23或2 C.13 D .1或13答案 B解析 因为f (x )在⎣⎢⎡⎦⎥⎤0,π2上单调,∴T 2≥π2,即T ≥π⇒2πω≥π⇒0<ω≤2,而|0-(-π)|=π≤T ;若T =π,则ω=2;若T >π,则x =-π2是f (x )的一条对称轴,⎝ ⎛⎭⎪⎫π4,0是其相邻的对称中心,所以T 4=π4-⎝ ⎛⎭⎪⎫-π2=3π4,∴T =3π⇒ω=2πT =23.3.若函数f (x )=A 2cos(2ωx +2φ)+1+A 2⎝ ⎛⎭⎪⎫A >0,ω>0,0<φ<π2的最大值为3,f (x )的图象与y 轴的交点坐标为(0,2),其相邻两条对称轴间的距离为2,则f (1)+f (2)+…+f (2018)=________.答案 4035解析 ∵函数f (x )=A 2cos(2ωx +2φ)+1+A2的最大值为3,∴A 2+1+A2=3,∴A =2.根据函数图象相邻两条对称轴间的距离为2, 可得函数的最小正周期为4,即2π2ω=4,∴ω=π4.再根据f (x )的图象与y 轴的交点坐标为(0,2),可得cos2φ+1+1=2,∴cos2φ=0, 又0<φ<π2,∴2φ=π2,φ=π4.故函数f (x )的解析式为f (x )=cos ⎝⎛⎭⎪⎫π2x +π2+2=-sin π2x +2,周期T =4,∴f (1)+f (2)+…+f (2017)+f (2018)=504×[f (1)+f (2)+f (3)+f (4)]+f (1)+f (2) =504×8+⎝ ⎛⎭⎪⎫-sin π2+2+(-sinπ+2)=4035.4.(2017·北京高考)已知函数f (x )=3cos ⎝ ⎛⎭⎪⎫2x -π3-2sin x cos x .(1)求f (x )的最小正周期;(2)求证:当x ∈⎣⎢⎡⎦⎥⎤-π4,π4时,f (x )≥-12.解 (1)f (x )=32cos2x +32sin2x -sin2x =12sin2x +32cos2x =sin ⎝ ⎛⎭⎪⎫2x +π3,所以f (x )的最小正周期T =2π2=π. (2)证明:因为-π4≤x ≤π4,所以-π6≤2x +π3≤5π6,所以sin ⎝ ⎛⎭⎪⎫2x +π3≥sin ⎝ ⎛⎭⎪⎫-π6=-12, 所以当x ∈⎣⎢⎡⎦⎥⎤-π4,π4时,f (x )≥-12.C 组 素养关1.(2018·合肥质检)已知函数f (x )=sin ωx -cos ωx (ω>0)的最小正周期为π. (1)求函数y =f (x )图象的对称轴方程;(2)讨论函数f (x )在⎣⎢⎡⎦⎥⎤0,π2上的单调性.解 (1)∵f (x )=sin ωx -cos ωx =2sin ⎝ ⎛⎭⎪⎫ωx -π4,且T =π,∴ω=2,f (x )=2sin ⎝⎛⎭⎪⎫2x -π4. 令2x -π4=k π+π2(k ∈Z ),得x =k π2+3π8(k ∈Z ),即函数f (x )图象的对称轴方程为x =k π2+3π8(k ∈Z ).(2)令2k π-π2≤2x -π4≤2k π+π2(k ∈Z ),得函数f (x )的单调递增区间为⎣⎢⎡⎦⎥⎤k π-π8,k π+3π8(k ∈Z ).注意到x ∈⎣⎢⎡⎦⎥⎤0,π2,所以令k =0,得函数f (x )在⎣⎢⎡⎦⎥⎤0,π2上的单调递增区间为⎣⎢⎡⎦⎥⎤0,3π8;令π2+2k π≤2x -π4≤3π2+2k π(k ∈Z ),得函数f (x )的单调递减区间为⎣⎢⎡⎦⎥⎤k π+3π8,k π+7π8(k ∈Z ),令k =0,得f (x )在⎣⎢⎡⎦⎥⎤0,π2上的单调递减区间为⎣⎢⎡⎦⎥⎤3π8,π2.2.(2018·兰州模拟)已知a >0,函数f (x )=-2a sin ⎝ ⎛⎭⎪⎫2x +π6+2a +b ,当x ∈⎣⎢⎡⎦⎥⎤0,π2时,-5≤f (x )≤1.(1)求常数a ,b 的值;(2)设g (x )=f ⎝⎛⎭⎪⎫x +π2且lg g (x )>0,求g (x )的单调区间.解 (1)∵x ∈⎣⎢⎡⎦⎥⎤0,π2,∴2x +π6∈⎣⎢⎡⎦⎥⎤π6,7π6, ∴sin ⎝ ⎛⎭⎪⎫2x +π6∈⎣⎢⎡⎦⎥⎤-12,1, ∴-2a sin ⎝ ⎛⎭⎪⎫2x +π6∈[-2a ,a ],∴f (x )∈[b,3a +b ], 又∵-5≤f (x )≤1,∴b =-5,3a +b =1,因此a =2,b =-5. (2)由(1)得f (x )=-4sin ⎝⎛⎭⎪⎫2x +π6-1, g (x )=f ⎝ ⎛⎭⎪⎫x +π2=-4sin ⎝⎛⎭⎪⎫2x +7π6-1=4sin ⎝ ⎛⎭⎪⎫2x +π6-1, 又由lg g (x )>0,得g (x )>1, ∴4sin ⎝⎛⎭⎪⎫2x +π6-1>1,∴sin ⎝⎛⎭⎪⎫2x +π6>12, ∴2k π+π6<2x +π6<2k π+5π6,k ∈Z ,其中当2k π+π6<2x +π6≤2k π+π2,k ∈Z 时,g (x )单调递增,即k π<x ≤k π+π6,k ∈Z ,∴g (x )的单调增区间为⎝⎛⎦⎥⎤k π,k π+π6,k ∈Z . 又∵当2k π+π2<2x +π6<2k π+5π6,k ∈Z 时,g (x )单调递减,即k π+π6<x <k π+π3,k ∈Z .∴g (x )的单调减区间为⎝ ⎛⎭⎪⎫k π+π6,k π+π3,k ∈Z .∴g (x )的单调增区间为⎝ ⎛⎦⎥⎤k π,k π+π6,k ∈Z .单调减区间为⎝ ⎛⎭⎪⎫k π+π6,k π+π3,k ∈Z .。
2020高考数学理科大一轮复习课时作业:第三章 三角函数、解三角形课时作业20

课时作业20 同角三角函数的基本关系式与诱导公式一、选择题1.sin1 470°=( B ) A.32 B.12 C .-12D .-32解析:sin1 470°=sin(1 440°+30°)=sin(360°×4+30°)=sin30°=12,故选B.2.已知α为锐角,且sin α=45,则cos(π+α)=( A ) A .-35 B.35 C .-45 D.45解析:∵α为锐角,∴cos α=1-sin 2α=35,∴cos(π+α)=-cos α=-35,故选A.3.(2019·南宁市摸底联考)若角α满足sin α+2cos α=0,则tan2α=( D )A .-43 B.34C .-34 D.43解析:解法1:由题意知,tan α=-2, tan2α=2tan α1-tan 2α=43,故选D. 解法2:由题意知,sin α=-2cos α, tan2α=sin2αcos2α=2sin αcos αcos 2α-sin 2α=43,故选D. 4.已知sin ⎝ ⎛⎭⎪⎫α-π8=45,则cos ⎝ ⎛⎭⎪⎫α+3π8=( A ) A .-45 B.45 C .-35 D.35解析:cos ⎝⎛⎭⎪⎫α+3π8=cos ⎣⎢⎡⎦⎥⎤π2+⎝⎛⎭⎪⎫α-π8=-sin ⎝⎛⎭⎪⎫α-π8=-45,故选A. 5.若sin x =2sin ⎝ ⎛⎭⎪⎫x +π2,则cos x cos ⎝ ⎛⎭⎪⎫x +π2=( B ) A.25 B .-25 C.23 D .-23解析:由sin x =2sin ⎝⎛⎭⎪⎫x +π2,得sin x =2cos x ,即tan x =2,则cos x cos ⎝ ⎛⎭⎪⎫x +π2=-cos x sin x =-sin x cos xsin 2x +cos 2x=-tan x 1+tan 2x =-21+4=-25.故选B. 6.已知α∈⎝ ⎛⎭⎪⎫32π,2π,且满足cos ⎝ ⎛⎭⎪⎫α+2 0172π=35,则sin α+cos α=( C )A .-75 B .-15 C.15D.75解析:因为cos ⎝ ⎛⎭⎪⎫α+2 0172π=cos α+1 008π+π2 =-sin α=35,且α∈⎝ ⎛⎭⎪⎫32π,2π,所以sin α=-35,cos α=1-sin 2α=45,则sin α+cos α=-35+45=15.故选C.二、填空题7.sin 43π·cos 56π·tan ⎝ ⎛⎭⎪⎫-43π的值是-334.解析:原式=sinπ+π3·cos ⎝ ⎛⎭⎪⎫π-π6·tan -π-π3=-sin π3·-cos π6·⎝⎛⎭⎪⎫-tan π3 =⎝⎛⎭⎪⎫-32×⎝ ⎛⎭⎪⎫-32×(-3)=-334.8.在△ABC 中,若tan A =23,则sin A =2211. 解析:因为tan A =23>0,所以A 为锐角, 由tan A =sin A cos A =23以及sin 2A +cos 2A =1,可求得sin A =2211.9.已知1+tan x 1-tan x =3+22,则sin x (sin x -3cos x )的值为13- 2.解析:由1+tan x 1-tan x =3+22得tan x =22,∴sin x (sin x -3cos x )=sin 2x -3sin x cos x =sin 2x -3sin x cos x sin 2x +cos 2x =tan 2x -3tan x tan 2x +1=13- 2. 10.已知sin α+cos α=-15,且π2<α<π,则1sin (π-α)+1cos (π-α)的值为3512.解析:由sin α+cos α=-15平方得sin αcos α=-1225,∵π2<α<π,∴sin α-cos α=(sin α+cos α)2-4sin αcos α=75,∴1sin (π-α)+1cos (π-α)=1sin α-1cos α=cos α-sin αsin αcos α=-75-1225=3512.三、解答题11.(2019·河北衡水武邑中学调考)已知sin α=255,求tan(α+π)+sin ⎝ ⎛⎭⎪⎫5π2+αcos ⎝ ⎛⎭⎪⎫5π2-α的值.解:tan(α+π)+sin ⎝ ⎛⎭⎪⎫5π2+αcos ⎝ ⎛⎭⎪⎫5π2-α=tan α+cos αsin α =sin αcos α+cos αsin α=1sin αcos α. ∵sin α=255>0,∴α为第一或第二象限角. 当α为第一象限角时,cos α=1-sin 2α=55,则原式=1sin αcos α=52;当α为第二象限角时,cos α=-1-sin 2α=-55,则原式=1sin αcos α=-52.12.(2019·山东济南二中检测)已知π2<α<π,tan α-1tan α=-32. (1)求tan α的值;(2)求cos ⎝ ⎛⎭⎪⎫3π2+α-cos (π-α)sin ⎝ ⎛⎭⎪⎫π2-α的值.解:(1)令tan α=x ,则x -1x =-32,整理得2x 2+3x -2=0,解得x =12或x =-2,因为π2<α<π,所以tan α<0,故tan α=-2.(2)cos ⎝ ⎛⎭⎪⎫3π2+α-cos (π-α)sin ⎝ ⎛⎭⎪⎫π2-α=sin α+cos αcos α=tan α+1=-2+1=-1.13.(2019·山西晋城一模)若|sin θ|+|cos θ|=233,则sin 4θ+cos 4θ=( B )A.56B.1718C.89D.23解析:|sin θ|+|cos θ|=233两边平方得,1+|sin2θ|=43,∴|sin2θ|=13,∴sin 4θ+cos 4θ=(sin 2θ+cos 2θ)2-2sin 2θcos 2θ=1-2sin 2θcos 2θ=1-12sin 22θ=1-12×⎝ ⎛⎭⎪⎫132=1718,故选B.14.(2019·安徽皖南八校第二次联考)已知θ∈⎝ ⎛⎭⎪⎫0,π2,且12sin θ+12cos θ=35,则tan2θ=±247.