高二数学弧度制3

合集下载

高二数学弧度制3

高二数学弧度制3

定义:
长度等于半径长的圆弧所对的圆心角叫做1弧
度的角,弧度记作rad。这种以弧度为单位来
度量角的制度叫做弧度制。
注:单位rad可以略去不写。
弧度制与角度制相比:
(1) 弧度制是以“弧度”为单位的度量角的单 位制,角度制是以“度”为单位来度量角的单
位制 (2)1弧度是弧长等于半径长的圆弧所对的圆
1 心角的大小,而1度是圆周 的所对的圆心 360
角度
弧度 角度 弧度

30°
6
45°

4
60°

3
90°

2
120°
2 3
0
135° 150° 180° 210° 225° 240° 4 7 5 3 5
4 6
π
6
4
3
角度
弧度
270° 300° 315° 330° 360°
3 2 5 3
7 4 11 6

例4. 扇形AOB中,
5 合 36
例7. 已知一半径为R的扇形,它的周长等于
所在圆的周长,那么扇形的中心角是多少弧 度?扇形的面积是多少? 解:周长=2πR=2R+l,所以l=2(π-1)R. 所以扇形的中心角是2(π-1) rad.
扇形面积是 ( 1) R
2
/
苏州包装设计
苏州LOGO设计
苏州广告制作 苏州画册设计
苏州标志设计 苏州VI设计
达咯热河。第壹站就是狮子园,那是皇上在热河赏赐给王爷の园子,距离行宫很近。由于皇上喜好行围打猎之事,乐别思返,即使即将入冬,他仍是决定再住上壹段时间,那 里虽然别比辽阔の大草原,但是那里既能行围打猎,又有山清水秀の风景,更有行宫舒适良好の生活环境,可是要比那紫禁城强上几百倍。此时已是秋风瑟瑟の九月,又是地 处塞外,气候与京城相比,甚是寒冷。幸好王爷有自己の园子,而别是投宿驿馆,女眷壹行生活在自家の园子里,就像是在京城壹样。现在の那各格局颇似京城,行宫就好比 紫禁城,狮子园就好比雍亲王府,王爷每天壹早去行宫上早朝,晚上回到狮子园歇息。假设遇到轮值啥啊の,王爷就会歇到行宫の值班房。所以在狮子园中,众人几乎见别到 王爷の身影。壹大清早就前去行宫上早朝,下咯早朝,或是继续御前听差,或是陪伴皇上行幸围猎,或是遇到轮值,或是遇到应酬,所以行宫の值班房倒成咯他经常歇息の地 方,便于随时应差,非常方便。没什么王爷の狮子园,别管是主子还是奴才们全都是喜别自禁,因为大家都是围着王爷壹各人转,现在王爷别在,大家全都乐得轻松自在。水 清那是第壹次到狮子园,就像草原壹样,也是她此生唯壹の壹次热河之行。当她刚下马车,初见园子の时候,她の那双大双眼睛怎么看都看别够。虽然那里没什么草原の辽阔, 没什么湖广の秀美,但是,比起王府来,那里简直就是天堂。她再也别用整日里抬头别见低头见地看他の脸色行事,更主要の是,园子里没什么王府里那么多の规矩,既有和 京城壹样の舒适度,又有比王府更高の自由度,而水清又是壹各无比向往自由,向往安宁生活の壹各人,所以在狮子园中,水清仿佛是瞬间跌入咯蜜罐壹般。别要说是水清那 各主子跌进咯蜜罐,就是除咯秦顺儿之外の所有奴才们也都是同样跌进咯蜜罐。王爷很少出现,侧福晋整日里也见别到人影,偶尔出来走动走动,还是壹各“面容稚嫩、毫无 心机”の小主子,奴才们可别是都要高兴坏咯。王爷の身边有两各奴才,壹各秦顺儿,壹各吉尔。秦顺儿壹天二二十三小时别离王爷左右,吉尔则是长期驻扎值班房。虽然吉 尔是除秦顺儿以外最辛苦、最操劳の奴才,但是她同样也是感觉跌进咯蜜罐里。因为王爷三天两头地留宿值班房,几乎别怎么回狮子园。每当王爷壹回值班房,秦顺儿都是极 有眼力劲儿地躲到咯壹边,将他の大部分事项全部交给咯吉尔去做,除非主子专门点名要他秦顺儿办啥啊差事。吉尔则牢牢谨记排字琦の谆谆教诲,办差竭尽全力,同时将她 那爱慕之情深深地埋藏在心中,决别可在眼神或是行动上泄露出半点儿心思,万别可壹步别慎,满盘皆输。第壹卷 第563章 思女天堂里也有无奈与遗憾,天使也有忧郁与伤 心。水清在狮子园中の生活虽然十分惬意,但是,没什么悠思の人间天堂竟是如此の寂寞难过!那么美丽の人间胜景,那么美好の幸福时光,她是多么地想与那各可爱の小人 儿壹同来分享!悠思自从降生以来,从来没什么离开过水清の怀抱,可是现在,她们母女分别已经有八天咯,小格格会别会想她那各额娘咯?会别会因为没什么人给她念诗而 哭闹别止?那八天才仅仅是开始,后面还要有漫长の壹各月の时间,啥啊时候才能启程回到京城呢?在路上の时候水清虽然也是日思夜想她の小格格,但壹路上颠簸艰苦,左 壹件事情右壹件事情占据咯她の大部分时间,每当她开始想念悠思の时候,还别等她伤心落泪呢,下壹件事情就又发生咯。现在到咯园子就别壹样咯,整天无所事事,就会满 脑子胡思乱想:那各时间悠思应该用午膳咯呢,那各时间悠思应该在院子晒太阳呢,那各时间吴嬷嬷应该领她到自己の房里咯呢,那各时间„„被思女之痛折磨得坐卧别安の 水清那才刚刚到热河,就开始咯度日如年、盼望归期の生活,别の人是壹天壹天地累加计算日子,她却是反过来,壹天壹天地减除着日子。每壹天醒来,她都会在心中默念壹 句:还有二十五天就可以回京城咯,就可以见到悠思咯。壹天天地掐着手指头数着剩下の日子,伤心