解析:依题意得12(sin θ+cos θ)=35sin θcos θ,令sin θ+cos θ=t , ∵θ∈⎝ ⎛⎭⎪⎫0,π2,∴t >0,则原式化为12t =35·t 2-12,解得t =75⎝ ⎛⎭⎪⎫t =-57舍去,故sin θ+cos θ=75,则sin θcos θ=1225,即sin θcos θsin 2θ+cos 2θ=1225, 即tan θ1+tan 2θ=1225,12tan 2θ-25tan θ+12=0, 解得tan θ=34或43, 则tan2θ=2tan θ1-tan 2θ=±247. 尖子生小题库——供重点班学生使用,普通班学生慎用 15.(2019·福建毕业班适应性考试)A ={sin α,cos α,1},B ={sin 2α,sin α+cos α,0},且A =B ,则sin 2 017α+cos 2 018α=( C )A .0B .1C .-1D .±1解析:当sin α=0时,sin 2α=0,此时集合B 中不符合集合元素的互异性,故舍去;当cos α=0时,A ={sin α,0,1},B ={sin 2α,sin α,0},此时sin 2α=1,得sin α=-1,所以sin 2 017α+cos 2 018α=-1.16.(2019·浙江台州调研)已知θ∈[0,π),若对任意的x ∈[-1,0],不等式x 2cos θ+(x +1)2sin θ+x 2+x >0恒成立,则实数θ的取值范围是( A )A.⎝ ⎛⎭⎪⎫π12,5π12B.⎝ ⎛⎭⎪⎫π6,π4 C.⎝ ⎛⎭⎪⎫π4,3π4 D.⎝ ⎛⎭⎪⎫π6,5π6 解析:令f (x )=(cos θ+sin θ+1)x 2+(2sin θ+1)x +sin θ,由θ∈[0,π)知cos θ+sin θ+1>0恒成立,若f (x )>0在[-1,0]上恒成立,只需满足⎩⎪⎨⎪⎧f (-1)>0,f (0)>0,f ⎝ ⎛⎭⎪⎫-2sin θ+12(1+cos θ+sin θ)>0⇒⎩⎪⎨⎪⎧cos θ>0,sin θ>0,sin2θ>12,得θ∈⎝ ⎛⎭⎪⎫π12,5π12.感谢您的下载!快乐分享,知识无限!由Ruize收集整理!。
2020年高考理科数学 《解三角形》题型归纳与训练及答案解析

2020年高考理科数学 《解三角形》题型归纳与训练【题型归纳】题型一 正弦定理、余弦定理的直接应用例1ABC ∆的内角A ,B ,C 的对边分别为a ,b ,c ,已知2sin()8sin2BA C +=. (1)求cos B(2)若6a c +=,ABC ∆面积为2,求b . 【答案】(1)15cos 17B =(2)2b =. 【解析】由题设及A B C π++=得2sin 8sin2BB =,故sin 4(1cos )B B =-. 上式两边平方,整理得217cos 32cos 150B B -+=, 解得cos 1B =(舍去),15cos 17B =.(2)由15cos 17B =得8sin 17B =,故14sin 217ABC S ac B ac ∆==. 又2ABC S ∆=,则172ac =. 由余弦定理及6a c +=得22222cos ()2(1cos )b a c ac B a c ac B =+-=+-+1715362(1)4217=-⨯⨯+=. 所以2b =.【易错点】二倍角公式的应用不熟练,正余弦定理不确定何时运用 【思维点拨】利用正弦定理列出等式直接求出例2 ABC △的内角,,A B C 的对边分别为,,a b c ,若2cos cos cos b B a C c A =+,则B = . 【答案】π3【解析】1π2sin cos sin cos sin cos sin()sin cos 23B B AC C A A C B B B =+=+=⇒=⇒=.【易错点】不会把边角互换,尤其三角恒等变化时,注意符号。
【思维点拨】边角互换时,一般遵循求角时,把边换成角;求边时,把角转换成边。
例3在△ABC 中,a ,b ,c 分别是角A ,B ,C 的对边,若b =1,c =3,C =23π,则S △ABC =________.【答案】34【解析】因为c >b ,所以B <C ,所以由正弦定理得b sin B =c sin C ,即1sin B =3sin 2π3=2,即sin B =12,所以B=π6,所以A =π-π6-2π3=π6.所以S △ABC =12bc sin A =12×3×12=34. 【易错点】大边对大角,应注意角的取值范围【思维点拨】求面积选取公式时注意,一般选取已知角的公式,然后再求取边长。
2020版高考数学一轮复习第3章三角函数、解三角形第6讲正弦定理和余弦定理理解析版

第6讲 正弦定理和余弦定理1.正弦定理、余弦定理在△ABC 中,若角A ,B ,C 所对的边分别是a ,b ,c ,R 为△ABC 外接圆的半径,则2.在△ABC 中,已知a ,b 和A 时,三角形解的情况3.三角形中常用的面积公式 (1)S =12ah (h 表示边a 上的高).(2)S =12bc sin A =□0112ac sin B =□0212ab sin C . (3)S =12r (a +b +c )(r 为三角形的内切圆半径).1.概念辨析(1)正弦定理和余弦定理对任意三角形都成立.( ) (2)在△ABC 中,若sin A >sin B ,则A >B .( )(3)在△ABC 的六个元素中,已知任意三个元素可求其他元素.( ) (4)当b 2+c 2-a 2>0时,三角形ABC 为锐角三角形.( ) 答案 (1)√ (2)√ (3)× (4)× 2.小题热身(1)△ABC 的内角A ,B ,C 的对边分别为a ,b ,c ,已知a =5,c =2,cos A =23,则b=( )A. 2B. 3 C .2 D .3 答案 D解析 由余弦定理得5=b 2+4-2×b ×2×23,解得b =3或b =-13(舍去),故选D.(2)已知△ABC 的三个内角A ,B ,C 的对边分别为a ,b ,c ,若cos A cos B =ba =2,则该三角形的形状是( )A.直角三角形 B .等腰三角形 C.等边三角形 D .钝角三角形答案 A解析 因为cos A cos B =b a ,由正弦定理得cos A cos B =sin B sin A ,所以sin2A =sin2B .由ba=2,可知a ≠b ,所以A ≠B .又A ,B ∈(0,π),所以2A =180°-2B ,即A +B =90°,所以C =90°,于是△ABC 是直角三角形.(3)在△ABC 中,a =32,b =23,cos C =13,则△ABC 的面积为________.答案 4 3解析 ∵cos C =13,0<C <π,∴sin C =223,∴S △ABC =12ab sin C =12×32×23×223=4 3.(4)在△ABC 中,a =4,b =5,c =6,则sin2Asin C =________.答案 1解析因为a=4,b=5,c=6,所以cos A=b2+c2-a22bc=52+62-422×5×6=34,所以sin2Asin C=2sin A cos Asin C=2a cos Ac=2×4×346=1.题型一利用正、余弦定理解三角形角度1 用正弦定理解三角形1.(1)设△ABC的内角A,B,C的对边分别为a,b,c.若a=3,sin B=12,C=π6,则b=________;(2)(2017·全国卷Ⅲ)△ABC的内角A,B,C的对边分别为a,b,c.已知C=60°,b =6,c=3,则A=________.答案(1)1 (2)75°解析(1)因为sin B=12且B∈(0,π),所以B=π6或B=5π6,又C=π6,所以B=π6,A=π-B-C=2π3,又a=3,由正弦定理得asin A=bsin B,即3sin2π3=bsinπ6,解得b=1.(2) 如图,由正弦定理,得3sin60°=6sin B,∴sin B =22. 又c >b ,∴B =45°,∴A =180°-60°-45°=75°. 角度2 用余弦定理解三角形2.(1)在△ABC 中,若b =1,c =3,A =π6,则cos5B =( )A.-32B.12C.12或-1 D .-32或0 (2)在△ABC 中,AB =3,BC =13,AC =4,则边AC 上的高为( ) A.322 B.332 C.32D .3 3 答案 (1)A (2)B解析 (1)因为b =1,c =3,A =π6,所以由余弦定理得a 2=b 2+c 2-2bc cos A =1+3-2×1×3×32=1, 所以a =1.由a =b =1,得B =A =π6,所以cos5B =cos 5π6=-cos π6=-32.(2)由题意得cos A =AB 2+AC 2-BC 22AB ·AC=32+42-1322×3×4=12, ∴sin A =1-⎝ ⎛⎭⎪⎫122=32, ∴边AC 上的高h =AB sin A =332. 角度3 综合利用正、余弦定理解三角形3.在△ABC 中,角A ,B ,C 所对的边分别为a ,b ,c ,且2a cos C -c =2b . (1)求角A 的大小;(2)若c =2,角B 的平分线BD =3,求a .解 (1)∵2a cos C -c =2b ,由正弦定理得2sin A cos C -sin C =2sin B,2sin A cos C -sin C =2sin(A +C )=2sin A cos C +2cos A sin C ,∴-sin C =2cos A sin C ,∵sin C ≠0,∴cos A =-12,又A ∈(0,π),∴A =2π3.(2)在△ABD 中,由正弦定理得,AB sin ∠ADB =BDsin A,∴sin ∠ADB =AB sin A BD =22. 又∠ADB ∈(0,π),A =2π3,∴∠ADB =π4,∴∠ABC =π6,∠ACB =π6,AC =AB =2,由余弦定理,得BC 2=AB 2+AC2-2AB ·AC ·cos A =(2)2+(2)2-2×2×2cos 2π3=6,∴a = 6.用正弦、余弦定理解三角形的基本题型及解题方法(1)已知两角和一边①用三角形内角和定理求第三个角. ②用正弦定理求另外两条边. (2)已知两边及其中一边所对的角 ①用正弦定理(适用于优先求角的题) 以知a ,b ,A 解三角形为例: a .根据正弦定理,经讨论求B ;b .求出B 后,由A +B +C =180°,求出C ;c .再根据正弦定理a sin A =csin C ,求出边c .②用余弦定理(适用于优先求边的题) 以知a ,b ,A 解三角形为例:列出以边c 为元的一元二次方程c 2-(2b cos A )c +(b 2-a 2)=0,根据一元二次方程的解法,求边c ,然后应用正弦定理或余弦定理,求出B ,C .(3)已知两边和它们的夹角 ①用余弦定理求第三边.②用余弦定理的变形或正弦定理求另外两角. (4)已知三边可以连续用余弦定理求出两角,常常是分别求较小两边所对的角,再由A +B +C =180°,求出第三个角.1.在△ABC 中,角A ,B ,C 的对边分别为a ,b ,c ,若a =62b ,A =2B ,则cos B 等于( ) A.66 B.65 C.64 D.63答案 C解析因为a=62b,A=2B,所以由正弦定理可得62bsin2B=bsin B,所以622sin B cos B=1sin B,所以cos B=64.2.(2018·和平区模拟)在△ABC中,角A,B,C所对的边分别为a,b,c,若a2-b2=3 bc,且sin C=23sin B,则角A的大小为________.答案π6解析由sin C=23·sin B得c=23b.∴a2-b2=3bc=3·23b2,即a2=7b2.则cos A=b2+c2-a22bc=b2+12b2-7b243b2=32.又A∈(0,π).∴A=π6.3.如图,在△ABC中,B=45°,D是BC边上一点,AD=5,AC=7,DC=3,则AB=________.答案562解析在△ACD中,由余弦定理可得cos C=49+9-252×7×3=1114,则sin C=5314.在△ABC中,由正弦定理可得ABsin C=ACsin B,则AB=AC sin Csin B=7×531422=562.题型二利用正、余弦定理判定三角形的形状1.(2018·武汉调研)在△ABC 中,角A ,B ,C 所对的边分别为a ,b ,c ,若cb<cos A ,则△ABC 为( )A.钝角三角形 B .直角三角形 C.锐角三角形 D .等边三角形答案 A解析 因为c b<cos A ,所以c <b cos A , 由正弦定理得sin C <sin B cos A ,又A +B +C =π,所以sin C =sin(A +B ). 所以sin A cos B +cos A sin B <sin B cos A , 所以sin A cos B <0,又sin A >0,所以cos B <0,B 为钝角,所以△ABC 是钝角三角形. 2.在△ABC 中,角A ,B ,C 的对边分别为a ,b ,c ,若sin A sin B =ac,(b +c +a )(b +c -a )=3bc ,则△ABC 的形状为( )A.直角三角形 B .等腰非等边三角形 C.等边三角形 D .钝角三角形答案 C解析 ∵sin A sin B =a c ,∴a b =ac ,∴b =c .又(b +c +a )(b +c -a )=3bc , ∴b 2+c 2-a 2=bc ,∴cos A =b 2+c 2-a 22bc =bc 2bc =12.∵A ∈(0,π),∴A =π3,∴△ABC 是等边三角形.条件探究1 把举例说明2中△ABC 满足的条件改为“a cos A =b cos B ”,判断△ABC 的形状.解 因为a cos A =b cos B , 所以sin A cos A =sin B cos B , 所以sin2A =sin2B ,又因为0<2A <2π,0<2B <2π,0<A +B <π, 所以2A =2B 或2A +2B =π, 即A =B 或A +B =π2,所以△ABC 是等腰三角形或直角三角形.条件探究2 把举例说明2中△ABC 满足的条件改为“cos 2B 2=a +c 2c”,判断△ABC 的形状.解 因为cos 2B 2=a +c 2c, 所以12(1+cos B )=a +c 2c ,在△ABC 中,由余弦定理得 12+12·a 2+c 2-b 22ac =a +c 2c. 化简得2ac +a 2+c 2-b 2=2a (a +c ), 则c 2=a 2+b 2,所以△ABC 为直角三角形.1.应用余弦定理判断三角形形状的方法 在△ABC 中,c 是最大的边.若c 2<a 2+b 2,则△ABC 是锐角三角形; 若c 2=a 2+b 2,则△ABC 是直角三角形; 若c 2>a 2+b 2,则△ABC 是钝角三角形. 2.判断三角形形状的常用技巧 若已知条件中既有边又有角,则(1)化边:通过因式分解、配方等得出边的相应关系,从而判断三角形的形状. (2)化角:通过三角恒等变换,得出内角的关系,从而判断三角形的形状.此时要注意应用A +B +C =π这个结论.1.若△ABC 的三个内角满足sin A ∶sin B ∶sin C =5∶11∶13,则△ABC ( ) A.一定是锐角三角形 B.一定是直角三角形 C.一定是钝角三角形D.可能是锐角三角形,也可能是钝角三角形 答案 C解析 由正弦定理得,a ∶b ∶c =sin A ∶sin B ∶sin C =5∶11∶13,设a =5t ,b =11t ,c =13t (t >0),则cos C =a 2+b 2-c 22ab=5t2+11t 2-13t 22×5t ×11t<0,所以C 是钝角,△ABC 是钝角三角形.2.设△ABC 的内角A ,B ,C 所对的边分别为a ,b ,c ,若b cos C +c cos B =a sin A ,则△ABC 的形状为( )A.锐角三角形 B .直角三角形 C.钝角三角形 D .不确定答案 B解析 根据正弦定理,由b cos C +c cos B =a sin A 得sin B ·cos C +sin C cos B =sin 2A ,即sin(B +C )=sin 2A ,又因为A +B +C =π,所以sin(B +C )=sin A ,所以sin A =1,由0<A <π,得A =π2.所以△ABC 是直角三角形.题型 三 与三角形面积有关的问题(2017·全国卷Ⅰ)△ABC 的内角A ,B ,C 的对边分别为a ,b ,c .已知△ABC 的面积为a 23sin A. (1)求sin B sin C ;(2)若6cos B cos C =1,a =3,求△ABC 的周长. 解 (1)由题设得12ac sin B =a 23sin A ,即12c sin B =a 3sin A .由正弦定理得12sin C sin B =sin A3sin A .故sin B sin C =23.(2)由题设及(1)得cos B cos C -sin B sin C =-12,即cos(B +C )=-12.所以B +C =2π3,故A =π3.由题意得12bc sin A =a23sin A ,a =3,所以bc =8.由余弦定理得b 2+c 2-bc =9,即(b +c )2-3bc =9.由bc =8,得b +c =33. 故△ABC 的周长为3+33.1.求三角形面积的方法(1)若三角形中已知一个角(角的大小或该角的正、余弦值),结合题意求解这个角的两边或该角的两边之积,代入公式求面积.(2)若已知三角形的三边,可先求其一个角的余弦值,再求其正弦值,代入公式求面积,总之,结合图形恰当选择面积公式是解题的关键.2.已知三角形的面积求边、角的方法(1)若求角,就寻求夹这个角的两边的关系,利用面积公式列方程求解. (2)若求边,就寻求与该边(或两边)有关联的角,利用面积公式列方程求解.(2018·洛阳三模)在△ABC 中,内角A ,B ,C 的对边分别为a ,b ,c ,且b sin B +(c -b )sin C =a sin A .(1)求角A 的大小;(2)若sin B sin C =38,且△ABC 的面积为23,求a .解 (1)由b sin B +(c -b )sin C =a sin A 及正弦定理得b 2+(c -b )c =a 2,即b 2+c 2-bc =a 2, 所以b 2+c 2-a 22bc =cos A =12,所以A =π3.(2)由正弦定理a sin A =b sin B =c sin C ,可得b =a sin B sin A ,c =a sin Csin A,所以S △ABC =12bc sin A =12·a sin B sin A ·a sin Csin A·sin A=a 2sin B sin C2sin A=2 3.又sin B sin C =38,sin A =32,∴38a 2=23,解得a =4.高频考点 用正弦、余弦定理进行边、角之间的转化考点分析 在综合运用正、余弦定理解决较为复杂的与解三角形有关的问题时,常利用边、角之间的转化与化归的方法解决.[典例1] (2018·枣庄二模)已知△ABC 的内角A ,B ,C 的对边分别是a ,b ,c ,且(a 2+b 2-c 2)·(a cos B +b cos A )=abc ,若a +b =2,则c 的取值范围为( )A .(0,2)B .[1,2) C.⎣⎢⎡⎭⎪⎫12,2D .(1,2]答案 B解析 由正、余弦定理,得2cos C (sin A cos B +sin B cos A )=sin C .即 2cos C sin(A +B )=sin C .所以2cos C sin C =sin C ,因为sin C ≠0,所以cos C =12.又C ∈(0,π),所以C =π3.因为c 2=a 2+b 2-2ab cos C =(a +b )2-3ab ,且 (a +b )2≥4ab ,所以ab ≤1. 所以c 2≥1,即c ≥1,又c <a +b =2. 所以1≤c <2.[典例2] (2017·全国卷Ⅱ)△ABC 的内角A ,B ,C 的对边分别为a ,b ,c ,若2b cos B =a cos C +c cos A ,则B =________.答案π3解析 解法一:由2b cos B =a cos C +c cos A 及正弦定理,得11 2sin B cos B =sin A cos C +sin C cos A .∴2sin B cos B =sin(A +C ).又A +B +C =π,∴A +C =π-B .∴2sin B cos B =sin(π-B )=sin B .又sin B ≠0,∴cos B =12.∴B =π3. 解法二:∵在△ABC 中,a cos C +c cos A =b , ∴条件等式变为2b cos B =b ,∴cos B =12. 又0<B <π,∴B =π3. [典例3] (2018·东北三省四市教研联合体模拟)已知△ABC 的内角A ,B ,C 的对边分别为a ,b ,c ,若b =2,且2b cos B =a cos C +c cos A .(1)求B 的大小;(2)求△ABC 面积的最大值.解 (1)由正弦定理a sin A =b sin B =Csin C可得 2sin B cos B =sin A cos C +sin C cos A =sin B ,∵sin B >0,故cos B =12,∵0<B <π,∴B =π3. (2)由b =2,B =π3及余弦定理可得ac =a 2+c 2-4, 由基本不等式可得ac =a 2+c 2-4≥2ac -4,ac ≤4,而且仅当a =c =2时,S △ABC =12ac sin B 取得最大值12×4×32=3,故△ABC 的面积的最大值为 3.方法指导 1.两种主要方法1全部化为角的关系,用三角恒等变换及三角函数的性质解答.2全部化为边的关系,用因式分解、配方等方法变形.2.基本原则1若出现边的一次式一般采用正弦定理;2若出现边的二次式一般采用余弦定理.。
2020版高三文科数学人教版第一轮复习作业:第三篇 三角函数、解三角形 第4节课时作业