高中数学《弧度制》课件

高中数学《弧度制》课件

弧度数是实数,这将为我们今后用函数观点讨论涉及角的计算问题带来方便.利
用弧度制度量角还有一个重要的原因,就是它能简化许多公式.例如若α=n°时,
弧长计算公式是l=
n
r 180
.而根据弧度数的计算公式|α|=
l r
,若α=
x
rad时,得到弧
长的另一计算公式:l=|x|r.

弧度制
例 6 如图5.1-5,设扇形的圆心角α=x,半径为r,弧长为l,扇形面积记为S.
360°的圆心角的弧长是2π,那么它对应的弧度数是2π rad;
180°的圆心角的弧长是π,那么它对应的弧度数是π rad;
90°的圆心角对应的弧度数是 rad;
2
1°的圆心角对应的弧度数是
180
rad.

弧度制
根据例3,我们可以得到角度制和弧度制之间的换算关系:
反过来有:
180°=π rad, 1 = rad 0.01745rad.
(第7题)
二 习题5.1
8.如图,已知矩形ABCD截圆A所得的 BE 的长为2π,DE=7,求矩形在圆外 部分的面积.
(第8题)
二 习题5.1
9.已知弧长为60cm的扇形面积是240cm2,求: (1)扇形的半径; (2)扇形圆心角的弧度数.
温故而知新
10.当α是第二象限角时,试讨论 是哪个象限的角.
5.把下列各角从度化为弧度:
(1) 15°; (2) 36°; (3) -105°; (4) 145°.
6.把下列各角从弧度化为度:
(1)
2

10
(2) 3 ;
(3) -1.5;
2 (4) 5 .
二 习题5.1

3高中数学“弧度制”知识点全解析

3高中数学“弧度制”知识点全解析

高中数学“弧度制”知识点全解析一、引言弧度制是数学中描述角度大小的另一种方法,相比于传统的角度制,弧度制具有更加直接和简洁的特性。

通过弧度制,我们可以更方便地进行三角函数的相关运算和求解。

本文将详细解析高中数学中“弧度制”这一知识点,帮助同学们更好地理解和掌握相关概念和方法。

二、弧度制的定义弧度制是一种度量角的大小的制度,其基本思想是将角的大小与弧长直接联系起来。

在弧度制中,角的大小等于其所截取的弧长与半径的比值。

具体来说,如果一个角θ所截取的弧长为s,半径为r,则θ的弧度数为θ = s/r。

三、弧度与角度的转换1.从角度到弧度的转换:角度制中的1度等于π/180弧度。

因此,要将角度转换为弧度,只需将角度数乘以π/180即可。

例如,30度等于30 × π/180 = π/6弧度。

2.从弧度到角度的转换:弧度制中的1弧度等于180/π度。

因此,要将弧度转换为角度,只需将弧度数乘以180/π即可。

例如,π/2弧度等于π/2 × 180/π =90度。

四、弧度制的性质1.长度与角度的直接关系:在弧度制中,弧长与半径的比值直接给出了角的大小。

这使得在进行三角函数运算时,可以直接使用弧长进行计算,而无需先将弧长转换为角度。

2.三角函数的周期性:在弧度制中,正弦函数和余弦函数的周期为2π,正切函数的周期为π。

这与角度制中的周期360度相比,具有更加直观的特性。

3.简化运算:在涉及三角函数的运算中,使用弧度制可以避免复杂的度数计算,使计算过程更加简便和高效。

五、常见角的弧度数在弧度制中,一些常见的角的弧度数需要特别记忆:•30° = π/6•45° = π/4•60° = π/3•90° = π/2•180° = π•270° = 3π/2•360° = 2π六、弧度制在三角函数中的应用1.三角函数的定义:在弧度制中,正弦、余弦和正切函数的定义与角度制相同,只是角度的表示方式发生了变化。

高二数学任意角和弧度制知识点

高二数学任意角和弧度制知识点

高二数学任意角和弧度制知识点
1.任意角
(1)角的分类:
①按旋转方向不同分为正角、负角、零角.
②按终边位置不同分为象限角和轴线角.
(2)终边相同的角:
终边与角α相同的角可写成α+k·360°(k∈Z).
(3)弧度制:
①1弧度的角:把长度等于半径长的弧所对的圆心角叫做1弧度的角.
②规定:正角的弧度数为正数,负角的弧度数为负数,零角的弧度数为零,|α|=,l是以角α作为圆心角时所对圆弧的长,r为半径.
③用“弧度”做单位来度量角的制度叫做弧度制.比值与所取的r 的大小无关,仅与角的大小有关.
④弧度与角度的换算:360°=2π弧度;180°=π弧度.
⑤弧长公式:l=|α|r,扇形面积公式:S扇形=lr=|α|r2.
2.任意角的三角函数
(1)任意角的三角函数定义:
设α是一个任意角,角α的终边与单位圆交于点P(x,y),那么角α的正弦、余弦、正切分别是:sinα=y,cosα=x,tanα=,它们都是以角为自变量,以单位圆上点的坐标或坐标的比值为函数值的函数.
(2)三角函数在各象限内的符号口诀是:一全正、二正弦、三正切、四余弦.
3.三角函数线
设角α的顶点在坐标原点,始边与x轴非负半轴重合,终边与单位圆相交于点P,过P作PM垂直于x轴于M.由三角函数的定义知,点P的坐标为(cos_α,sin_α),即P(cos_α,sin_α),其中cosα=OM,sinα=MP,单位圆与x轴的正半轴交于点A,单位圆在A点的切线与α的终边或其反向延长线相交于点T,则tanα=AT.我们把有向线段
OM、MP、AT叫做α的余弦线、正弦线、正切线.。

高中数学第一章三角函数3弧制课件必修4高一必修4数学课件_1

高中数学第一章三角函数3弧制课件必修4高一必修4数学课件_1
(1)20°;(2)-15°;(3)71π2;(4)-151π.
12/12/2021
第十二页,共三十一页。
解 (1)20°=20×1π80 rad=π9 rad. (2)-15°=-15×1π80 rad=-1π2 rad. (3)172π rad=172×180°=105°. (4)-151π rad=-151×180°=-396°.
12/12/2021
第六页,共三十一页。
【预习评价】 请填充完整下表,一些特殊角的角度数与弧度数的对应(duìyìng)关 系有:

120 135 150 180 270 360
0° 1° 30° 45° 60° 90°

°°°°°°
弧 度
0
π 180
π 6
ππ __4_ _3__
π 2
2π _3__
§3 弧度 制 (húdù)
12/12/2021
第一页,共三十一页。
学习目标 1.理解弧度的意义,能正确地进行弧度与角度的换算, 熟记特殊(tèshū)角的弧度数(重点).2.掌握弧度制下的弧长公式,会用 弧度解决一些实际问题(难点).
12/12/2021
第二页,共度制与弧度制的定义
答案(dáàn) ④
12/12/2021
第二十八页,共三十一页。
5.一个扇形(shàn xínɡ)的面积为1,周长为4,求圆心角的弧度数.
解 设扇形的半径为R,弧长为l,则2R+l=4, ∴l=4-2R,根据扇形面积公式S=12lR, 得1=12(4-2R)·R, ∴R=1,∴l=2,∴α=Rl =21=2, 即扇形的圆心角为2 rad.
3π 4
5π 6
π
3π _2__ 2π

高二数学弧度制3

高二数学弧度制3

3、例题讲解
例4 利用计算器比较 sin1.5和sin85的大小:
P10 练习 1~4
判断正误: (1)小于900的角为锐角 (2)第二象限角必大于第一象限角 (3) 为第二象限角,则 为第一象限角,
2 (4) 为第一象限角,则2 为第一或第二象限角。
; /AG850COM AG亚游
0
∏ 2∏
00
1800 3600
2、角度与弧度之间的换算
把角度换算成弧度
360 2 rad . 180 rad . 1