课时作业基础对点练(时间:30分钟)1.函数f (x )=sin(2x +φ)⎝ ⎛⎭⎪⎫|φ|<π2向左平移π6个单位后是奇函数,则函数f (x )在⎣⎢⎡⎦⎥⎤0,π2上的最小值为( )(A)-32(B)-12(C)12(D)32A 解析:函数f (x )=sin(2x +φ)⎝ ⎛⎭⎪⎫|φ|<π2向左平移π6个单位后得到函数为f ⎝ ⎛⎭⎪⎫x +π6=sin ⎣⎢⎡⎦⎥⎤2⎝ ⎛⎭⎪⎫x +π6+φ=sin ⎝ ⎛⎭⎪⎫2x +π3+φ,因为此时函数为奇函数,所以π3+φ=k π(k ∈Z ),所以φ=-π3+k π(k ∈Z ).因为|φ|<π2,所以当k =0时,φ=-π3,所以f (x )=sin ⎝ ⎛⎭⎪⎫2x -π3.当0≤x ≤π2时,-π3≤2x -π3≤2π3,即当2x -π3=-π3时,函数f (x )=sin ⎝ ⎛⎭⎪⎫2x -π3有最小值为sin ⎝ ⎛⎭⎪⎫-π3=-32.故选A.2.已知函数f (x )=sin(2x +φ)(0<φ<π2)的图象的一个对称中心为(3π8,0),则函数f (x )的单调递减区间是( )(A)[2k π-3π8,2k π+π8](k ∈Z ) (B)[2k π+π8,2k π+5π8](k ∈Z ) (C)[k π-3π8,k π+π8](k ∈Z )(D)[k π+π8,k π+5π8](k ∈Z )D 解析:由题可得sin(2×3π8+φ)=0,又0<φ<π2,所以φ=π4,所以f (x )=sin(2x +π4),由π2+2k π≤2x +π4≤3π2+2k π(k ∈Z ),得f (x )的单调递减区间是[k π+π8,k π+5π8](k ∈Z ).故选D.3.函数f (x )=sin 23x +cos 23x 的图象中相邻的两条对称轴间距离为( ) (A)3π (B)43π (C)32π(D)76πC 解析:由题意得f (x )=2sin(23x +π4),则其图像中相邻的两条对称轴间的距离为半个周期T 2=π23=3π2.故选C.4.若函数y =cos 2x 与函数y =sin(x +φ)在⎣⎢⎡⎦⎥⎤0,π2上的单调性相同,则φ的一个值为( )(A)π6 (B)π4 (C)π3(D)π2D 解析:易知y =cos 2x 在区间⎣⎢⎡⎦⎥⎤0,π2上单调递减,所以y =sin(x +φ)在⎣⎢⎡⎦⎥⎤0,π2上单调递减,则x +φ∈⎣⎢⎡⎦⎥⎤π2+2k π,3π2+2k π,k ∈Z ,经验证,得φ=π2符合题意,故选D.5.(2018广西河池市高级中学)函数y =cos ⎝⎛⎭⎪⎫2x +π3图像的一个对称中心是( )(A)⎝ ⎛⎭⎪⎫π12,0 (B)⎝ ⎛⎭⎪⎫-π12,0 (C)⎝ ⎛⎭⎪⎫π6,0 (D)⎝ ⎛⎭⎪⎫π3,0 A 解析:2x +π3=k π+π2,k ∈Z , ∴x =k π2+π12,k ∈Z . 故★答案★为⎝ ⎛⎭⎪⎫π12,0.6.(2018宁德质检)如图是函数y =sin(ωx +φ)⎝ ⎛⎭⎪⎫ω>0,0<φ<π2在区间⎣⎢⎡⎦⎥⎤-π6,5π6上的图像,将该图像向右平移m (m >0)个单位后,所得图像关于直线x =π4对称,则m 的最小值为( )(A)π12 (B)π6 (C)π4(D)π3B 解析:令f (x )=y =sin(ωx +φ),由三角函数图像知,T =56π+π6=π,所以2πω=π,所以ω=2.因为函数f (x )过点⎝ ⎛⎭⎪⎫-π6,0,且0<φ<π2,所以-π6×2+φ=0,所以φ=π3,所以f (x )=sin ⎝ ⎛⎭⎪⎫2x +π3,将该函数图像向右平移m 个单位后,所得图像的解析式是g (x )=sin ⎝ ⎛⎭⎪⎫2x +π3-2m ,因为函数g (x )的图像关于直线x =π4对称,所以2×π4+π3-2m =π2+k π(k ∈Z ),解得m =π6-k π2(k ∈Z ),又m >0,所以m 的最小值为π6.故选B.7.将函数y =sin(2x +φ)(0≤φ<π)的图象向左平移π6个单位后,所得的函数恰好是偶函数,则φ的值是________.解析:函数y =sin(2x +φ)的图象向左平移π6个单位后, 得y =sin(2x +π3+φ),则π3+φ=k π+π2,k ∈Z . 又0≤φ<π, 故φ=π6. ★答案★:π68.若函数f (x )=2sin x 2cos x 2-2sin 2x2,则函数f (x )的最小正周期为________;函数f (x )在区间[-π,0]上的最小值是________.解析:因为f (x )=2sin x 2cos x 2-2sin 2x 2=22(sin x +cos x -1)=sin ⎝ ⎛⎭⎪⎫x +π4-22,所以函数f (x )的最小正周期为2π;因为x ∈[]-π,0,所以x +π4∈⎣⎢⎡⎦⎥⎤-3π4,π4,则当x +π4=-π2,即x =-3π4时,函数f (x )在区间[-π,0]上取最小值-1-22;故填2π;-1-22.★答案★:2π -1-229.已知f 1(x )=sin ⎝ ⎛⎭⎪⎫32π+x cos x ,f 2(x )=sin x sin(π+x ),若设f (x )=f 1(x )-f 2(x ),则f (x )的单调递增区间是________.解析:由题知,f 1(x )=-cos 2x ,f 2(x )=-sin 2x ,故f (x )=sin 2x -cos 2x =-cos2x ,令2x ∈[2k π,2k π+π](k ∈Z ),即x ∈⎣⎢⎡⎦⎥⎤k π,k π+π2(k ∈Z ),故f (x )的单调递增区间为⎣⎢⎡⎦⎥⎤k π,k π+π2(k ∈Z )★答案★:⎣⎢⎡⎦⎥⎤k π,k π+π2(k ∈Z )10.(2017华南师大附中测试)设函数f (x )=cos ⎝ ⎛⎭⎪⎫2x +2π3+2cos 2x ,x ∈R .(1)求函数f (x )的最小正周期和单调递减区间;(2)将函数f (x )的图象向右平移π3个单位长度后得到函数g (x )的图象,求函数g (x )在[0,π2]上的最小值.解析:(1)f (x )=cos ⎝ ⎛⎭⎪⎫2x +2π3+2cos 2x =-12cos 2x -32sin 2x +1+cos 2x =12cos2x -32sin 2x +1=cos ⎝⎛⎭⎪⎫2x +π3+1,所以函数f (x )的最小正周期为π.由2k π≤2x +π3≤(2k +1)π(k ∈Z ),可得k π-π6≤x ≤k π+π3(k ∈Z ), 所以函数f (x )的单调递减区间是[k π-π6,k π+π3],k ∈Z . (2)由(1)得g (x )=cos ⎣⎢⎢⎡⎦⎥⎥⎤2⎝ ⎛⎭⎪⎫x -π3+π3+1 =cos ⎝⎛⎭⎪⎫2x -π3+1,因为0≤x ≤π2,所以-π3≤2x -π3≤2π3,所以-12≤cos ⎝ ⎛⎭⎪⎫2x -π3≤1,因此12≤cos ⎝⎛⎭⎪⎫2x -π3+1≤2,所以g (x )在⎣⎢⎡⎦⎥⎤0,π2上的最小值为12.能力提升练(时间:15分钟)11.(2018揭阳二模)已知函数f (x )=A sin(ωx +φ)(A >0,ω>0,0≤φ<2π)的部分图象如图所示,则φ的值为( )(A)π3或2π3 (B)2π3 (C)4π3(D)π3或4π3D 解析:由题意可得函数的周期T =⎣⎢⎢⎡⎦⎥⎥⎤5π6-⎝ ⎛⎭⎪⎫-2π3×23=π,则ω=2πT =2, 当x =-2π3时,ωx +φ=2×⎝ ⎛⎭⎪⎫-2π3+φ=2k π(k ∈Z ),则φ=2k π+43π(k ∈Z ),令k =0可得:φ=43π. 本题选择C 选项.12.已知函数f (x )=A cos 2(ωx +φ)+1(A >0,ω>0,0<φ<π2)的最大值为3,f (x )的图象与y 轴的交点坐标为(0,2),其相邻两条对称轴间的距离为2,则f (1)+f (2)+f (3)+…+f (2016)的值为( )(A)2 468 (B)3 501 (C)4 032(D)5 739C 解析:f (x )=A 2cos(2ωx +2φ)+1+A2,∵f (x )max =3,∴A =2,令x =0,则cos(2φ)=0,∵0<φ<π2,∴φ=π4,易知函数f (x )的最小正周期为4,∴2π2ω=4,得ω=π4,故f (x )=-sin ⎝ ⎛⎭⎪⎫πx 2+2,f (1)+f (2)+f (3)+…+f (2016)=(-1+2)+(0+2)+(1+2)+(0+2)+(-1+2)+…+(0+2)=2×2016=4032.13.已知点(a ,b )在圆x 2+y 2=1上,则函数f (x )=a cos 2x +b sin x cos x -a2-1的最小正周期和最小值分别为( )(A)2π,-32 (B)π,-32 (C)π,-52(D)2π,-52B 解析:因为点(a ,b )在圆x 2+y 2=1上,所以a 2+b 2=1,可设a =cos φ,b =sin φ,代入原函数f (x )=a cos 2x +b sin x cos x -a2-1,得f (x )=cos φcos 2x +sin φsin x cos x -12cos φ-1=12cos φ(2cos 2x -1)+12sinφsin2x -1=12cos φcos 2x +12sin φsin 2x -1=12cos(2x -φ)-1,故函数f (x )的最小正周期为T =2π2=π,函数f (x )的最小值f (x )min =-12-1=-32,故选B.14.设函数f (x )=sin ⎝⎛⎭⎪⎫2x +π6,则下列命题:①f (x )的图像关于直线x =π3对称;②f (x )的图像关于点⎝ ⎛⎭⎪⎫π6,0对称;③f (x )的最小正周期为π,且在⎣⎢⎡⎦⎥⎤0,π12上为增函数;④把f (x )的图像向右平移π12个单位,得到一个奇函数的图像.其中正确的命题为________(把所有正确命题的序号都填上).解析:对于①,f ⎝ ⎛⎭⎪⎫π3=sin ⎝ ⎛⎭⎪⎫2×π3+π6=sin 5π6=12,不是最值,所以x =π3不是函数f (x )的图像的对称轴,该命题错误;对于②,f ⎝ ⎛⎭⎪⎫π6=sin ⎝⎛⎭⎪⎫2×π6+π6=1≠0,所以点⎝ ⎛⎭⎪⎫π6,0不是函数f (x )的图像的对称中心,故该命题错误;对于③,函数f (x )的周期为T =2π2=π,当x ∈⎣⎢⎡⎦⎥⎤0,π12时,令t =2x +π6∈⎣⎢⎡⎦⎥⎤π6,π3,显然函数y =sin t在⎣⎢⎡⎦⎥⎤π6,π3上为增函数,故函数f (x )在⎣⎢⎡⎦⎥⎤0,π12上为增函数,所以该命题正确;对于④,把f (x )的图像向右平移π12个单位后所对应的函数为g (x )=sin ⎣⎢⎢⎡⎦⎥⎥⎤2⎝ ⎛⎭⎪⎫x -π12+π6=sin 2x ,是奇函数,所以该命题正确.故填③④.★答案★:③④15. (2018锦州模拟)如图是函数f (x )=A sin(ωx +φ)(A >0,ω>0,0<φ<π2)的部分图象,M ,N 是它与x 轴的两个交点,D ,C 分别为它的最高点和最低点,点F (0,1)是线段MD 的中点,MD →·MN →=π218.(1)求函数f (x )的解析式; (2)求函数f (x )的单调递增区间.解:(1)由已知F (0,1)是线段MD 的中点,可知A =2,因为MD →·MN →=T 4·T 2=π218(T 为f (x )的最小正周期),所以T =2π3,ω=3,所以f (x )=2sin(3x +φ). 设D 点的坐标为(x D ,2),则由已知得点M 的坐标为(-x D ,0), 所以x D -(-x D )=14T =14×2π3,则x D =π12,则点M 的坐标为(-π12,0), 所以sin(π4-φ)=0. 因为0<φ<π2, 所以φ=π4,所以函数f (x )的解析式为f (x )=2sin(3x +π4). (2)由2k π-π2≤3x +π4≤2k π+π2(k ∈Z ), 得2k π-3π4≤3x ≤2k π+π4(k ∈Z ), 得2k π3-π4≤x ≤2k π3+π12(k ∈Z ), 所以函数f (x )的单调递增区间为 [2k π3-π4,2k π3+π12](k ∈Z ).感谢您的下载!快乐分享,知识无限!由Ruize收集整理!。
高考数学一轮复习 第3章 三角函数、解三角形 第5节 三角恒等变换教学案(含解析)理-人教版高三全册
第五节 三角恒等变换[考纲传真] 1.会用向量的数量积推导出两角差的余弦公式.2.会用两角差的余弦公式推导出两角差的正弦、正切公式.3.会用两角差的余弦公式推导出两角和的正弦、余弦、正切公式和二倍角的正弦、余弦、正切公式,了解它们的内在联系.4.能运用上述公式进行简单的三角恒等变换(包括导出积化和差、和差化积、半角公式,但不要求记忆).1.两角和与差的正弦、余弦、正切公式(1)sin(α±β)=sin_αcos_β±cos _αsin_β; (2)cos(α±β)=cos_αcos_β∓sin_αsin_β; (3)t a n(α±β)=tan α±tan β1∓tan αtan β.2.二倍角的正弦、余弦、正切公式 (1)sin 2α=2sin αcos α;(2)cos 2α=cos 2α-sin 2α=2cos 2α-1=1-2sin 2α; (3)t a n 2α=2tan α1-tan 2α. [常用结论]1.公式T (α±β)的变形:(1)t a n α+t a n β=t a n(α+β)(1-t a n αt a n β); (2)t a n α-t a n β=t a n(α-β)(1+t a n αt a n β). 2.公式C 2α的变形: (1)sin 2α=12(1-cos 2α);(2)cos 2α=12(1+cos 2α).3.公式逆用:(1)sin ⎝ ⎛⎭⎪⎫π4±α=cos ⎝ ⎛⎭⎪⎫π4∓α;(2)sin ⎝ ⎛⎭⎪⎫π3±α=cos ⎝ ⎛⎭⎪⎫π6∓α;(3)sin ⎝⎛⎭⎪⎫π6±α=cos ⎝ ⎛⎭⎪⎫π3∓α.4.辅助角公式a sin α+b cos α=a 2+b 2sin(α+φ)(其中t a n α=b a),特别的sin α±cos α=2sin ⎝ ⎛⎭⎪⎫α±π4; sin α±3cos α=2sin ⎝ ⎛⎭⎪⎫α±π3; 3sin α±cos α=2sin ⎝⎛⎭⎪⎫α±π6. [基础自测]1.(思考辨析)判断下列结论的正误.(正确的打“√”,错误的打“×”) (1)存在实数α,β,使等式sin(α+β)=sin α+sin β成立.( ) (2)在锐角△ABC 中,sin A sin B 和cos A cos B 的大小关系不确定.( ) (3)公式t a n(α+β)=tan α+tan β1-tan αtan β可以变形为t a n α+t a n β=t a n(α+β)(1-t a n αt a n β),且对任意角α,β都成立.( )(4)函数y =3sin x +4cos x 的最大值为7. ( ) [答案] (1)√ (2)× (3)× (4)×2.(教材改编)sin 20°cos 10°-cos 160°sin 10°=( ) A .-32B.32C .-12 D.12D [sin 20°cos 10°-cos 160°sin 10°=sin 20°cos 10°+cos 20°sin 10°=sin(20°+10°)=sin 30°=12,故选D.]3.(教材改编)已知cos α=-35,α是第三象限角,则cos ⎝ ⎛⎭⎪⎫π4+α的值为( ) A.210 B .-210C.7210 D .-7210A [由cos α=-35,α是第三象限角知sin α=-45,则cos ⎝⎛⎭⎪⎫π4+α=cos π4cos α-sin π4sin α=22×⎝ ⎛⎭⎪⎫-35-22×⎝ ⎛⎭⎪⎫-45=210.故选A.] 4.已知sin(α-π)=35,则cos 2α=________.725 [由sin(α-π)=35,得sin α=-35,则 cos 2α=1-2sin 2α=1-2×⎝ ⎛⎭⎪⎫-352=725.]5.(教材改编)11-tan 15°-11+tan 15°=________.33 [11-tan 15°-11+tan 15°=1+tan 15°-1-tan 15°1-tan 15°1+tan 15° =2tan 15°1-tan 215°=t a n 30°=33. ]三角函数式的化简1.已知sin ⎝ ⎛⎭⎪⎫π6-α=cos ⎝ ⎛⎭⎪⎫6+α,则t a n α=( )A .-1B .0C.12D .1A [因为sin ⎝ ⎛⎭⎪⎫π6-α=cos ⎝ ⎛⎭⎪⎫π6+α, 所以12cos α-32sin α=32cos α-12sin α.所以1-32cos α=3-12sin α.所以t a n α=sin αcos α=-1,故选A.]2.计算sin 110°sin 20°cos 2155°-sin 2155°的值为( ) A .-12B.12C.32 D .-32B [sin 110°sin 20°cos 2155°-sin 2155°=sin70°sin 20°cos 310° =cos 20°sin 20°cos 50°=12sin 40°sin 40°=12.]3.已知θ∈⎝ ⎛⎭⎪⎫0,π4,且sin θ-cos θ=-144,则2cos 2θ-1cos ⎝ ⎛⎭⎪⎫π4+θ=( ) A.23B.43C.34D.32D [由sin θ-cos θ=-144得sin ⎝⎛⎭⎪⎫π4-θ=74,因为θ∈⎝ ⎛⎭⎪⎫0,π4,所以0<π4-θ<π4,所以cos ⎝ ⎛⎭⎪⎫π4-θ=34.2cos 2θ-1cos ⎝ ⎛⎭⎪⎫π4+θ=cos 2θsin ⎝ ⎛⎭⎪⎫π4-θ=sin ⎝ ⎛⎭⎪⎫π2-2θsin ⎝ ⎛⎭⎪⎫π4-θ=sin ⎣⎢⎡⎦⎥⎤2⎝ ⎛⎭⎪⎫π4-θsin ⎝ ⎛⎭⎪⎫π4-θ=2cos ⎝⎛⎭⎪⎫π4-θ=32.]4.已知0<θ<π,则1+sin θ+cos θ⎝⎛⎭⎪⎫sin θ2-cos θ22+2cos θ=________.-cos θ [原式=⎝⎛⎭⎪⎫2sin θ2cos θ2+2cos 2θ2⎝ ⎛⎭⎪⎫sin θ2-cos θ24cos2θ2=cos θ2⎝ ⎛⎭⎪⎫sin 2θ2-cos 2θ2⎪⎪⎪⎪⎪⎪cos θ2=-cos θ2·cos θ⎪⎪⎪⎪⎪⎪cos θ2.因为0<θ<π,所以0<θ2<π2,所以cos θ2>0.所以原式=-cos θ.][规律方法]1.三角函数式的化简要遵循“三看”原则2.三角函数式化简的方法弦切互化,异名化同名,异角化同角,降幂或升幂.在三角函数式的化简中“次降角升”和“次升角降”是基本的规律,根号中含有三角函数式时,一般需要升次.三角函数式的求值►考法1 【例1】 (1)(2018·全国卷Ⅲ)若sin α=13,则cos 2α=( )A.89B.79C .-79D .-89(2)(2019·某某模拟)已知角α是锐角,若sin ⎝ ⎛⎭⎪⎫α-π6=13,则cos ⎝ ⎛⎭⎪⎫α-π3等于( )A.26+16 B.3-28 C.3+28D.23-16(3)若α,β是锐角,且sin α-sin β=-12,cos α-cos β=12,则t a n(α-β)=________.(1)B (2)A (3)-73 [(1)cos 2α=1-2sin 2α=1-2×132=79.故选B.(2)由0<α<π2得-π6<α-π6<π3又sin ⎝ ⎛⎭⎪⎫α-π6=13, ∴cos ⎝⎛⎭⎪⎫α-π6=1-sin 2⎝⎛⎭⎪⎫α-π6=1-⎝ ⎛⎭⎪⎫132=223∴cos ⎝ ⎛⎭⎪⎫α-π3=cos ⎣⎢⎡⎦⎥⎤⎝ ⎛⎭⎪⎫α-π6-π6=cos ⎝ ⎛⎭⎪⎫α-π6cos π6+sin ⎝ ⎛⎭⎪⎫α-π6sin π6 =223×32+13×12=26+16,故选A. (3)因为sin α-sin β=-12,cos α-cos β=12,两式平方相加得:2-2cos αcosβ-2sin αsin β=12,即2-2cos(α-β)=12,所以cos(α-β)=34,因为α、β是锐角,且sin α-sin β=-12<0,所以0<α<β<π2.所以-π2<α-β<0.所以sin(α-β)=-1-cos2α-β=-74. 所以t a n(α-β)=sin α-βcos α-β=-73.]►考法2 给角求值【例2】 (1)t a n 20°+t a n 40°+3t a n 20°t a n 40°=________. (2)sin 50°(1+3t a n 10°)=________.(1)3(2)1[(1)由t a n(20°+40°)=tan 20°+t an 40°1-tan 20°tan 40°=3得t a n 20°+t a n 40°=3(1-t a n 20°t a n 40°)∴原式=3(1-t a n 20°t a n 40°)+3t a n 20°t a n 40°= 3. (2)sin 50°(1+3t a n 10°) =sin 50°⎝ ⎛⎭⎪⎫1+3·sin 10°cos 10°=sin 50°×cos 10°+3sin 10°cos 10°=sin 50°×2⎝ ⎛⎭⎪⎫12cos 10°+32sin 10°cos 10°=2sin 50°·cos 50°cos 10°=sin 100°cos 10°=cos 10°cos 10°=1.]►考法3 给值求角 【例3】 (1)若sin 2α=55,sin(β-α)=1010,且α∈⎣⎢⎡⎦⎥⎤π4,π,β∈⎣⎢⎡⎦⎥⎤π,3π2,则α+β的值是( )A.7π4B.9π4 C.5π4或7π4D.5π4或9π4(2)已知α,β∈(0,π),且t a n(α-β)=12,t a n β=-17,则2α-β的值为________.(1)A (2)-3π4[(1)∵α∈⎣⎢⎡⎦⎥⎤π4,π,∴2α∈⎣⎢⎡⎦⎥⎤π2,2π.又sin 2α=55>0,∴2α∈⎣⎢⎡⎦⎥⎤π2,π, ∴cos 2α=-255且α∈⎣⎢⎡⎦⎥⎤π4,π2. 又β∈⎣⎢⎡⎦⎥⎤π,3π2,∴β-α∈⎣⎢⎡⎦⎥⎤π2,5π4. ∵sin(β-α)=1010>0, ∴cos(β-α)=-31010且β-α∈⎣⎢⎡⎦⎥⎤π2,π, ∴cos(α+β)=cos[2α+(β-α)]=cos 2αcos(β-α)-sin 2αsin(β-α)=-255×⎝ ⎛⎭⎪⎫-31010-55×1010=22. ∵2α∈⎣⎢⎡⎦⎥⎤π2,π,β-α∈⎣⎢⎡⎦⎥⎤π2,π,∴α+β∈[]π,2π,∴α+β=7π4,故选A.(2)因为t a n α=t a n[(α-β)+β] =tan α-β+tan β1-tan α-βtan β=12-171+12×17=13>0,所以0<α<π2,又因为t a n 2α=2tan α1-tan 2α==34>0,所以0<2α<π2, 所以t a n(2α-β)=tan 2α-tan β1+tan 2αtan β=34+171-34×17=1.因为t a n β=-17<0,所以π2<β<π,-π<2α-β<0,所以2α-β=-3π4.][规律方法] 三角函数求值的三种情况1“给角求值”中一般所给出的角都是非特殊角,应仔细观察非特殊角与特殊角之间的关系,结合公式将非特殊角的三角函数转化为特殊角的三角函数求解.2“给值求值”:给出某些角的三角函数式的值,求另外一些角的三角函数值,解题关键在于“变角”,使其角相同或具有某种关系.3“给值求角”:实质是转化为“给值求值”,先求角的某一函数值,再求角的X 围,最后确定角.(1)若0<α<π,-π<β<0,cos ⎛⎪⎫π+α=1,cos ⎛⎪⎫π-β=3,则cos ⎝⎛⎭⎪⎫α+β2=( ) A.539B .-69C.33D .-33(2)1-cos 210°cos 80°1-cos 20°=________.