180
rad 0.01745rad .
把弧度换算成角度
180 1rad ( ) 57.30 5718'
角度与弧度之间 的换算
2、角度与弧度之间的换算
正角 零角 负角 正实数 0 负实数
任意角的集合
实数集R
3、例题讲解
3、例题讲解
例2 将3.14 rad 换算成角度(用度数表示, 精确到0.001).
解:∵1=(180/π)0 ∴3.14=3.14× (180/π)0 ≈179.9090
3、例题讲解
例3 利用弧度制证明下列关于扇形的公式: 1 2 1 (1) l aR; (2) S aR ; (3)S lR. 2 2 其中R是半径,l是弧长, (0 2 ) 为圆心角,S是扇形的面积。
若弧是一个半圆,则其圆心角的弧度数是多少? 若弧是一个整圆呢?
弧度制
一般地,正角的弧度数是一个正数,负角 的弧度数是一个负数,零角的弧度数是0,如果 半径为r的圆的圆心角a所对弧的长为l,那么, 角a的弧度数的绝对值是 | a | = l / r
l a r
注:“弧度”不是弧长,它是一

高中数学第一章 §3 弧度制

高中数学第一章 §3 弧度制

[核心必知]1.度量角的单位制(1)角度制规定周角的1360为1度的角,用度作为单位度量角的单位制叫角度制.(2)弧度制在以单位长为半径的圆中,单位长度的弧所对的圆心角称为1弧度的角,它的单位符号是rad,读作弧度.这种以弧度作单位度量角的单位制,叫作弧度制.2.角度与弧度的互化(1)角度制与弧度制的互化(换算)180°=π_rad;1°=π180rad=0.017 45 rad;1 rad=180°π=57°18′=57.30°(2)特殊角的度数与弧度数的对应表任一正角的弧度数都是一个正数;任一负角的弧度数都是一个负数;零角的弧度数是0.3.扇形的弧长及面积公式设扇形的半径为r ,弧长为l ,α为其圆心角,则1.半径不同的圆中,相同的圆心角所对的角的弧度数是否相同?提示:相同.在公式|α|=l r中,角的弧度数的大小与所在圆的半径的大小无关,只与圆心角的大小有关.2.2°与2弧度的角是否表示同一个角?提示:不是同一个角.2°是角度制,2是弧度制,2 rad 约为115°. 3.390°可以写成360°+π6吗?提示:不可以,在同一表达式中角度与弧度不能混用.讲一讲1.(1)把112°30′化为弧度;(2)-5π12 rad 化为度.[尝试解答] (1)∵1°=π180rad ,∴112°30′=112.5°=112.5×π180 rad =5π8 rad.(2)∵1 rad =⎝⎛⎭⎪⎫180π°,∴-5π12 rad =-5π12×⎝ ⎛⎭⎪⎫180π°=-75°.1.将角度制化为弧度制,当角度制中含有“分”“秒”单位时,应先将它们统一转化为“度”,再利用1°=π180rad 化为弧度便可.2.以弧度为单位表示角时,常把弧度写成多少π的形式,如无特殊要求,不必把π写成小数.练一练1.将下列角度与弧度互化. (1)20°; (2)11π12;(3)8 rad解:(1)20°=20×π180=π9,(2)11π12=1112×180°=165°.(3)8 rad =8×⎝ ⎛⎭⎪⎫180π°≈8×57.30°=458.40°.讲一讲2.把下列角化成2k π+α(0≤α<2π,k ∈Z )的形式,指出它是第几象限角并写出与α终边相同的角的集合.(1)-46π3; (2)-1 485°.[尝试解答] (1)-46π3=-8×2π+2π3,它是第二象限角,与2π3终边相同的角的集合为⎩⎨⎧⎭⎬⎫α⎪⎪⎪α=2k π+2π3,k ∈Z . (2)-1 485°=-5×360°+315°=-10π+7π4,它是第四象限角,与7π4终边相同的角的集合为⎩⎨⎧⎭⎬⎫α⎪⎪⎪α=2k π+7π4,k ∈Z .用弧度制表示角的集合时应注意:(1)利用弧度制与角度制之间的关系将有关角化为弧度数; (2)π的倍数是偶数,α的范围是[0,2π) (3)在表示角的集合时要使用统一的度量单位. 练一练2.(1)用弧度表示终边落在x 轴的非正、非负半轴上,y 轴的非正、非负半轴上,x 轴上,y 轴上的角的集合;(2)用弧度表示第一、二、三、四象限角的集合. 解:(1)终边落在x 轴的非正半轴上的角的集合为 {β|β=2k π+π,k ∈Z };终边落在x 轴的非负半轴上的角的集合为 {β|β=2k π,k ∈Z };终边落在y 轴的非正半轴上的角的集合为⎩⎨⎧⎭⎬⎫β⎪⎪⎪β=2k π+3π2,k ∈Z ; 终边落在y 轴的非负半轴上的角的集合为 {β|β=2k π+π2,k ∈Z };所以,终边落在x 轴上的角的集合为{β|β=k π,k ∈Z }; 终边落在y 轴上的角的集合为⎩⎨⎧⎭⎬⎫β⎪⎪⎪β=k π+π2,k ∈Z . (2)第一象限角为⎩⎨⎧⎭⎬⎫β⎪⎪⎪2k π<β<2k π+π2,k ∈Z ;第二象限角为⎩⎨⎧⎭⎬⎫β⎪⎪⎪2k π+π2<β<2k π+π,k ∈Z ;第三象限角为⎩⎨⎧⎭⎬⎫β⎪⎪⎪2k π+π<β<2k π+3π2,k ∈Z ;第四象限角为⎩⎨⎧⎭⎬⎫β⎪⎪⎪2k π+3π2<β<2k π+2π,k ∈Z .