(3)(2019·某某模拟)已知sin α=55,sin(α-β)=-1010,α,β均为锐角,则角β值是________.(1)A (2)22 (3)π4 [(1)由0<α<π2得π4<π4+α<3π4,又cos ⎝ ⎛⎭⎪⎫π4+α=13, ∴sin ⎝ ⎛⎭⎪⎫π4+α=223,由-π2<β<0得π4<π4-β2<π2.又cos ⎝⎛⎭⎪⎫π4-β2=33,∴sin ⎝ ⎛⎭⎪⎫π4-β2=63.∴cos ⎝ ⎛⎭⎪⎫α+β2=cos ⎣⎢⎡⎦⎥⎤⎝ ⎛⎭⎪⎫π4+α-⎝ ⎛⎭⎪⎫π4-β2=cos π4+αcos π4-β2+sin ⎝ ⎛⎭⎪⎫π4+αsin ⎝ ⎛⎭⎪⎫π4-β2=13×33+223×63=539.(2)原式=sin 210°cos 80°2sin 210°=sin 210°2sin 210°=22. (3)∵α,β均为锐角,∴-π2<α-β<π2.又sin(α-β)=-1010,∴cos(α-β)=31010. 又sin α=55,∴cos α=255, ∴sin β=sin[α-(α-β)]=sin αcos(α-β)-cos αsin(α-β) =55×31010-255×⎝ ⎛⎭⎪⎫-1010=22. ∴β=π4.]三角恒等变换的综合应用【例4】 (2019·某某模拟)已知函数f (x )=sin 2x -sin 2⎝ ⎛⎭⎪⎫x -6,x ∈R . (1)求f (x )的最小正周期;(2)求f (x )在区间⎣⎢⎡⎦⎥⎤-π3,π4上的最大值和最小值.[解] (1)由已知得f (x )=1-cos 2x 2-1-cos ⎝⎛⎭⎪⎫2x -π32=12⎝ ⎛⎭⎪⎫12cos 2x +32sin 2x -12cos 2x =34sin 2x -14cos 2x =12sin ⎝⎛⎭⎪⎫2x -π6.所以f (x )的最小正周期T =2π2=π. (2)由(1)知f (x )=12sin ⎝ ⎛⎭⎪⎫2x -π6.∵-π3≤x ≤π4,∴-5π6≤2x -π6≤π3,∴当2x -π6=-π2,即x =-π6时,f (x )有最小值,且f ⎝ ⎛⎭⎪⎫-π6=-12,当2x -π6=π3,即x =π4时,f (x )有最大值,且f ⎝ ⎛⎭⎪⎫π4=34. 所以f (x )在区间⎣⎢⎡⎦⎥⎤-π3,π4上的最大值为34,最小值为-12. [规律方法] 三角恒等变换在三角函数图象和性质中的应用,解决此类问题可先根据和角公式、倍角公式把函数表达式变为正弦型函数y =A sin ωx +φ+t 或余弦型函数y =A cos ωx +φ+t 的形式,再利用三角函数的图象与性质求解.(2019·某某模拟)已知函数f (x )=3sin x cos x +cos 2x .(1)求函数f (x )的最小正周期;(2)若-π2<α<0,f (α)=56,求sin 2α的值.[解] (1)∵函数f (x )=3sin x cos x +cos 2x =32sin 2x +1+cos 2x 2=sin ⎝ ⎛⎭⎪⎫2x +π6+12, ∴函数f (x )的最小正周期为2π2=π. (2)若-π2<α<0, 则2α+π6∈⎝⎛⎭⎪⎫-5π6,π6, ∴f (α)=sin ⎝⎛⎭⎪⎫2α+π6+12=56, ∴sin ⎝⎛⎭⎪⎫2α+π6=13, ∴2α+π6∈⎝⎛⎭⎪⎫0,π6, ∴cos ⎝ ⎛⎭⎪⎫2α+π6 =1-sin 2⎝ ⎛⎭⎪⎫2α+π6=223, ∴sin 2α=sin ⎝ ⎛⎭⎪⎫2α+π6-π6=sin ⎝ ⎛⎭⎪⎫2α+π6cos π6-cos ⎝⎛⎭⎪⎫2α+π6sin π6=13×32-223×12=3-226.1.(2017·全国卷Ⅲ)函数f (x )=15sin x +π3+cos ⎝⎛⎭⎪⎫x -π6的最大值为( ) A.65B .1 C.35 D.15A [法一:∵f (x )=15sin ⎝ ⎛⎭⎪⎫x +π3+cos ⎝⎛⎭⎪⎫x -π6 =15⎝ ⎛⎭⎪⎫12sin x +32cos x +32cos x +12sin x =110sin x +310cos x +32cos x +12sin x=35sin x +335cos x =65sin ⎝⎛⎭⎪⎫x +π3, ∴当x =π6+2k π(k ∈Z )时,f (x )取得最大值65. 故选A.法二:∵⎝ ⎛⎭⎪⎫x +π3+⎝ ⎛⎭⎪⎫π6-x =π2, ∴f (x )=15sin ⎝ ⎛⎭⎪⎫x +π3+cos ⎝⎛⎭⎪⎫x -π6 =15sin ⎝ ⎛⎭⎪⎫x +π3+cos ⎝ ⎛⎭⎪⎫π6-x =15sin ⎝ ⎛⎭⎪⎫x +π3+sin ⎝⎛⎭⎪⎫x +π3 =65sin ⎝⎛⎭⎪⎫x +π3≤65. ∴f (x )m ax =65,故选A.] 2.(2016·全国卷Ⅱ)若cos ⎝ ⎛⎭⎪⎫π4-α=35,则sin 2α=( ) A.725 B.15C .-15D .-725 D [因为cos ⎝ ⎛⎭⎪⎫π4-α=35, 所以sin 2α=cos ⎝ ⎛⎭⎪⎫π2-2α=cos 2⎝ ⎛⎭⎪⎫π4-α =2cos 2⎝ ⎛⎭⎪⎫π4-α-1=2×925-1=-725.] 3.(2018·全国卷Ⅰ)已知角α的顶点为坐标原点,始边与x 轴的非负半轴重合,终边上有两点A (1,a ),B (2,b ),且cos 2α=23,则|a -b |=( ) A.15 B.55 C.255 D .1B[由题意知cos α>0.因为cos 2α=2cos2α-1=23,所以cos α=56,sin α=±16,得|t a n α|=55.由题意知|t a n α|=a-b1-2,所以|a-b|=55.] 4.(2018·全国卷Ⅱ)已知t a nα-5π4=15,则t a n α=________.32[法一:因为t a n α-5π4=15,所以tan α-tan5π41+tan αtan5π4=15,即tan α-11+tan α=15,解得t a n α=32.法二:因为t a nα-5π4=15,所以t a n α=t a nα-5π4+5π4=tanα-5π4+tan5π41-tanα-5π4tan5π4=15+11-15×1=32.]5.(2017·全国卷Ⅱ)函数f(x)=2cos x+sin x的最大值为________.5[f(x)=2cos x+sin x=5⎝⎛⎭⎪⎫255cos x+55sin x,设sin α=255,cos α=55,则f(x)=5sin(x+α),∴函数f(x)=2cos x+sin x的最大值为 5.]自我感悟:______________________________________________________ ________________________________________________________________ ________________________________________________________________。
2020高考数学理科大一轮复习课时作业:第三章 三角函数、解三角形课时作业24
课时作业24 正弦定理、余弦定理一、选择题1.△ABC 的角A ,B ,C 的对边分别为a ,b ,c ,若cos A =78,c -a =2,b =3,则a =( A )A .2 B.52 C .3 D.72解析:由题意可得c =a +2,b =3,cos A =78,由余弦定理,得cos A =12·b 2+c 2-a 2bc ,代入数据,得78=9+(a +2)2-a 22×3(a +2),解方程可得a=2.2.(2019·湖北黄冈质检)在△ABC 中,角A ,B ,C 的对边分别为a ,b ,c ,若a =52b ,A =2B ,则cos B =( B )A.53B.54C.55D.56解析:由正弦定理,得sin A =52sin B ,又A =2B ,所以sin A =sin2B =2sin B cos B ,所以cos B =54.3.(2019·成都诊断性检测)已知锐角△ABC 的三个内角分别为A ,B ,C ,则“sin A >sin B ”是“tan A >tan B ”的( C )A .充分不必要条件B .必要不充分条件C .充要条件D .既不充分也不必要条件解析:在锐角△ABC 中,根据正弦定理a sin A =bsin B ,知sin A >sin B ⇔a >b ⇔A >B ,而正切函数y =tan x 在(0,π2)上单调递增,所以A >B ⇔tan A >tan B .故选C.4.(2019·武汉调研)在△ABC 中,角A ,B ,C 所对的边分别为a ,b ,c ,若cb <cos A ,则△ABC 为( A )A .钝角三角形B .直角三角形C .锐角三角形D .等边三角形解析:根据正弦定理得c b =sin Csin B <cos A ,即sin C <sin B cos A ,∵A +B +C =π,∴sin C =sin(A +B )<sin B cos A ,整理得sin A cos B <0,又三角形中sin A >0,∴cos B <0,π2<B <π.∴△ABC 为钝角三角形.5.(2018·全国卷Ⅲ)△ABC 的内角A ,B ,C 的对边分别为a ,b ,c .若△ABC 的面积为a 2+b 2-c 24,则C =( C ) A.π2 B.π3 C.π4 D.π6解析:根据题意及三角形的面积公式知12ab sin C =a 2+b 2-c 24,所以sin C =a 2+b 2-c 22ab =cos C ,所以在△ABC 中,C =π4.6.(2019·河南洛阳高三统考)在△ABC 中,角A ,B ,C 的对边分别是a ,b ,c ,若a ,b ,c 成等比数列,且a 2=c 2+ac -bc ,则c b sin B =( B )A.32B.233C.33 D. 3解析:由a ,b ,c 成等比数列得b 2=ac ,则有a 2=c 2+b 2-bc ,由余弦定理得cos A =b 2+c 2-a 22bc =bc 2bc =12,故A =π3,对于b 2=ac ,由正弦定理得,sin 2B =sin A sinC =32·sin C ,由正弦定理得,c b sin B =sin Csin 2B=sin C 32sin C=233.故选B.二、填空题7.在△ABC 中,角A ,B ,C 所对的边分别为a ,b ,c ,若角A ,B ,C 依次成等差数列,且a =1,b =3,则S △ABC =32.解析:因为角A ,B ,C 依次成等差数列,所以B =60°.由正弦定理,得1sin A =3sin60°,解得sin A =12,因为0°<A <180°,所以A =30°,此时C =90°,所以S △ABC =12ab =32.8.(2019·福州四校联考)在△ABC 中,a ,b ,c 分别是角A ,B ,C 的对边,且满足(a +b )sin C 2=12,(a -b )cos C2=5,则c =13.解析:∵(a +b )sin C 2=12,(a -b )cos C 2=5,∴(a +b )2sin 2C 2=144 ①,(a -b )2cos 2C 2=25 ②,①+②得,a 2+b 2-2ab (cos 2C 2-sin 2C 2)=169,∴a 2+b 2-2ab cos C =c 2=169,∴c =13.9.(2019·开封高三定位考试)在△ABC 中,角A ,B ,C 的对边分别为a ,b ,c ,b tan B +b tan A =2c tan B ,且a =5,△ABC 的面积为23,则b +c 的值为7.解析:由正弦定理及b tan B +b tan A =2c tan B ,得sin B ·sin B cos B +sin B ·sin A cos A =2sin C ·sin B cos B ,即cos A sin B +sin A cos B =2sin C cos A ,亦即sin(A +B )=2sin C cos A ,故sin C =2sin C cos A .因为sin C ≠0,所以cos A =12,所以A =π3.由面积公式,知S △ABC =12bc sin A =23,所以bc =8.由余弦定理,知a 2=b 2+c 2-2bc cos A =(b +c )2-3bc ,代入可得b +c =7.三、解答题10.(2019·惠州市调研考试)已知△ABC 中,角A ,B ,C 的对边分别为a ,b ,c ,且2cos C (a cos C +c cos A )+b =0.(1)求角C 的大小;(2)若b =2,c =23,求△ABC 的面积. 解:(1)∵2cos C (a cos C +c cos A )+b =0, ∴由正弦定理可得2cos C (sin A cos C +sin C cos A )+sin B =0,∴2cos C sin(A +C )+sin B =0,即2cos C sin B +sin B =0, 又0°<B <180°,∴sin B ≠0,∴cos C =-12, 又0°<C <180°,∴C =120°.(2)由余弦定理可得(23)2=a 2+22-2×2a cos120°=a 2+2a +4,又a >0,∴解得a =2,∴S △ABC =12ab sin C =3,∴△ABC 的面积为 3. 11.(2019·重庆市质量调研)在△ABC 中,角A ,B ,C 所对的边分别为a ,b ,c ,且sin B 2-cos B 2=14.(1)求cos B 的值;(2)若b 2-a 2=314ac ,求sin Csin A 的值.解:(1)将sin B 2-cos B 2=14两边同时平方得,1-sin B =116,得sin B =1516,故cos B =±3116,又sin B 2-cos B 2=14>0, 所以sin B 2>cos B2,所以B 2∈(π4,π2),所以B ∈(π2,π),故cos B =-3116. (2)由余弦定理得b 2=a 2+c 2-2ac cos B =a 2+314ac ,所以314a =c -2a cos B =c +318a , 所以c =318a ,故sin C sin A =318.12.(2018·北京卷)若△ABC 的面积为34(a 2+c 2-b 2),且∠C 为钝角,则∠B =60°;c a 的取值范围是(2,+∞).解析:△ABC 的面积S =12ac sin B =34(a 2+c 2-b 2)=34×2ac cos B ,所以tan B =3,因为0°<∠B <180°,所以∠B =60°.因为∠C 为钝角,所以0°<∠A <30°,所以0<tan A <33,所以c a =sin Csin A =sin (2π3-A )sin A =sin 2π3cos A -cos 2π3sin Asin A =32tan A +12>2, 故ca 的取值范围为(2,+∞).13.(2019·山西八校联考)在△ABC 中,a ,b ,c 分别是内角A ,B ,C 的对边,且(a +c )2=b 2+3ac .(1)求角B 的大小;(2)若b =2,且sin B +sin(C -A )=2sin2A ,求△ABC 的面积. 解:(1)由(a +c )2=b 2+3ac ,整理得a 2+c 2-b 2=ac , 由余弦定理得cos B =a 2+c 2-b 22ac =ac 2ac =12,∵0<B <π,∴B =π3.(2)在△ABC 中,A +B +C =π,即B =π-(A +C ),故sin B =sin(A +C ),由已知sin B +sin(C -A )=2sin2A 可得sin(A +C )+sin(C -A )=2sin2A ,∴sin A cos C +cos A sin C +sin C cos A -cos C sin A =4sin A cos A , 整理得cos A sin C =2sin A cos A . 若cos A =0,则A =π2, 由b =2,可得c =2tan B =233, 此时△ABC 的面积S =12bc =233. 若cos A ≠0,则sin C =2sin A , 由正弦定理可知,c =2a ,代入a 2+c 2-b 2=ac ,整理可得3a 2=4, 解得a =233,∴c =433,此时△ABC 的面积S =12ac sin B =233. 综上所述,△ABC 的面积为233.尖子生小题库——供重点班学生使用,普通班学生慎用14.(2019·南宁、柳州联考)在△ABC 中,角A ,B ,C 所对的边分别为a ,b ,c ,若bc =1,b +2c cos A =0,则当角B 取得最大值时,△ABC 的周长为( A )A .2+ 3B .2+ 2C .3D .3+ 2解析:解法1:由题意可得,sin B +2sin C cos A =0,即sin(A +C )+2sin C cos A =0,得sin A cos C =-3sin C cos A ,即tan A =-3tan C .又cos A =-b2c <0,所以A 为钝角,于是tan C >0.从而tan B =-tan(A +C )=-tan A +tan C 1-tan A tan C=2tan C 1+3tan 2C=21tan C +3tan C,由基本不等式,得1tan C +3tan C ≥ 21tan C ×3tan C =23,当且仅当tan C =33时等号成立,此时角B 取得最大值,且tan B =tan C =33,tan A =-3,即b =c ,A =120°,又bc =1,所以b =c =1,a =3,故△ABC 的周长为2+ 3.解法2:由已知b +2c cos A =0,得b +2c ·b 2+c 2-a 22bc =0,整理得2b 2=a 2-c 2.由余弦定理,得cos B =a 2+c 2-b 22ac =a 2+3c 24ac ≥23ac 4ac =32,当且仅当a =3c 时等号成立,此时角B 取得最大值,将a =3c 代入2b 2=a 2-c 2可得b =c .又bc =1,所以b =c =1,a =3,故△ABC的周长为2+ 3.故选A.15.(2019·河南信阳二模)已知a ,b ,c 分别是△ABC 内角A ,B ,C 的对边,且满足(a +b +c )(sin B +sin C -sin A )=b sin C .(1)求角A 的大小;(2)设a =3,S 为△ABC 的面积,求S +3cos B cos C 的最大值. 解:(1)∵(a +b +c )(sin B +sin C -sin A )=b sin C ,∴根据正弦定理,知(a +b +c )(b +c -a )=bc ,即b 2+c 2-a 2=-bc .∴由余弦定理,得cos A =b 2+c 2-a 22bc =-12. 又A ∈(0,π),所以A =23π.(2)根据a =3,A =23π及正弦定理可得b sin B =c sin C =a sin A =332=2,∴b =2sin B ,c =2sin C .∴S =12bc sin A =12×2sin B ×2sin C ×32=3sin B sin C .∴S +3cos B cos C =3sin B sin C +3cos B ·cos C =3cos(B -C ).故当⎩⎪⎨⎪⎧B =C ,B +C =π3,即B =C =π6时,S +3cos B ·cos C 取得最大值 3.感谢您的下载!快乐分享,知识无限!由Ruize收集整理!。
2020版高考数学一轮复习第3章三角函数、解三角形第1讲课后作业理(含解析)
第3章 三角函数、解三角形 第1讲A 组 基础关1.集合{α⎪⎪⎪⎭⎬⎫k π+π4≤α≤k π+π2,k ∈Z 中的角所表示的范围(阴影部分)是( )答案 C解析 当k =2n (n ∈Z )时,2n π+π4≤α≤2n π+π2,此时上式表示的范围与π4≤α≤π2表示的范围一样;当k =2n +1(n ∈Z )时,2n π+5π4≤α≤2n π+3π2,此时上式表示的范围与5π4≤α≤3π2表示的范围一样.2.下列各选项中正确的是( ) A.sin300°>0B .cos(-305°)<0 C.tan ⎝ ⎛⎭⎪⎫-22π3>0D .sin10<0答案 D解析 因为300°=360°-60°, 所以300°是第四象限角,故sin300°<0; 因为-305°=-360°+55°,所以-305°是第一象限角,故cos(-305°)>0; 因为-22π3=-8π+2π3所以-22π3是第二象限角,故tan ⎝ ⎛⎭⎪⎫-22π3<0.因为3π<10<7π2,所以10是第三象限角, 所以sin10<0.3.若-3π4<α<-π2,从单位圆中的三角函数线观察sin α,cos α,tan α的大小是( )A.sin α<tan α<cos α B .cos α<sin α<tan α C.sin α<cos α<tan α D .tan α<sin α<cos α答案 C解析 作出α的正弦线MP ,余弦线OM 和正切线AT ,如图所示.由图可知MP <OM <AT ,所以sin α<cos α<tan α.4.若α=k ·360°+θ,β=m ·360°-θ(k ,m ∈Z ),则角α与β的终边的位置关系是( )A.重合 B .关于原点对称 C.关于x 轴对称 D .关于y 轴对称答案 C解析 θ与-θ的终边关于x 轴对称,α与θ终边相同,β与-θ终边相同,所以α与β的终边关于x 轴对称.5.给出下列命题:①第二象限角大于第一象限角;②三角形的内角是第一象限角或第二象限角;③不论是用角度制还是用弧度制度量一个角,它们与扇形的半径的大小无关;④若sin α=sin β,则α与β的终边相同;⑤若cos θ<0,则θ是第二或第三象限的角.其中正确命题的个数是( ) A.1 B .2 C .3 D .4 答案 A解析 举反例:第一象限角370°不小于第二象限角100°,故①错误;当三角形的内角为90°时,其既不是第一象限角,也不是第二象限角,故②错误;③正确;由于sin π6=sin 5π6,但π6与5π6的终边不相同,故④错误;当cos θ=-1,θ=π时既不是第二象限角,也不是第三象限角,故⑤错误.综上可知只有③正确.6.点P 从(1,0)出发,沿单位圆逆时针方向运动2π3弧长到达点Q ,则点Q 的坐标为( )A.⎝ ⎛⎭⎪⎫-12,32 B.⎝ ⎛⎭⎪⎫-32,-12 C.⎝ ⎛⎭⎪⎫-12,-32D.⎝⎛⎭⎪⎫-32,12 答案 A解析 由题意得2π3的终边与单位圆的交点是Q ,由任意角三角函数的定义可知,。
高考数学一轮总复习第3章三角函数解三角形3.5两角和与差的正弦余弦和正切公式课件文
例 1 (1)[2017·衡水中学二调]cos130°-sin1170°=(
)
A.4
B.2
C.-2
D.-4
[解析]
3- 1 =
3- 1 =
cos10° sin170° cos10° sin10°
3ssiinn1100°°c-osc1o0s°10°=2sin110°-30°=-12sin20°=-4.