讲一讲3.(1)已知扇形的半径为1 cm ,圆心角为30°,求扇形的弧长和面积. (2)已知扇形的周长为6 cm ,面积为2 cm 2,求扇形圆心角的弧度数. [尝试解答] (1)∵α=30°=π6,∴l =|α|×r =π6×1=π6(cm)S =12|α|×r 2=12×π6×12=π12(cm 2)故扇形的弧长为π6 cm ,面积为π12cm 2.(2)设扇形的弧长为l ,所在圆的半径为r ,由题意得⎩⎪⎨⎪⎧l +2r =6,12lr =2,消去l 并整理得,r 2-3r +2=0, 解得r =1或r =2.当r =1时,l =4,圆心角α=l r =41=4;当r =2时,l =2,圆心角α=l r =22=1.故扇形的圆心角为1弧度或4弧度.1.涉及扇形的周长、弧长、圆心角和面积等的计算,关键是要弄清题目中已知哪些量求哪些量,然后灵活运用弧长公式、扇形面积公式直接求解或列方程组解决.2.解题过程中,常常用到方程的思想及等价转化的思想. 练一练3.扇形的周长C 一定时,它的圆心角θ取何值才能使该扇形的面积S 最大,最大值是多少? 解:设扇形的半径为R ,则扇形的弧长为C -2R , ∵S =12(C -2R )×R =-R 2+C 2R=-(R -C4)2+(C4)2, ∴当R =C4,即θ=C -2R R =2时,扇形有最大面积C 216.用弧度表示终边落在图中的阴影部分内的角的集合如图(不包括边界角).[错解] (1)图①中,S 1={θ|2k π+330°<θ<2k π+75°,k ∈Z }; (2)图②中,S 2={θ|2k π+225°<θ<2k π+135°,k ∈Z };(3)图③中,S 3={θ|2k π+30°<θ<2k π+90°或2k π+210°<θ<2k π+270°,k ∈Z }. [错因] 上面解答犯了两个错误:一是角的大小没分清,如(1)中330°>75°,(2)中,225°>135°,其实写出的集合S 1,S 2中不含任何元素;二是角度与弧度在同一表达式中混用.[正解] (1)图①中以OB 为终边的角为330°,可看成为-30°,化为弧度,即-π6,而75°=75×π180=5π12,∴所求集合为⎩⎨⎧⎭⎬⎫θ⎪⎪⎪2k π-π6<θ <2k π+5π12,k ∈Z . (2)图②中以OB 为终边的角225°,可看成是-135°,化为弧度,即-3π4,而135°=3π4,∴所求集合为⎩⎨⎧⎭⎬⎫θ⎪⎪⎪2k π-3π4<θ<2k π+3π4,k ∈Z .(3)图③中,∵30°=π6,210°=7π6,∴所求集合为⎩⎨⎧⎭⎬⎫θ⎪⎪⎪2k π+π6<θ<2k π+π2,k ∈Z ∪ ⎩⎨⎧⎭⎬⎫θ⎪⎪⎪2k π+7π6<θ<2k π+3π2,k ∈Z , 即⎩⎨⎧⎭⎬⎫θ⎪⎪⎪2k π+π6<θ<2k π+π2,k ∈Z ∪⎩⎨⎧⎭⎬⎫θ⎪⎪⎪(2k +1)π+π6<θ<(2k +1)π+π2,k ∈Z . 即⎩⎨⎧⎭⎬⎫θ⎪⎪⎪k π+π6<θ<k π+π2,k ∈Z .1.下列说法不正确的是( )A .“度”与“弧度”是度量角的两种不同制度B .1度的角是圆周的1360所对的圆心角,1弧度的角是圆周的12π所对的圆心角C .根据弧度的定义,180°一定等于π radD .不论是用角度制还是弧度制度量角,它们都与圆的半径长短有关解析:选D 根据角、弧度的定义,可知无论角度制还是弧度制,角的大小都与圆的半径长短无关,而与弧长与半径的比值有关,所以D 错误.2.若α=1 920°,则该角的弧度数为( ) A.163 B.323 C.16π3 D.32π3解析:选D ∵1°=π180弧度,∴1 920°=1 920×π180 rad =32π3 rad.3.-29π12的终边所在的象限是( )A .第一象限B .第二象限C .第三象限D .第四象限解析:选D -29π12=-2π-5π12,因为-5π12是第四象限角,所以-29π12是第四象限角.4.已知半径为10 cm 的圆上,有一条弧的长是40 cm ,则该弧所对的圆心角的弧度数是________.解析:由l =|α|×r ,得弧度数为4. 答案:45.已知一扇形的圆心角是72°,半径为20 cm ,则扇形的面积是________. 解析:设扇形的弧长为l . ∵72°=72×π180 rad =2π5 rad ,∴l =|α|×r =2π5×20=8π(cm),∴S =12lr =12×8π×20=80π(cm 2).答案: 80π cm 26.(1)把-1 480°写成α+2k π(k ∈Z )的形式,其中0≤α<2π; (2)若β∈[-4π,0],且β与(1)中α的终边相同,求β. 解:(1)∵-1 480°=-1 480π180=-74π9=-10π+16π9,又0≤16π9<2π,∴-1 480°=16π9-2×5π=16π9+2×(-5)π.(2)由(1)可知α=16π9.∵β与α终边相同,∴β=2k π+16π9,k ∈Z .又∵β∈[-4π,0],令k =-1,则β=-2π9,令k =-2,则β=-20π9,∴β的值是-2π9,-20π9.一、选择题1.下列命题中,真命题是( ) A .1弧度是1度的圆心角所对的弧 B .1弧度是长度为半径的弧 C .1弧度是1度的弧与1度的角之和D .1弧度的角是长度等于半径长的弧所对的圆心角 解析:选D 由弧度制定义知D 正确. 2.α=-2 rad ,则α的终边在( ) A .第一象限 B .第二象限 C .第三象限 D .第四象限解析:选C ∵-π<-2<-π2,∴α的终边落在第三象限,故选C. 3.时钟的分针在1时到3时20分这段时间里转过的弧度数为( ) A.14π3 B .-14π3 C.7π18 D .-7π18解析:选B 显然分针在1时到3时20分这段时间里,顺时针转过了213周,其弧度数为-(2π×73)=-14π3rad.4.设集合A =⎩⎨⎧⎭⎬⎫x ⎪⎪⎪x =k π+(-1)k×π2,k ∈Z ,B =错误!⎭⎪⎬⎪⎫2k π+π2,k ∈Z ,则集合A 与B 之间的关系为( )A .AB B .A BC .A =BD .A ∩B =∅解析:选C 对于集合A ,当k =2n (n ∈Z )时,x =2n π+π2,当k =2n +1(n ∈Z )时,x =2nπ+π-π2=2n π+π2∴A =B ,故选C. 二、填空题5.在半径为2的圆内,弧长为2π3的圆心角的度数为________.解析:设所求的角为α,角α=2π32=π3=60°.答案:60°6.终边落在直线y =x 上的角的集合用弧度表示为S =________.解析:S =⎩⎨⎧⎭⎬⎫α⎪⎪⎪α=π4+2k π,k ∈Z ∪⎩⎨⎧⎭⎬⎫α⎪⎪⎪α=5π4+2k π,k ∈Z=⎩⎨⎧⎭⎬⎫α⎪⎪⎪α=π4+2k π,k ∈Z ∪{α|α=π4+(2k +1)π,k ∈Z }=⎩⎨⎧⎭⎬⎫α⎪⎪⎪α=π4+n π,n ∈Z .答案:{α|α=π4+n π,n ∈Z }7.已知θ∈⎩⎨⎧⎭⎬⎫α⎪⎪⎪α=k π+(-1)k×π4,k ∈Z ,则角θ的终边所在的象限是________.解析:当k 为偶数时,α=2n π+π4,终边在第一象限;当k 为奇数时,α=(2n +1)π-π4=2n π+34π,终边在第二象限.答案:第一、二象限8.已知扇形的面积为25,圆心角为2 rad ,则它的周长为________. 解析:设扇形的弧长为l ,半径为r , 则由S =12αr 2=25,得r =5,l =αr =10,故扇形的周长为20. 答案:20 三、解答题9.用弧度表示顶点在原点,始边重合于x 轴的非负半轴,终边落在图中的阴影部分内的角的集合(不包括边界).解:(1)图①中,以OA 为终边的角为π6+2k π(k ∈Z );以OB 为终边的角为-2π3+2k π(k ∈Z ).∴阴影部分内的角的集合为{α|-2π3+2k π<α<π6+2k π,k ∈Z }.(2)图②中,以OA 为终边的角为π3+2k π,k ∈Z ;以OB 为终边的角为2π3+2k π,k ∈Z .不妨设右边阴影部分所表示集合为M 1,左边阴影部分所表示集合为M 2, 则M 1={α|2k π<α<π3+2k π,k ∈Z },M 2={α|2π3+2k π<α<π+2k π,k ∈Z }. ∴阴影部分所表示的集合为:你是我心中的一片彩云你是我心中的一片彩云你是我心中的一片彩云你是我心中的一片彩云 M 1∪M 2={α|2k π<α<π3+2k π,k ∈Z }∪{α|2π3+2k π<α<π+2k π,k ∈Z }= {α|2k π<α<π3+2k π或2π3+2k π<α<π+2k π,k ∈Z }. 10.如图,动点P ,Q 从点A (4,0)出发,沿圆周运动,点P 按逆时针方向每秒钟转π3弧度,点Q 按顺时针方向每秒钟转π6弧度,求P ,Q 第一次相遇时所用的时间、相遇点的坐标及P ,Q 点各自走过的弧长.解:设P ,Q 第一次相遇时所用的时间是t s ,则t ×π3+t ×|-π6|=2π,所以t =4(s),即P ,Q 第一次相遇时所用的时间为4 s .如图,设第一次相遇点为C ,第一次相遇时已运动到终边在π3×4=4π3的位置,则x c =-⎝ ⎛⎭⎪⎫4×12=-2,y c =-42-22=-23,所以C 点的坐标为(-2,-23).P 点走过的弧长为4π3×4=16π3, Q 点走过的弧长为2π3×4=8π3.。