3 2
,1,f(x)∈0,1+
23.
故
f(x)的值域为0,1+
23.
核心规律 重视三角函数的“三变”:“三变”是指“变角、变名、变式”; 变角:对角的拆分要尽可能化成同名、同角、特殊角;变名: 尽可能减少函数名称;变式:对式子变形一般要尽可能有理 化、整式化、降低次数等.在解决求值、化简、证明问题时, 一般是观察角度、函数名、所求(或所证明)问题的整体形式 中的差异,再选择适当的三角公式恒等变形.
2sin20°
2sin20°
(2)4cos50°-tan40°=(
)
A. 2
B.
2+ 2
3
C. 3 [解析]
D.2 2-1
4cos50°-
tan40°=
4sin40°cos40°-sin40°= cos40°
2sin80°-sin40°
=
cos40°
2sin100°-sin40°
=
cos40°
2sin60°+ cos4400°°-sin40°=2×
23cos10°+12sin10° cos20°
考向 三角函数的条件求值
命题角度 1 给值求值问题
例 2 [2016·全国卷Ⅱ]若 cosπ4-α=35,则 sin2α=(
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
第三章 三角函数、解三角形
课时作业19 任意角和弧度制及任意角的三角函
数
一、选择题
1.将-300°化为弧度为( B ) A .-43π B .-53π C .-76π D .-74π 解析:-300×π180=-5
3π. 2.tan 8π
3的值为( D ) A.33 B .-33 C. 3 D .- 3
解析:tan 8π3=tan(2π+2π3)=tan 2π
3=- 3.
3.已知2弧度的圆心角所对的弦长为2,则这个圆心角所对的弧长是( C )
A .2
B .sin2 C.2sin1
D .2sin1
解析:r =1sin1,l =θ·r =2·1sin1=2
sin1,故选C.
4.已知点P ⎝ ⎛⎭
⎪⎫
32,-12在角θ的终边上,且θ∈[0,2π),则θ的值
为( C )
A.5π6
B.2π3
C.11π6
D.5π3
解析:因为点P ⎝ ⎛⎭
⎪⎫32,-12在第四象限,所以根据三角函数的定义可知tan θ=-1
2
32
=-33,又θ∈[0,2π),可得θ=11π
6.
5.如图,在平面直角坐标系xOy 中,角α的终边与单位圆交于点A ,点A 的纵坐标为4
5,则cos α的值为( D )
A.45 B .-45 C.35 D .-35
解析:因为点A 的纵坐标y A =4
5,且点A 在第二象限,又因为圆O 为单位圆,所以A 点横坐标x A =-3
5,由三角函数的定义可得cos α=-35.
6.(2019·福州一模)设α是第二象限角,P (x,4)为其终边上的一点,且cos α=1
5x ,则tan α=( D )
A.43
B.34 C .-34
D .-43
解析:因为α是第二象限角,所以cos α=1
5x <0,即x <0.又cos α=15x =
x
x 2
+16
,解得x =-3,所以tan α=4x =-4
3. 7.点P (cos α,tan α)在第二象限是角α的终边在第三象限的( C ) A .充分不必要条件 B .必要不充分条件 C .充要条件
D .既不充分也不必要条件
解析:若点P (cos α,tan α)在第二象限,则⎩⎨
⎧
cos α<0,tan α>0,
可得α的
终边在第三象限;反之,若角α的终边在第三象限,有⎩⎨
⎧
cos α<0,
tan α>0,
即
点P (cos α,tan α)在第二象限,故选项C 正确.
8.已知A (x A ,y A )是单位圆(圆心在坐标原点O )上任意一点,将射线OA 绕O 点逆时针旋转30°,交单位圆于点B (x B ,y B ),则x A -y B 的取值范围是( C )
A .[-2,2]
B .[-2,2]
C .[-1,1]
D.⎣⎢⎡⎦
⎥⎤
-12,12 解析:设x 轴正方向逆时针到射线OA 的角为α,根据三角函数的定义得x A =cos α,y B =sin(α+30°),所以x A -y B =cos α-sin(α+30°)=-32sin α+1
2cos α=sin(α+150°)∈[-1,1].
二、填空题
9.-2 017°角是第二象限角,与-2 017°角终边相同的最小正角
是143°,最大负角是-217°.
解析:因为-2 017°=-6×360°+143°,所以-2 017°角的终边与143°角的终边相同.所以-2 017°角是第二象限角,与-2 017°角终边相同的最小正角是143°.又143°-360°=-217°,故与-2 017°角终边相同的最大负角是-217°.
10.设角α是第三象限角,且⎪
⎪⎪⎪
⎪⎪sin α2=-sin α2,则角α
2是第四象限
角.
解析:由角α是第三象限角,知2k π+π<α<2k π+3π
2(k ∈Z ),则k π
+π2<α2<k π+3π4(k ∈Z ),故α2是第二或第四象限角.由⎪⎪⎪⎪
⎪⎪sin α2=-sin α
2知
sin α2<0,所以α
2只能是第四象限角.
11.一扇形是从一个圆中剪下的一部分,半径等于圆半径的2
3,面积等于圆面积的527,则扇形的弧长与圆周长之比为5
18.
解析:设圆的半径为r ,则扇形的半径为2r
3,记扇形的圆心角为α,则扇形与圆面积之比为12α⎝ ⎛⎭⎪⎫2r 32
πr 2=527,∴α=5π
6.∴扇形的弧长与圆周长之比为l c =5π6·23r 2πr =518.
12.在平面直角坐标系xOy 中,角α与角β均以Ox 为始边,它们的终边关于y 轴对称.若sin α=13,则sin β=1
3.
解析:解法1:当角α的终边在第一象限时,取角α终边上一点P 1(22,1),其关于y 轴的对称点(-22,1)在角β的终边上,此时
sin β=1
3;当角α的终边在第二象限时,取角α终边上一点P 2(-22,1),其关于y 轴的对称点(22,1)在角β的终边上,此时sin β=1
3.综合可得sin β=1
3.
解法2:令角α与角β均在区间(0,π)内,故角α与角β互补,得sin β=sin α=1
3.
解法3:由已知可得,sin β=sin(2k π+π-α)=sin(π-α)=sin α=1
3(k ∈Z ).
13.已知角α的终边上一点P 的坐标为⎝ ⎛⎭⎪⎫sin 2π
3,cos 2π3,则角α的
最小正值为( D )
A.5π6
B.2π
3 C.5π3 D.11π6
解析:由题意知点P 在第四象限,根据三角函数的定义得cos α=sin 2π3=32,故α=2k π-π6(k ∈Z ),所以α的最小正值为11π6.
14.(2019·武汉模拟)已知角α的顶点在原点,始边在x 轴正半轴,终边与圆心在原点的单位圆交于点A (m ,3m ),则sin2α=32.
解析:由题意得|OA |2=m 2+3m 2=1, 故m 2
=1
4.
由任意角三角函数定义知cos α=m ,sin α=3m ,
由此sin2α=2sin αcos α=23m 2=3
2.
尖子生小题库——供重点班学生使用,普通班学生慎用 15.已知sin α>sin β,那么下列命题成立的是( D ) A .若α,β是第一象限的角,则cos α>cos β B .若α,β是第二象限的角,则tan α>tan β C .若α,β是第三象限的角,则cos α>cos β D .若α,β是第四象限的角,则tan α>tan β 解析:由三角函数线可知选D.
16.(2018·全国卷Ⅰ)已知角α的顶点为坐标原点,始边与x 轴的非负半轴重合,终边上有两点A (1,a ),B (2,b ),且cos2α=2
3,则|a -b |=( B )
A.15
B.55
C.25
5 D .1
解析:解法1:由正切定义tan α=y
x , 则tan α=a 1=b
2, 即a =tan α,b =2tan α.
又cos2α=cos 2α-sin 2α=cos 2α-sin 2αcos 2α+sin 2α=1-tan 2α1+tan 2α
=23,得tan 2
α=15,tan α=±55.
∴|b -a |=|2tan α-tan α|=|tan α|=5
5. 解法2:由两点斜率公式, 得:tan α=b -a
2-1=b -a .
又cos2α=cos 2α-sin 2α =cos 2α-sin 2αcos 2α+sin 2α=1-tan 2α1+tan 2
α=23, 解得tan 2
α=1
5,
∴|b -a |=|tan α|=5
5.。