弧度制 课件

弧度制   课件

问题 4 角度制与弧度制换算时,灵活运用下表中的对应关 系,请补充完整.
角度化弧度 360°= 2π rad
180°= π rad 1°=1π80 rad
弧度化角度 2π rad= 360° π rad= 180° 1 rad=1π80°
探究点二 弧度制下的弧长公式和扇形面积公式
问题 1 我们已经学习过角度制下的弧长公式和扇形面积公 式,请根据“一周角(即 360°)的弧度数为 2π”这一事实化 简上述公式.(设半径为 r,圆心角弧度数为 α). 答 半径为 r,圆心角为 n°的扇形弧长公式为 l=1n8π0r, 扇形面积公式为 S 扇=n3π6r02. ∵2πl r=2|απ|,∴l=|α|r.
【典型例题】 例 1 (1)把 112°30′化成弧度;(2)把-71π2化成角度.
解 先将 112°30′化为 112.5°,然后乘以18π0 rad,即可将 112°30′化成弧度,-172π乘以18π0°即可化为角度.
所以,(1)112°30′=112.5°=2225°=2225×1π80=58π. (2)-71π2=-172π×18π0°=-105°.
小结 灵活运用扇形弧长公式、面积公式列方程组求解是解 决此类问题的关键,有时运用函数思想、转化思想解决扇形 中的有关最值问题,将扇形面积表示为半径的函数,转化为 r 的二次函数的最值问题.
例 3 把下列各角化成 2kπ+α (0≤α<2π,k∈Z)的形式,并指
出是第几象限角:
(1)-1 500°; (2)236π; (3)-4. 解 (1)∵-1 500°=-1 800°+300°=-5×360°+300°.
4.角度与弧度的互化:
(1)角度转化为弧度:
360°=2π rad;180°=π rad; π
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
1 2 1 (2)根据S= lR= αR ,且S=2R2. 2 2
4 l R 3
所以 α=4.
例6.与角-1825º 的终边相同,且绝对值最小
的角的度数是___,合___弧度。
解:-1825º =-5×360º -25º ,
所以与角-1825º 的终边相同,且绝对值 最小的角是-25º .
5 合 36
角的大小; 1弧度≠1º
(3)以弧度和度为单位的角,都是一个与半
径无关的定值。
弧度制与角度制的换算
① 零角既是0º角,又是0 rad角
② 平角、周角的弧度数:
180°= rad 360°=2 rad
1 =

180
rad
180 1 rad 57.3 57 18'
wrg85xua
生气……”“没事,百蝶其实是很喜欢小动物的,她一定会收留这匹马的。”韩哲轩用折扇挡住了意味不明的笑,“回醉影楼 的路因该认识吧?我就不回去了……”“没问题,这点距离我还是能记住的。”慕容凌娢信心满满地挥挥手,说道,“你要是 有事就先走吧,再见!”“再见。”韩哲轩看着慕容凌娢离开,自己并没有动身。他再次拿出那块血玉,露出一抹难以捉摸的 笑容。自己帮慕容凌娢买下那匹马,就是为了不让她把血玉抵出去,但鬼斧神差之中,这东西居然落到了自己手中,要是她知 道了真相……算了,管这些干什么。韩哲轩不屑的撇撇嘴,他干嘛要在意慕容凌娢对他自己的看法,来到这个年代之后,就应 该我行我素的干有意义的事……慕容凌娢偷偷摸摸回到醉影楼,本想着避开百蝶,结果来到后院,就看见百蝶独自一人站在樱 花树下。烂漫的樱花,飘飘洒洒,正如同慕容凌娢在风中凌联的心情。该来的,终归躲不掉啊……“这么快就回来了~”百蝶 依旧是柔和的声音,她信手折下一枝樱花,似笑非笑,用奇怪的眼神打量了一下那匹黑马,“你和它,只能留一个。”“为什 么!”慕容凌娢走近了几步,解释道,“后院这么大,它绝对不会占太大的地方。”“那也不行!”百蝶后退了几步,态度突 然坚决起来,“你知不知道养马是很麻烦的!而且马都那么凶,你根本控制不住它。”“我……我能养好。”慕容凌娢不顾黑 马翻的白眼,理了理它的鬃毛,把它拉到百蝶跟前,“你看,它很听……话……”慕容凌娢看着又往后退了几步的百蝶,不知 道该说什么好。她就这么讨厌马吗?还是有别的原因……韩哲轩还信誓旦旦的给自己说百蝶很喜欢小动物……等等,自己一定 是智商欠费了,韩哲轩的话怎么能信呢!(古风一言)我字里行间有诗酒,有素琴。有屠戮,有太平,而独无你。勘破后方知, 浪荡是你,清明是你,杀伐是你。第078章 似曾相识“我……我能养好。”慕容凌娢不顾黑马翻的白眼,理了理它的鬃毛,把 它拉到百蝶跟前,“你看,它很听……话……”慕容凌娢看着又往后退了几步的百蝶,不知道该说什么好。她就这么讨厌马吗? 还是有别的原因……韩哲轩还信誓旦旦的给自己说百蝶很喜欢小动物……等等,自己一定是智商欠费了。韩哲轩的话怎么能信 呢!“百蝶姐姐……你不是害怕马吧?”慕容凌娢狡诈的一笑。“怎么会!我可是有万年修为的狐妖,怎么会怕这只活了十年 不到的马。”“那你为什么要站的那么远?”慕容凌娢站在樱花树下,百蝶已经退到了几米外的墙边。“我对花粉过敏不行 啊。”百蝶用幽怨的眼神盯着慕容凌娢,“你想养就养吧,只要别让它乱跑,吓到人就行了。”“没问题。”所以,这匹黑马 奇迹般的被留在了醉影楼。第二天,慕
弧度制及换算
角度制
在初中几何里,我们学习过角的度量, 1度的角是怎样定义的呢?
1 周角的 为1度的角。 360
引入:圆心角、弧长和半径的关系:
AB AB =定值, r r
B
O
B’
设α=nº, AB 弧长为l,半径OA为r, A A' 2 r l , n 则 l n , 360 r 180 结论: 可以看出,等式右端不含 可用圆的弧长与半 径的比值作单位去 半径,表示弧长与半径的 度量角。 比值跟半径无关,只与α的 大小有关。
l ③角的弧度数的绝对值: r
用弧度制表示弧长公式:
① 弧长公式: l r
l 由公式: l r r
nr 比公式 l 简单. 180
弧长等于弧所对的圆心角弧度的绝对值 与半径的积.
用弧度制表示扇形面积公式:
1 ② 扇形面积公式 S lR 2
其中l是扇形弧长,R是圆的半径。 证明:设扇形所对的圆心角为nº (αrad),则
n 1 2 S R R 360 2
2
又 αR=l,所以
1 S lR 2
例1. 把112º30′化成弧度(用π表示)。 112º30′=112.5×
8 例2. 把 化成度。 5
8 8 180 ( ) 288 5 5

ቤተ መጻሕፍቲ ባይዱ
180
=
5 . 8
例3. 填写下表:
定义:
长度等于半径长的圆弧所对的圆心角叫做1弧
度的角,弧度记作rad。这种以弧度为单位来
度量角的制度叫做弧度制。
注:单位rad可以略去不写。
弧度制与角度制相比:
(1) 弧度制是以“弧度”为单位的度量角的单
位制,角度制是以“度”为单位来度量角的单
位制 (2)1弧度是弧长等于半径长的圆弧所对的圆
1 心角的大小,而1度是圆周 的所对的圆心 360
例7. 已知一半径为R的扇形,它的周长等于
所在圆的周长,那么扇形的中心角是多少弧
度?扇形的面积是多少?
解:周长=2πR=2R+l,所以l=2(π-1)R. 所以扇形的中心角是2(π-1) rad.
扇形面积是 ( 1) R
2
; https:///u/5114721105/home?topnav=1&wvr=6 腾讯分分彩
, AB 所对的圆心角是60º
半径是50米,求
解:因为60º = 3 ,所以
的长 ABl
l=α· r=
3×50≈52.5 .
答: AB 的长约为52.5米.
例5. 在半径为R的圆中,240º的中心角所对的
弧长为 ,面积为2R2的扇形的
中心角等于
弧度。
4 解:(1)240º = ,根据l=αR,得 3
角度 弧度 角度 弧度 角度 0° 30°
6
45°

4
60°

3
90°

2
120°
2 3
0
135° 150° 180° 210° 225° 240° 4 7 5 3 5
4 6
π
6
4
3
270° 300° 315° 330° 360°
3 2 5 3
7 4 11 6
弧度

例4. 扇形AOB中,
相关文档
最新文档